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Abstract 
        In our research, we introduced new concepts, namely 𝜃, 𝜃*and 𝜃**-light mappings, 
after we knew 𝜃, 𝜃*and 𝜃**-totally disconnected mappings through the use of 𝜃-open 
sets. 
Many examples, facts, relationships and results have been given to support our work. 
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Introduction  
    Many researchers studied the light mappings such as the world’s J.J.Charatonic and 
K.Omiljanowski[2]. In this paper, we provide other types of light mappings namely 𝜃-
light open mapping. Other scientists who studied the light mappings are the word M. 
Wldyslaw [5], M. K. Fort [3] and G. Sh. mohammed [1] and others.   
In our work, we needed some basic definitions. Let (X, Ʈ) be topological space and A be 

a subset of X, a point x∈A is said to be 𝜃-interior point to A if x∈ 𝑈 ⊆ 𝐴 for some U∈ 𝜏 
containing x. The set of all 𝜃-interior points are called 𝜃-interior set and we denoted by 
𝜃 𝑖𝑛𝑡 A , a subset U of topological pace X is 𝜃-open if and only if every point in U is 
a interior point [7]. Every 𝜃-open set is an open set but the converse may not be true in 
general. A space X is said to be 𝜃-Hausdorff if for every distinct point x, y∈X there exist 
𝜃-open sets Ux, Vy containing x and y respectively such that Ux∩ Vy =∅[4]. A mapping 
f:X→Y is said to be 𝜃-open(𝜃*-open and 𝜃**-open) if f(V) is 𝜃-open(open and 𝜃-open) 
in Y, whenever V is open (𝜃-open) in X [6]. Let X and Y be spaces and let f be a 
mapping from X into Y then f is said to be 𝜃-homeomorphism if f is bijective, 
continuous and 𝜃-closed (𝜃-open) [6]. A space X is said to be totally disconnected space if 
for every pair of distinct points, a, b ∈X has a disconnection A∪B to X such that a ∈ A and b ∈ 
B [8]. A surjective mapping f:X→Y is said to be totally disconnected mapping if and only if for 
every totally disconnected set U in X, f(U) is totally disconnected set in Y [1]. 

Definition(1): Let X be topological space, and let A and B are nonempty 𝜃-open sets in 
X, then A∪B is said to be 𝜃-disconnection in X if and only if A∪B=X and A∩B =∅. 

Definition(2): Let X be topology space, G⊆X, let A, B are nonempty 𝜃-open sets in X, 
then A∪B is said to be 𝜃-disconnection in G if and only if satisfy the following: 

1- G∩A ∅. 

2- G∩B ∅. 

3-(G∩A)∩(G∩B)=∅. 

4-(G∩ A)∪(G∩B)=G. 

Example (3): Let X={a, b, c} and let ƮD is discrete topology define to X. Then {a}, {b, 
c} are 𝜃-disconnection to X and {a}, {b, c} are 𝜃-disconnection to subset {a, b} to X. 

*Its known that every 𝜃 open set s is open but the converse may be not true. 

Example (4): 

(R, Ʈcof ) the open subsets of R is open set but not 𝜃-open. 

Definition(5): A topology space X is said to be 𝜃-totally disconnected if for every two 
distinct point p & q there exist 𝜃-disconnection G∪H to X such that P∈G & q∈H. 
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Example (6): The rational numbers with relative usual topology is a 𝜃-totally 
disconnected. Since if we take q1&q2 ∈Q where q1  q2 there exist r∈Qc such that q1 r  
q2 

G={x∈Q:x 𝑟} and H={ x∈Q:x r} 

Then G∪H is 𝜃-disconnection to Q such that q1∈ 𝐺 & q2∈H 

𝐺inG=G & 𝐻inH=H 

So Q is a 𝜃-totally disconnected. 

Proposition (7): Every 𝜃-totally disconnected set is totally disconnected. 

Proof: 

Let X be 𝜃-totally disconnected space to prove X is totally disconnected space. 

