Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms in Soft Bitopological Spaces

Sabiha I. Mahmood Asaad Adel Abdul-Hady

Dept. of Mathematics/ College of Science/ University of Mustansiriyah ssabihaa@uomustansiriyah.edu.iq

Received in:24/April/2018, Accepted in:6/June/2018

Abstract

In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft $(1,2)^*$ -omega separation axioms and weak soft $(1,2)^*$ -omega separation axioms by using the concept of soft $(1,2)^*$ -omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.

Keywords: Soft $(1,2)^*-\omega$ -open sets, soft $(1,2)^*-\omega$ - \tilde{T}_i -spaces, soft $(1,2)^*-\alpha$ - ω - \tilde{T}_i -spaces, soft $(1,2)^*$ -pre- ω - \tilde{T}_i -spaces, soft $(1,2)^*-\beta$ - ω - \tilde{T}_i -spaces, for $i = 0, \frac{1}{2}, 1, 2$.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 🕔

Introduction

Soft set theory was firstly introduced by Molodtsov [1] in 1999 as a new mathematical tool for dealing with uncertainty while modeling problems in computer science, economics, engineering physics, medical sciences, and social sciences. In 2011 Shabir and Naz [2] introduced and studied the concept of soft topological spaces. In 2014 Senel and Çagman [3] investigated the notion of soft bitopological spaces over an initial universe set with a fixed set of parameters. In 2018 Mahmood and Abdul-Hady [4] introduced and studied new types of soft sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft (1,2)*-omega open sets such as soft (1,2)*- α - ω -open sets, soft (1,2)*-b- ω -open sets and soft (1,2)*- β - ω -open sets. The main purpose of this paper is to introduce and study new types of soft separation axioms in soft bitopological spaces called soft (1,2)*-omega separation axioms and weak soft (1,2)*- ω - \tilde{T}_i -spaces, soft (1,2)*- α - ω - \tilde{T}_i -spaces, soft (1,2)*- α - ω - \tilde{T}_i -spaces, soft (1,2)*- β - ω - \tilde{T}_i -spaces, and soft (1,2)*- β - ω - \tilde{T}_i -spaces, soft (1,2)*- β - ω - \tilde{T}_i -spaces, soft (1,2)*- β - ω - \tilde{T}_i -spaces, soft (1,2)*- β - ω - \tilde{T}_i -spaces.

, for $i = 0, \frac{1}{2}, 1, 2$. Moreover we study the fundamental properties and equivalent definitions of these types of soft separation axioms.

1. Preliminaries:

Throughout this paper U is an initial universe set, P(U) is the power set of U, P is the set of parameters and $C \subseteq P$.

Definition (1.1) [1]: A soft set over U is a pair (H,C), where H is a function defined by $H: C \rightarrow P(U)$ and C is a non-empty subset of P.

Definition (1.2)[5]: A soft set (H, C) over U is called a soft point if there is exactly one $e \in C$ such that $H(e) = \{u\}$ for some $u \in U$ and $H(e') = \phi, \forall e' \in C \setminus \{e\}$ and is denoted by $\tilde{u} = (e, \{u\})$.

Definition (1.3)[5]: A soft point $\tilde{u} = (e, \{u\})$ is called belongs to a soft set (H, C) if $e \in C$ and $u \in H(e)$, and is denoted by $\tilde{u} \in (H, C)$.

Definition (1.4) [5]: A soft set (H, C) over U is called countable (finite) if the set H(e) is countable (finite) $\forall e \in C$.

Definition (1.5)[6]: A soft set (H, C) over U is called a null soft set with respect to C if for each $e \in C$, H(e) = φ , and is denoted by $\tilde{\varphi}_C$. If C = P, then (H, C) is called a null soft set and is denoted by $\tilde{\varphi}$.

Definition (1.6)[6]: A soft set (H, C) over U is called an absolute soft set with respect to C if for each $e \in C$, H(e) = U, and is denoted by \tilde{U}_C . If C = P, then (H, C) is called an absolute soft set and is denoted by \tilde{U} .

Definition (1.7)[6]: Let (H_1, C_1) and (H_2, C_2) be soft sets over a common universe U. Then we say that:

- (1) (H_1, C_1) is a soft subset of (H_2, C_2) denoted by $(H_1, C_1) \cong (H_2, C_2)$ if $C_1 \subseteq C_2$ and $H_1(e) \subseteq H_2(e)$ for each $e \in C_1$.
- (2) The soft union of two soft sets (H_1, C_1) and (H_2, C_2) over a common universe U is the soft set (H, C), where $C = C_1 \bigcup C_2$, and $\forall e \in C$,

$$H(e) = \begin{cases} H_1(e) & \text{if } e \in C_1 - C_2 \\ H_2(e) & \text{if } e \in C_2 - C_1 \\ H_1(e) \bigcup H_2(e) & \text{if } e \in C_1 \cap C_2 \end{cases}$$

And we write $(H,C) = (H_1,C_1)\widetilde{\bigcup}(H_2,C_2)$.

