The Construction of Minimal (b,t)-Blocking Sets Containing Conics in $\mathbf{P G}(\mathbf{2}, 5)$ with the Complete Arcs and Projective Codes Related with Them

Amal Shihab Al-Mukhtar
Hani Sabbar Thumai
Dept. of Mathematics, College of Education for pure science
University of Baghdad

Received in : 28 September 2014, Accepted in : 21 December 2014 Abstract

A (b,t)-blocking set B in $\operatorname{PG}(2, q)$ is set of b points such that every line of $\operatorname{PG}(2, q)$ intersects B in at least t points and there is a line intersecting B in exactly t points.
In this paper we construct a minimal (b,t)-blocking sets, $t=1,2,3,4,5$ in $\operatorname{PG}(2,5)$ by using conics to obtain complete arcs and projective codes related with them.

Keywords: Blocking set, complete arc, projective code.

1- Introduction

Let $\mathrm{GF}(\mathrm{q})$ denotes the Galois field of q elements and $\mathrm{V}(3, \mathrm{q})$ be the vector space of row vectors of length three with entries in $\operatorname{GF}(q)$. Let $\operatorname{PG}(2, q)$ be the corresponding projective plane. The points of $\operatorname{PG}(2, q)$ are the non zero vectors of $\mathrm{V}(3, \mathrm{q})$ with the rule that $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ and $\mathrm{y}=\left(\lambda \mathrm{x}_{1}, \lambda \mathrm{x}_{2}, \lambda \mathrm{x}_{3}\right)$ represent the same point, where $\lambda \in \mathrm{GF}(\mathrm{q}) \backslash\{0\}$. The number of points of $\mathrm{PG}(2, q)$ is $\mathrm{q}^{2}+\mathrm{q}+1$.

If the point $P(X)$ is the equivalence class of the vector X, then we will say that X is a vector representing $P(X)$. A subspace of dimension one is a set of points all of whose representing vectors form a subspace of dimension two of $\mathrm{V}(3, \mathrm{q})$, such subspaces are called lines.
The number of lines in $\mathrm{PG}(3, \mathrm{q})$ is $\mathrm{q}^{2}+\mathrm{q}+1$. There are $\mathrm{q}+1$ points on every line and $\mathrm{q}+1$ lines through every point. The point $\mathrm{X}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ is on the line $\mathrm{Y}\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right]$ if and only if $\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\mathrm{x}_{3} \mathrm{y}_{3}=0$.

Definition (1.1): [1]

A (k, n)-arc is a set of k points of a projective plane such that some n but no $n+1$ of them are collinear, $n \geq 2$.

Definition (1.2): [2]

A $(k, n)-\operatorname{arc}$ is complete if it is not contained in a $(k+1, n)$-arc.

Definition (1.3): [2]

A line 1 in $\operatorname{PG}(2, q)$ is an i-secant on a (k, n)-arc K if $|\ell \cap \mathrm{K}|=i$.

Definition (1.4): [2]

A point N which is not on a (k, n)-arc has index i if there are exactly i (n-secants) of the arc through N , we denote the number of points N of index i by N_{i}.

Remark (1.5): [3]

The (k, n)-arc is complete iff $\mathrm{N}_{0}=0$. Thus the arc is complete iff every point of $\operatorname{PG}(2, \mathrm{q})$ lies on some n-secant of the arc.

Definition (1.6): [3]

An (b,t)-blocking set B in $\operatorname{PG}(2, q)$ is a set of b points such that every line of $\operatorname{PG}(2, q)$ intersects B in at least t points, and there is a line intersecting B in exactly t points. If B contains a line, it is called trivial, thus B is a subset of $\operatorname{PG}(2, q)$ which meets every line ℓ in $\operatorname{PG}(2, q)$, but contains no line completely; that is $t \leq|B \cap \ell| \leq q$ for every line ℓ in $\operatorname{PG}(2, q)$. So B is a blocking set iff $P G(2, q) \backslash B$ is a blocking set. A blocking set is minimal if $B \backslash\{P\}$ is not blocking set for every p in B .