Let x,y∈X with x y. So there exist a 𝜃-totally disconnection to X (I mean there exist G 
and H which are 𝜃-open sets and G, H ∅ and G∪H=X , G∩H=∅ with x∈G, y∈H). 

But every 𝜃-open set is open set soX is totally disconnected space. 

Remark (8): 

The converse of above proposition is not true in general but in discrete space it is 
availed.  

Definition (9): A surjective mapping f:X→Y is said to be 𝜃-light mapping if for every 
y∈Y, f-1(y) is 𝜃-totally disconnected set. 

Example(10): Let(Q, ƮD) to topological space  such that ƮD  is the discrete topology 
define to the rational number Q and let (Q, Ʈind) is the indiscrete topology such that 
k∈R.Let f:(Q, ƮD)→(Q, Ʈind) is a mapping define the following: f(x)=0.5 for each x∈Q 
note that f-1(x)=Q if x =0.5 and  f-1(x)=∅ when x 0.5 where ∅ and Q are 𝜃-totally 
disconnected. Then f is 𝜃-light mapping. 

Remark (11): Every 𝜃-totally disconnected is 𝜃-hausdorff but the converse may be not 
true in general for example: 

Example (12): (R, Ʈu) is 𝜃-hausdorff but not 𝜃-totally disconnected, where R is the set 
of real number .To show that (R, Ʈu) is not 𝜃-totally disconnected. 

Let x &y ∈Q⊆R such that x y, x y. 

Then ∃ p∈Qc such that x p y, (p, ∞)&(-∞, p) are 𝜃-open sets in R since P-1∈(-∞, p) 

there exist (-∞, p-1], p-1 ∈ (-∞, p-1] ⊆ (-∞, p) where ∞, 𝑝   =(-∞, p] the set (p, ∞) is 
similar. 

(p, ∞)∩(-∞, p)=∅, but (p,∞)∪(-∞, p) R (R has no 𝜃-disconnection) 
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So (R, ƮU) is not 𝜃-totally disconnected. 

Definition (13): A surjective mapping f:X→Y is said to be  𝜃-totally disconnected if 
and only if for every totally disconnected set U⊆X then f(U) is 𝜃-totally disconnected in 
Y. 

Definition (14): A surjective mapping f:X→Y is said to be  𝜃*-totally disconnected 
mapping if and only if for every 𝜃- totally disconnected set U⊆X then f(U) is totally 
disconnected 

Examples (15):1-Let f: (R, Ʈu)→(R, ƮD) such that f(x)=x for  each x∈R . 

Since (Q, Ʈu) is totally disconnected set in (R, Ʈu) and f(Q)=Q⊆(R,ƮD) 

For each x, y∈Q there exist p∈Qc such that x<p<y 

G={x ∈Q:x<p} and H={x∈Q:x>p} are two open sets in (Q, Ʈu) such that G∪H=Q, 
G∩H=∅ 

Now to prove (Q, ƮD) is 𝜃-totally disconnected in (R, ƮD) where f(Q)=Q. 

G={x∈Q:x≤0} is 𝜃-open set in (Q, ƮD)  

H={x∈Q:x>0} is  𝜃-open set in (Q, ƮD)  

H∪G=Q, H∩G=∅  

So (Q, ƮD) is 𝜃-totally disconnected in (R, ƮD) . 

2- If we replace Q by (a, b] then the sets G={x ∈(a, b]:x p} and H={x∈(a, b]:x>p} 
where p∈Qc such that a<p b then ((a, b], Ʈu) is totally disconnected set in (R, Ʈu) 

Definition (16): A surjective mapping f:X→Y is said to be  𝜃**-totally disconnected 
mapping if and only if for every 𝜃- totally disconnected set U⊆X then f(U) is 𝜃-totally 
disconnected 

Proposition (17): 1-Every 𝜃-totally disconnected mapping is totally disconnected 
mapping. 

2-Every 𝜃-totally disconnected mapping is 𝜃**-totally disconnected mapping. 

3-Every 𝜃**-totally disconnected mapping is 𝜃*-totally disconnected mapping. 