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

المجلد ٣١ العدد(٢) عام ٢٠١٨

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

(3) The soft intersection of two soft sets (H_1, C_1) and (H_2, C_2) over a common universe U

is the soft set (H,C), where $C = C_1 \cap C_2$, and $\forall e \in C$, $H(e) = H_1(e) \cap H_2(e)$, and we write (H,C) = $(H_1,C_1) \cap (H_2,C_2)$.

(4) The soft difference of two soft sets (H_1, C_1) and (H_2, C_2) over a common universe U is the soft set (H, C), where $C = C_1 \cap C_2$, and $\forall e \in C$, $H(e) = H_1(e) - H_2(e)$, and we write $(H, C) = (H_1, C_1) - (H_2, C_2)$.

Definition (1.8)[2]: A soft topology on U is a collection $\tilde{\tau}$ of soft subsets of \tilde{U} having the following properties:

(i) $\tilde{\varphi} \in \tilde{\tau}$ and $\tilde{U} \in \tilde{\tau}$.

(ii) If $(H_1, P), (H_2, P) \in \tilde{\tau}$, then $(H_1, P) \cap (H_2, P) \in \tilde{\tau}$. (iii) If $(H_j, P) \in \tilde{\tau}, \forall j \in \Omega$, then $\bigcup_{i \in \Omega} (H_j, P) \in \tilde{\tau}$.

The triple $(U, \tilde{\tau}, P)$ is called a soft topological space over U. The members of $\tilde{\tau}$ are called soft open sets over U. The complement of a soft open set is called soft closed.

Definition (1.9)[3]: Let U be a non-empty set and let $\tilde{\tau}_1$ and $\tilde{\tau}_2$ be two soft topologies over U. Then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft bitopological space over U.

Definition (1.10)[3]: A soft subset (H, P) of a soft bitopological space (U, $\tilde{\tau}_1, \tilde{\tau}_2, P$) is called soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open if (H, P) = (H₁, P) $\tilde{\bigcup}$ (H₂, P) such that (H₁, P) $\tilde{\in} \tilde{\tau}_1$ and (H₂, P) $\tilde{\in} \tilde{\tau}_2$. The complement of a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set in \tilde{U} is called soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed.

Definitions (1.11)[7]: A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ - \tilde{T}_0 -space if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{U} , there exists a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set in \tilde{U} containing one of the soft points but not the other.

Definition (1.12)[7]: A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^* - \tilde{T}_{\frac{1}{2}}$ -space if every soft singleton set in \tilde{U} is either soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open or soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed.

Definition (1.13)[7]: A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*$ - \tilde{T}_1 -space if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{U} , there exists a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set in \tilde{U} containing \tilde{x} but not \tilde{y} and a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set in \tilde{U} containing \tilde{y} but not \tilde{x} .

Definition (1.14)[7]: A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^* \tilde{T}_2$ -space if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{U} , there are two soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets (H,P) and (K,P) in \tilde{U} such that $\tilde{x} \in (H,P), \tilde{y} \in (K,P)$ and $(H,P) \cap (K,P) = \tilde{\varphi}$.

Definition (1.15) [4]: A soft subset (H,P) of a soft bitopological space (U, $\tilde{\tau}_1, \tilde{\tau}_2, P$) is called soft (1,2)*-omega open (briefly soft (1,2)*- ω -open) if for each $\tilde{x} \in (H,P)$, there exists a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set (O,P) in \tilde{U} such that $\tilde{x} \in (O,P)$ and (O,P) - (H,P) is a countable soft set. The complement of a soft (1,2)*- ω -open set is called soft (1,2)*-omega closed (briefly soft (1,2)*- ω -closed).