Lemma (1.7): [4]

A $(b, 1)$-blocking set B is minimal in $\operatorname{PG}(2, q)$ iff there is a line ℓ in $\operatorname{PG}(2, q)$ such that $B \cap \ell=\{Q\}$ for every Q in B.

Definition (1.8): [3]

A variety $\mathrm{V}(\mathrm{F})$ of $\mathrm{PG}(2, \mathrm{q})$ is a subset of $\mathrm{PG}(2, \mathrm{q})$ such that:
$\mathrm{V}(\mathrm{F})=\{\mathrm{P}(\mathrm{A}) \in \mathrm{PG}(2, \mathrm{q}) \mid \mathrm{F}(\mathrm{A})=0\}$.
Definition (1.9): [5]
Let $\mathrm{Q}(2, \mathrm{q})$ be the set of quadrics in $\operatorname{PG}(2, q)$; that is the varieties $\mathrm{V}(\mathrm{F})$, where:
$F=a_{11} x_{1}^{2}+a_{22} X_{2}^{2}+a_{33} X_{3}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}$
If $\mathrm{V}(\mathrm{F})$ is non-singular, then the quadric is a conic.

That is, if $A=\left[\begin{array}{ccc}a_{11} & \frac{a_{12}}{2} & \frac{a_{13}}{2} \\ \frac{a_{12}}{2} & a_{22} & \frac{a_{23}}{2} \\ \frac{a_{13}}{2} & \frac{a_{23}}{2} & a_{33}\end{array}\right]$ is nonsingular, then the quadric (1) is a conic.

1.10 The Relation Between The Blocking (b,t)-Set and The (k,n)-arc [5]

The (k, n)-arc and the (b, t)-blocking set are each complement to the other in the projective plane $\operatorname{PG}(2, q)$, that is, $n+t=q+1$ and $k+b=q^{2}+q+1$. Thus the complement of the $(b, t)-$ blocking set is the set of points that intersects every line in at most n points which represents the (k, n)-arc. Also finding minimal (b,t)-blocking set is equivalent to finding maximal (k, n)arc in $P G(2, q)$.
Lemma (1.11): [4]
Let $\beta=\mathrm{C} \cup \ell \cup\{\mathrm{P}\} \backslash\left\{\mathrm{P}_{1}, \mathrm{P}_{2}\right\}$, where C is a conic, ℓ is a (2-secant) of C such that $\mathrm{C} \cap \ell=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}\right\}, \mathrm{P}$ is the point of intersection of the two tangents to C at P_{1} and P_{2}, then β is a minimal ($2 \mathrm{p}-1,1$)-blocking set.

Definition (1.12): [5]

Let $\mathrm{V}(\mathrm{n}, \mathrm{q})$ denote the vector space of all ordered n -tuples over $\mathrm{GF}(\mathrm{q})$. A linear code C over $\operatorname{GF}(\mathrm{q})$ of length n and dimension k is a k -dimensional subspace of $\mathrm{V}(\mathrm{n}, \mathrm{q})$. The vectors of C are called code words. The Hamming distance between two codewords is defined to be the number of coordinate places in which they differ. The minimum distance of a code is the smallest distances between distinct codewords. Such a code is called an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]_{\mathrm{q}}$ code if its minimum hamming distance is d.

There exists a relationship between complete (n, r)-arcs in $\operatorname{PG}(2, q)$ and $[n, 3, d]_{q}$ codes given by the next theorem.

Theorem (1.13): [5]

There exists a projective $[\mathrm{n}, 3, \mathrm{~d}]_{\mathrm{q}}$ code if and only if there exists an $(\mathrm{n}, \mathrm{n}-\mathrm{d})$-arc in PG(2,q).

Theorem (1.14): [6]

Let β_{2} be a double blocking set in $\operatorname{PG}(2, q)$:
(1) If $\mathrm{q}<9$, then β_{2} has at least 3 q points.
(2) If $q=11,13,17$ or 19 , then $\left|\beta_{2}\right| \geq(5 q+7) / 2$.