Proof: 

1-Let U be totally disconnected set in X, but f is 𝜃-totally disconnected mapping then 
f(U) is 𝜃-totally disconnection set in Y, but every 𝜃-totally disconnected set is totally 
disconnected so f (U) is totally disconnected in Y, then f is totally disconnected 
mapping. The proof of 2 and 3 are similar.   
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Proposition (18): Let f:X→Y be bijective 𝜃-open mapping. Then Y is 𝜃-totally 
disconnected set whenever X is totally disconnected 

Proof: 

Let y1, y2 ∈Y with y1 y2 since f is bijective, then there exist two distinct  points x1, x2 ∈ 
X such that f(x1)=y1, f(x2)=y2. But X is totally disconnected space, then there exist 
disconnection G∪H to X such that x1∈G & x2∈H. also f is 𝜃- open mapping and G, H 
are open sets in X. So f(G) and f(H) are 𝜃- open sets in Y. But 
f(G)∪f(H)=f(G∪H)=f(X)=Y and f is one to one mapping. So 
f(G)∩f(H)=f(G∩H)=f(∅)=∅ Such that y1∈f(G), y2∈f(H) So f(G)∪f(H) is 𝜃-
disconnection to Y. therefor Y is 𝜃-totally disconnected set. 

Corollary (19): A property of space being 𝜃-totally disconnected a topological property.  

Proposition (20): Let X and Y be topological space, let f:X→Y be homeomorphism. So 
if X is 𝜃- totally disconnected then Y is totally disconnected set. 

Proof: 

Let y1, y2 ∈Y with y1 y2.since f is bijective, then there exist two distinct points x1, x2 
∈Xsuch that f(x1)=y1, f(x2)=y2. But X is 𝜃-totally disconnected set, then there exist 𝜃-
disconnection G∪H to X such that x1∈G & x2∈H. also f is homeomorphism, so f is open 
mapping. Since G and H are 𝜃-open sets in X. So f(G) and f(H) are open sets in Y. But 
f(G)∪f(H)=f(G∪H)=f(X)=Y. Since f is bijective mapping. 

So f(G)∩f(H)=f(G∩H)=f(∅)=∅ Such that y1∈f(G), y2∈f(H) which implies f(G)∪f(H) is 
disconnection to Y. Therefor Y is totally disconnected set. 

Proposition (21): Let f:X→Y be bijective 𝜃**-open mapping. Then Y is 𝜃-totally 
disconnected set whenever X is 𝜃-totally disconnected 

Proof: 

Let y1, y2 ∈Y with y1 y2.since f is bijective, then there exist two distinct  points x1, x2 
∈Xsuch that f(x1)=y1, f(x2)=y2. But X is 𝜃-totally disconnected set, then there exist 𝜃-
disconnection G∪H to X such that x1∈G & x2∈H. also f is 𝜃- homeomorphism, so f is 𝜃- 
open mapping. Since G and H are 𝜃- open sets in X. So f(G) and f(H) are 𝜃- open sets in 
Y. But f(G)∪f(H)=f(G∪H)=f(X)=Y. Since f is bijective mapping. 

So f(G)∩f(H)=f(G∩H)=f(∅)=∅ such that f(G)∪f(H) is 𝜃-disconnection to Y. therefore Y 
is also 𝜃-totally disconnected. 

Corollary (22): Let X and Y be topological space, let f:X→Y be 𝜃-homeomorphism. So 
if X is 𝜃- totally disconnected then Y is 𝜃-totally disconnected set again. 
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Definition (23): A surjective mapping f:X→Y is 𝜃 𝜃 ∗, 𝜃 ∗∗ -Inversely totally 
disconnected, if f-1(U) is 𝜃-totally disconnected (totally disconnected, 𝜃-totally 
disconnected )set for every totally disconnected (𝜃-totally disconnected ) set U in Y. 

Proposition (24): 1-Every 𝜃**-Inversely totally disconnected mapping is 𝜃*-Inversely 
totally disconnected mapping. 

2-Every 𝜃-Inversely totally disconnected mapping is 𝜃**-Inversely totally disconnected 
mapping. 