Theorem (1.15): [6]
Let β_{3} be a trible blocking set in $\operatorname{PG}(2, q)$:
(1) If $q=5,7,9$, then β_{3} has at least 4 q points and if $\mathrm{q}=8$, then β_{3} has at least 31 points.
(2) If $q=11,13$ or 17 , then $\left|\beta_{3}\right| \geq(7 q+9) / 2$. Now, we prove the following theorem:

Theorem (1.16):

A (b,t)-blocking set B is minimal in $\operatorname{PG}(2, q)$ then every point P in B there is a t-secant of B containing P.

Proof:

Suppose B is minimal blocking set, let P be any point in B . Let K be the complement of B, then K is complete (k, n)-arc in $\operatorname{PG}(2, q)$ and P is not K., then P is an (n-secant) of K, but $\mathrm{q}+1=\mathrm{t}+\mathrm{n}$ and so $\mathrm{t}=\mathrm{q}+1-\mathrm{n}$. Thus P is on an (t -secant) of B .

2- The Projective Plane PG(2,5)

In this paper we consider the case $\mathrm{q}=5$ and the elements of $\mathrm{GF}(5)$ are denoted by 0,1,2,3,4.

A projective plane $\pi=\operatorname{PG}(2,5)$ over $\mathrm{GF}(5)$ consists of 31 points, 31 lines each line contains 6 points and through every point there is 6 lines.

Let P_{i} and ℓ_{i} be the points and lines of $\mathrm{PG}(2,5)$ respectively. Let i stands for the point P_{i}, $\mathrm{i}=1,2, \ldots, 31$. The points and lines of $\mathrm{PG}(2,5)$ are given in the table (1).

2.1 The Conic in PG(2,5) Through The Reference and Unit Points

The general equation of the conic is:
$\mathrm{a}_{11} \mathrm{x}_{1}^{2}+\mathrm{a}_{22} \mathrm{x}_{2}^{2}+\mathrm{a}_{33} \mathrm{x}_{3}^{2}+\mathrm{a}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{a}_{13} \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{a}_{23} \mathrm{x}_{2} \mathrm{x}_{3}=0$
By substituting the reference points:
$1(1,0,0), 2(0,1,0), 7(0,0,1)$ and the unit point $13(1,1,1)$, which are four points no three of them are collinear, in (1), we get:
$a_{12}+a_{13}+a_{23}=0$ and $a_{11}=a_{22}=a_{33}=0$, so (1) becomes:
$\mathrm{a}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{a}_{13} \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{a}_{23} \mathrm{x}_{2} \mathrm{x}_{3}=0$
If $\mathrm{a}_{12}=0$, then the conic is degenerated, therefore $\mathrm{a}_{12} \neq 0$, similarly, $\mathrm{a}_{13} \neq 0$ and $\mathrm{a}_{23} \neq 0$.
Dividing equation (2) by a_{12}, we get:
$x_{1} x_{2}+\alpha x_{1} x_{3}+\beta x_{2} x_{3}=0$,where $\alpha=\frac{a_{13}}{a_{12}}, \beta=\frac{a_{23}}{a_{12}}$, then $\beta=-(1+\alpha)$ since $1+\alpha+\beta=0(\bmod 5)$.
Then $\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1 \mathrm{x}_{3}}-(1+\alpha) \mathrm{x}_{2} \mathrm{x}_{3}=0$, where $\alpha \neq 0$ and $\alpha \neq 4$, for if $\alpha=0$ or $\alpha=4$ we get a degenerated conic, that is, $\alpha=1,2,3$.

2.2 The Equations and the Points of the Conics in PG(2,5) Through the Reference and Unit Points

For any value of α, there is a unique conic contains 6 points, 4 of them are the reference and unit points

1. If $\alpha=1$, then the equation of the conic C_{1} is

$$
\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{x}_{3}+3 \mathrm{x}_{2} \mathrm{x}_{3}=0
$$

The points of C_{1} are : $1,2,7,13,20,26$.
2. If $\alpha=2$, then the equation of the conic C_{2} is
$\mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{x}_{1} \mathrm{x}_{3}+2 \mathrm{x}_{2} \mathrm{x}_{3}=0$
The points of C_{2} are : $1,2,7,13,21,29$.
3. If $\alpha=3$, then the equation of the conic C_{3} is
$\mathrm{x}_{1} \mathrm{x}_{2}+3 \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{2} \mathrm{x}_{3}=0$
The points of C_{3} are : 1,2,7,13,24,30.
Thus we found five conics two of them are degenerated and the remaining three conics $\mathrm{C}_{1}, \mathrm{C}_{3}$, C_{3} are non-degenerated.

Table (1)

\boldsymbol{i}	$\boldsymbol{P}_{\boldsymbol{i}}$			$\boldsymbol{L}_{\boldsymbol{i}}$					
1	1	0	0	2	7	12	17	22	27
2	0	1	0	1	7	8	9	10	11
3	1	1	0	6	7	16	20	24	28
4	2	1	0	4	7	14	21	23	30
5	3	1	0	5	7	15	18	26	29
6	4	1	0	3	7	13	19	25	31
7	0	0	1	1	2	3	4	5	6
8	1	0	1	2	11	16	21	26	31

9	2	0	1	2	9	14	19	24	29
10	3	0	1	2	10	15	20	25	30
11	4	0	1	2	8	13	18	23	28
12	0	1	1	1	27	28	29	30	31
13	1	1	1	6	11	15	19	23	27
14	2	1	1	4	9	16	18	25	27
15	3	1	1	5	10	13	21	24	27
16	4	1	1	3	8	14	20	26	27
17	0	2	1	1	17	18	19	20	21
18	1	2	1	5	11	14	17	25	28
19	2	2	1	6	9	13	17	26	30
20	3	2	1	3	10	16	17	23	29
21	4	2	1	4	8	15	17	24	31
22	0	3	1	1	22	23	24	25	26
23	1	3	1	4	11	13	20	22	29
24	2	3	1	3	9	15	21	22	28
25	3	3	1	6	10	14	18	22	31
26	4	3	1	5	8	16	19	22	30
27	0	4	1	1	12	13	14	15	16
28	1	4	1	3	11	12	18	24	30
29	2	4	1	5	9	12	20	23	31
30	3	4	1	4	10	12	19	26	28
31	4	4	1	6	8	12	21	25	29

2.3 The Construction of Minimal (b,t)-Blocking Sets By Using Conic-Type Blocking Sets

We construct minimal (b,t)-blocking set in $\operatorname{PG}(2,5)$ from the minimal blocking $(9,1)$-sets of lemma (1.15) by using conic.

2.3.1 The Construction of Minimal (9,1)-Blocking Set by Lemma (1.11)

We take the conic C_{1} in section 2.
Let $\beta_{1}=\mathrm{C}_{1} \cup \mathrm{~L}_{1} \backslash\left\{\mathrm{P}_{1}, \mathrm{P}_{2}\right\} \cup\{\mathrm{P}\}, \mathrm{C}_{1}=\{1,2,7,13,20,26\}, \mathrm{L}_{1}=\{2,7,12,17,22,27\}$, $\mathrm{C}_{1} \cap \mathrm{~L}_{1}=\{2,7\}, \mathrm{L}_{4}$ and L_{9} are the two tangents to C_{1} at the points 7 and 2 respectively. $\mathrm{L}_{4} \cap \mathrm{~L} 9=\{14\}$, then
$\beta_{1}=\{1,12,13,14,17,20,22,26,27\}, \beta_{1}$ is a $(9,1)$-blocking set in PG(2,5). Since each point of β_{1} is on line ℓ in $\operatorname{PG}(2,9)$ such that $\beta_{1} \cap \ell=\{P\}$ (lemma 1.7), β_{1} satisfies the following conditions:
(a) β_{1} intersects every line in $\operatorname{PG}(2,5)$ in at least one point.
(b) Every point in β_{1}, there is a line ℓ in $\operatorname{PG}(2,5)$ such that $\beta_{1} \cap \ell=\{P\}$.