3-Every 𝜃-Inversely totally disconnected mapping is 𝜃*-Inversely totally disconnected 
mapping. 

Proof: 

1-Let U is 𝜃-totally disconnected set in Y. Since f is 𝜃**-Inversely totally disconnected 
mapping. f-1(U) is 𝜃-totally disconnected in X (proposition 7) so f-1(U) is totally 
disconnected in X, then f is 𝜃**-Inversely totally disconnected mapping. 

2-Let U is 𝜃-totally disconnected set in Y. Then U is totally disconnected set  in Y. To 
prove f-1(U) is 𝜃-totally disconnected set in Y. Since f is 𝜃-Inversely totally 
disconnected mapping, f-1(U) is 𝜃-totally disconnected in X (proposition 7). Then f is 
𝜃**-Inversely totally disconnected mapping 

3-Let U is 𝜃-totally disconnected set in Y. Then U is totally disconnected set in 
Y(proposition 7). Since f is 𝜃*-Inversely totally disconnected mapping. But f-1(U) is 𝜃-
totally disconnected in X so f-1(U) is totally disconnected in X. Then f is 𝜃*-Inversely 
totally disconnected mapping 

Theorem (25): If f:X→Y is  𝜃-Inversely totally disconnected mapping then f is 𝜃-light 
mapping . 

Proof: 

Since f is 𝜃-Inversely totally disconnected mapping to prove f is 𝜃-light mapping. Let 
y∈Y to prove f-1(y) is 𝜃-totally disconnected set. Since f is 𝜃-Inversely totally 
disconnected mapping, and {y} is totally disconnected in Y, then f-1({y}) is 𝜃-totally 
disconnected set in X so f is 𝜃-light mapping. 

Proposition (26): let f:X→Z and g:Z→Y be surjective mapping if f is 𝜃**-inversely 
totally disconnected and g is 𝜃-light mappings, then h:X→Y is 𝜃-light mapping 

Proof: 

Let c∈Y so h-1(c)=(g∘f)-1(c)=(f-1∘g-1)(c)= f-1(g-1(c)). As g is 𝜃-light mapping so g-1(c) is 
𝜃-totally disconnected. Also As f is 𝜃**-Inversely totally disconnected mapping so f-1(g-

1(c)) is 𝜃-totally disconnected. h-1(c) is 𝜃-totally disconnected then h is 𝜃-light mapping. 
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Theorem (27): Let h:X→Y be a suriective mapping and h=g∘f such that for every 
f:X→Z , g:Z→Y be a surjective mappings then: 

1-If h is 𝜃-light mapping and f is 𝜃**-totally disconnected mapping then g is 𝜃-light 
mapping. 
2-If g is injective mapping and h is 𝜃-light mapping then f is 𝜃-light mapping. 
3-If g be a surjective mapping and f is 𝜃-light mapping then h is also 𝜃-light 
mapping. 

   Proof: 

1-Let y∈Y, so h-1(y) is 𝜃-totally disconnected set in X as f is 𝜃**-totally disconnected 
mapping then f(h-1(y)) is 𝜃-totally disconnected set to Z, Let f(h-1(y)) =f((g∘f)-

1(y))=f((f-1∘g-1)(y))= f((f-1(g-1(y)))=g-1(y). So g-1(y) is 𝜃-totally disconnected set to Z. 
In other words g is 𝜃-light mapping. 

2-Let z∈Z so g(z)∈Y  since h is 𝜃-light mapping , h-1(g(z)) is 𝜃-totally disconnected 
set to X.  But h-1(g(z))=(g∘f)-1(g(z))=(f-1∘g-1)(g(z))=f-1(z), So f-1(z) is 𝜃-totally 
disconnected set in X. In other words f is 𝜃-light mapping. 

3-Let y∈Y as g is bijective mapping, then there exist only one point z∈Z such that 
g(z)=y. As f is 𝜃-light mapping, then f-1(z) is 𝜃-totally disconnected set to X. As f-

1(z)=h-1(y) , then h-1(y) is also 𝜃-totally disconnected set to X. So h is 𝜃-light 
mapping. 
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