The complement of β_{1} is the complete (22,5)-arc K_{5}, by theorem (1.13) there exists a projective [22,3,17] code.

2.3.2 The Construction of Minimal (b,2)-Blocking Set In PG(2,5)

We construct two (9,1)-blocking sets.
Let $\beta_{1}=\{1,12,13,14,17,20,22,26,27\}$ be the minimal (9,1)-blocking set of section (2.3.1). We construct another (9,1)-blocking set
$\alpha_{1}=\mathrm{C}_{2} \cup \mathrm{~L}_{8} \backslash\left\{\mathrm{C}_{2} \cap \mathrm{~L}_{8}\right\} \cup\{15\}$, where $\mathrm{C}_{2}=\{1,2,7,13,21,29\}, \mathrm{L}_{8}=\{2,11,16,21,26,31\}$, $\mathrm{C}_{2} \cap \mathrm{~L}_{8}=\{2,21\}, \mathrm{L}_{10} \cap \mathrm{~L}_{24}=\{15\}$ and L_{10} and L_{24} are tangents to C_{2} at the points 2 and 21 respectively.
$\alpha_{1}=\{1,7,11,13,15,16,26,29,31\}$ is (9,1)-blocking set.
Now, we construct (b,2)-blocking set as follows:

Let $\mathrm{A}=\alpha_{1} \cup \beta_{1}=\{1,7,11,12,13,14,15,16,17,20,22,26,27,29,31\}$.
A must satisfies the following conditions:
(a) A intersects every line of $\mathrm{PG}(2,5)$ in at least two points.
(b) Every point in A is on at least one 2 -secant of A .

We add three points 3,10 and 18 to A and eliminate the points 15 and 26 from A to satisfy these conditions, then:
$\beta_{2}=A \cup\{3,10,18\} \backslash\{15,26\}=\{1,3,7,10,11,12,13,14,16,17,18,20,22,27,29,31\}$ is a minimal $(16,2)$-blocking set. The complement of β_{2} is the complete $(15,4)$-arc K_{4}. By theorem (1.13) there exists a projective [15,3,11] code.

2.3.3 The Construction of Minimal (b,3)-Blocking Set In PG(2,5)

We take the $(9,1)$-blocking sets in section (2.3.2)
$\alpha_{1}=\{1,7,11,13,15,16,26,29,31\}, \beta_{1}=\{1,12,13,14,17,20,22,26,27\}$, Let $\gamma_{1}=C_{3} \cup L_{28} \cup\{8\} \backslash$
$\left\{\mathrm{C}_{3} \cap \mathrm{~L}_{28}\right\}, \mathrm{C}_{3}=\{1,2,7,13,24,30\}, \mathrm{L}_{28}=\{3,11,12,18,24,30\}, \mathrm{C}_{3} \cap \mathrm{~L}_{28}=\{24,30\}$ and $\mathrm{L}_{21} \cap \mathrm{~L}_{26}=\{8\}$, where L_{21} and L_{26} are tangents to C_{3} at the points 24 and 30 respectively. $\gamma_{1}=\{1,2,3,7,8,11,12,13,18\}$ is a minimal (9,1)-blocking set.
We must construct a minimal (b,3)-blocking set from α_{1}, β_{1} and γ_{1} as follows:.
Let $B=\alpha_{1} \cup \beta_{1} \cup \gamma_{1}=\{1,2,3,7,8,11,12,13,14,15,16,17,18,20,22,26,27,29,31\}$.
B must satisfy the following conditions:
(a) B intersects every line in $\operatorname{PG}(2,5)$ in at least three points.
(b) Every point in B is on at least one 3 -secant of B .

We add two points 4 and 5 to B and eliminate the point 31 from B to satisfy these conditions, then:
$\beta_{3}=\mathrm{B} \cup\{4,5\} \backslash\{31\}=\{1,2,3,4,5,7,8,11,12,13,14,15,16,17,18,20,22,26,27,29\}$ is a minimal (20,3)-blocking set which is trivial since β_{3} contains some lines completely. The complement of β_{3} is the complete (11,3)-arc K_{3}. By theorem (1.13) there exists a projective [11,3,8] code in PG(2,5).
2.3.4 The Construction of Minimal (b,4)-Blocking Set In PG(2,5)

We take three minimal $(9,1)$-blocking sets in section $(2.3 .3)$ which are:
$\alpha_{1}=\{1,7,11,13,15,16,26,29,31\}, \beta_{1}=\{1,12,13,14,17,20,22,26,27\}$,
$\gamma_{1}=\{1,2,3,7,8,11,12,13,18\}$.
Let $\omega_{1}=\mathrm{C}_{1} \cup \mathrm{~L}_{2} \cup\{30\} \backslash\left\{\mathrm{C}_{1} \cap \mathrm{~L}_{2}\right\}$, where C_{1} is the conic $\mathrm{C}_{1}=\{1,2,7,13,20,26\}$, $\mathrm{L}_{2}=\{1,7,8,9,10,11\}, \mathrm{C}_{1} \cap \mathrm{~L}_{2}=\{1,7\}, \mathrm{L}_{4} \cap \mathrm{~L}_{12}=\{30\}, \mathrm{L}_{4}$ and L_{12} are tangents to C_{1} at the points 7 and 1 respectively, then.
$\omega_{1}=\{2,8,9,10,11,13,20,26,30\}$ is a minimal (9,1)-blocking set.
We construct a minimal (b,4)-blocking set from $\alpha_{1}, \beta_{1}, \gamma_{1}$ and ω_{1} as follows:.
Let $C=\alpha_{1} \cup \beta_{1} \cup \gamma_{1} \cup \omega_{1}=\{1,2,3,7, \ldots, 14,15,16,17,18,20,22,26,27,29,30,31\}$. C must satisfy the following conditions:
(a) C intersects every line in at least four points.
(b) Every point in C is on at least one 4 -secant of C .

We add the points $6,45,21,24,28$ to C, and eliminate one point 29 from C to satisfy these conditions, then:
$\beta_{4}=C \cup\{6,21,24,28\} \backslash\{29\}=\{1,2,3,6,7, \ldots, 18,20,21,22,24,26,27,28,30,31\}$ is a minimal (25,4)blocking set which is trivial since β_{4} contains some lines completely. The complement of β_{4} is the complete $(6,2)$-arc K_{2}. By theorem (1.13) there exists a projective [6,3,4] code.

2.3.5 The Construction of Minimal (b,5)-Blocking Set In PG(2,5)

We take four minimal $(9,1)$-blocking sets of section (2.3.4) which are
$\alpha_{1}=\{1,7,11,13,15,16,26,29,31\}, \beta_{1}=\{1,12,13,14,17,20,22,26,27\}$,
$\gamma_{1}=\{1,2,3,7,8,11,12,13,18\}, \omega_{1}=\{2,8,9,10,11,13,20,26,30\}$.
We construct another minimal (9,1)-blocking set.

Let $\delta_{1}=\mathrm{C}_{2} \cup \mathrm{~L}_{6} \backslash\{7,13\} \cup\{24\}$, where C_{2} is a conic, $\mathrm{C}_{2}=\{1,2,7,13,21,29\}$, $\mathrm{L}_{6}=\{3,7,13,19,25,31\}, \mathrm{C}_{2} \cap \mathrm{~L}_{6}=\{7,13\}, \mathrm{L}_{3} \cap \mathrm{~L}_{22}=\{24\}$, where L_{3} and L_{22} are tangents to C_{2} at the points 7 and 13 respectively, then. $\delta_{1}=\{1,2,3,19,21,24,25,29,31\}$ is a minimal (9,1)-blocking set.
Now, we must construct a minimal (b,5)-blocking set from $\alpha_{1}, \beta_{1}, \gamma_{1}, \omega_{1}$ and δ_{1} as follows:.
Let $\mathrm{D}=\alpha_{1} \cup \beta_{1} \cup \gamma_{1} \cup \omega_{1} \cup \delta_{1}=\{1,2,3,7, \ldots, 22,24, \ldots, 27,29,30,31\}$. D must satisfy the following conditions:
(a) D intersects every line in at least five points.
(b) Every point of D is on at least one 5 -secant of D .

We add four points $5,6,23,28$ to D to satisfy these conditions, then:
$\beta_{5}=\mathrm{D} \cup\{5,6,23,28\}=\{1,2,3,5, \ldots, 31\}$ is a minimal $(30,5)$-blocking set which is trivial since β_{5} contains some lines completely. The complement of β_{5} is not arc since every (k, n) cannot exist when $\mathrm{n}<2$.

Conclusion

1. We construct a minimal (9,1)-blocking set, which is containing a conic as in lemma (1.12). Also we construct minimal (16,2)-blocking by taking the union of two blocking (9,1)-sets of type in lemma (1.12). We construct minimal (20,3)-blocking set, by taking the union of three $(9,1)$ - blocking sets of type in lemma (1.12). We construct minimal (25,4)-blocking set by taking the union of four (9,1)-blocking sets of type in lemma (1.12) and finally we construct minimal (30,5)-blocking set B_{5} by taking the union five (9,1)-blocking sets of type in lemma (1.12).
2. The minimal $(9,1)$-blocking set B_{1} and the minimal (16,2)-blocking set B_{2} are non-trivial, but the minimal $(20,3)$-blocking set B_{3}, the minimal $(25,4)$-blocking set B_{4} and the minimal (30,5)-blocking set B_{5} are trivial

References

1. Al-Mukhtar, A.S.,Ahmed,A.M. and Faiyadh, M.S., (2013), The Construction of (k,3)-arcs on Projective Plane Over Galois Field GF(7),Ibn-Al-Haitham Journal For Pure and Applied Science,(26),(2),259-265.
2. Al-Mukhtar, A.S., Ahmed, and Kareem, F.F., (2013), The Construction of (k,3)-arcs in PG(2,9) by using Geometric Method,Ibn-Al-Haitham Journal For Pure and Applied Science,(26),(2),239-248.
3. Hassan, U.A., (2013), The Reverse Construction for the Complete Arcs in the Projective Plane $\operatorname{PG}(2, p)$ Over Galois Field GF(p) by Using Geometric Methods, M.Sc. Thesis, University of Baghdad, Iraq.
4. Hirschfeld, J. W. P., (1998), Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.
5. Rumen Daskalov, (2008), A Geometric Construction of $(38,2)$-Bloking Set in $\operatorname{PG}(2,13)$ and the Related [145,3,133] 13 Cod, Discrete Mathematics Technical University of Gabrovo, Bulgaria, 308 (1341-1345).
6. Ball, S., (1995), Multiple Blocking Sets and arcs in Finite Plane, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN, QH,U,K,1-16.

PG(2,5) صغرى تحتوي على مخروطيات في (b,t)- بناء مجموعات قالبية والاقو اس الكاملة و الشفرات الاسقاطية المرتبطة بها

آملا شهاب المختار
هاني صبار ثميل
قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة بغداد
أستلم البحث في : 28يلول 2014, قبل البحث في : 21كانون الاول 2014

الخلاصه
المجمو عة القالبية - B(b,t) في PG(2,q) هي مجمو عة من b من النقاط بحيث ان كل مستققم في PG(2,q) يقطع
في t (من النقاط في الاقل ويوجد مستنقيم يقطع B في t ف من النقاط فقط. في هذا البحث قمنا بيناء مجمو عات قالبية - (b,t) صغرى في (2,5(t= 1,2,3,4,5،PG ، ، باعتماد مخروطيات وحصلنا على أقو اس كاملة وشفر ات إسقاطية مرتبطة بها.

الكلمـات المفتاحية : مجموعة قالبية ، قوس كامل ، شفرة إسقاطية.