Clearly, every soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set is soft $(1,2)^*$ - ω -open, but the converse in general is not true we can see in the following example:

Example (1.16): Let $U = \{1,2,3\}$ and $P = \{p_1, p_2\}$, and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}, (H_2, P)\}$ be soft topologies over U, where $(H_1, P) = \{(p_1, \{U\}), (p_2, \{1,2\})\}$ and $(H_2, P) = \{(P_1, \{U\}), (P_2, \{1,2\})\}$

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Definition (1.17) [4]: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft bitopological space and $(H, P) \subseteq \tilde{U}$. Then: (i) The soft $(1,2)^*$ -omega closure (briefly soft $(1,2)^*$ - ω -closure) of (H, P), denoted by $(1,2)^*$ -

 ω cl(H, P) is the intersection of all soft (1,2)*- ω -closed sets in \tilde{U} which contains (H, P).

(ii) The soft $(1,2)^*$ -omega interior (briefly soft $(1,2)^*$ - ω -interior) of (H, P), denoted by $(1,2)^*$ -

 ω int(H,P) is the union of all soft (1,2)*- ω -open sets in \tilde{U} which are contained in (H,P).

Theorem (1.18) [4]: If $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft bitopological space, and $(H, P), (K, P) \subseteq \tilde{U}$. Then: (i) $(H, P) \cong (1,2)^* - \omega cl(H, P) \cong \tilde{\tau}_1 \tilde{\tau}_2 cl(H, P)$.

(ii) $(1,2)^* - \omega cl(H,P)$ is soft $(1,2)^* - \omega$ -closed set in \tilde{U} .

(iii) (H, P) is soft $(1,2)^*-\omega$ -closed iff $(1,2)^*-\omega$ cl(H, P) = (H, P).

(iv) If $(H, P) \cong (K, P)$, then $(1,2)^* - \omega cl(H, P) \cong (1,2)^* - \omega cl(K, P)$.

Definitions (1.19) [4]: A soft subset (H, P) of a soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called:

(i) Soft $(1,2)^*-\alpha-\omega$ -open if $(H, P) \cong (1,2)^*-\omega$ int $(\tilde{\tau}_1 \tilde{\tau}_2 cl((1,2)^*-\omega int(H, P)))$.

(ii) Soft $(1,2)^*$ -pre- ω -open if $(H, P) \cong (1,2)^*$ - ω int $(\tilde{\tau}_1 \tilde{\tau}_2 cl(H, P))$.

(iii) Soft (1,2)*-b- ω -open if (H,P) $\underline{\subset}$ (1,2)*- ω int($\tilde{\tau}_1 \tilde{\tau}_2$ cl(H,P)) $\tilde{\bigcup} \tilde{\tau}_1 \tilde{\tau}_2$ cl((1,2)*- ω int(H,P)).

(iv) Soft $(1,2)^*-\beta-\omega$ -open if $(H,P) \cong \tilde{\tau}_1 \tilde{\tau}_2 cl((1,2)^*-\omega int(\tilde{\tau}_1 \tilde{\tau}_2 cl(H,P)))$.

Proposition (1.20) [4]: If $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft bitopological space, then the following hold:

(i) Every soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set is soft $(1,2)^*$ - ω -open.

(ii) Every soft $(1,2)^*$ - ω -open set is soft $(1,2)^*$ - α - ω -open.

(iii) Every soft $(1,2)^*-\alpha-\omega$ -open set is soft $(1,2)^*$ -pre- ω -open.

(iv) Every soft $(1,2)^*$ -pre- ω -open set is soft $(1,2)^*$ -b- ω -open.

(v) Every soft $(1,2)^*$ -b- ω -open set is soft $(1,2)^*$ - β - ω -open.

Definition (1.21) [4]: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft bitopological space and $(H, P) \cong \tilde{U}$. Then the soft $(1,2)^*-\alpha-\omega$ -closure (resp. soft $(1,2)^*$ -pre- ω -closure, soft $(1,2)^*-b-\omega$ -closure, soft $(1,2)^*-\beta-\omega$ -closure) of (H,P), denoted by $(1,2)^*-\alpha - \omega cl(H,P)$ (resp. $(1,2)^*$ -pre- $\omega cl(H,P)$, $(1,2)^*-b - \omega cl(H,P)$, $(1,2)^*-\beta - \omega cl(H,P)$ $\omega cl(H,P)$ is the intersection of all soft $(1,2)^*-\alpha-\omega$ -closed (resp. soft $(1,2)^*$ -pre- ω -closed, soft

 $(1,2)^*$ -b- ω -closed, soft $(1,2)^*$ - β - ω -closed) sets in \widetilde{U} which contains (H,P).

Definition (1.22) [4]: A soft subset (N,P) of a soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*-\omega$ -neighborhood (resp. soft $(1,2)^*-\alpha-\omega$ -neighborhood, soft $(1,2)^*$ -pre- ω neighborhood, soft $(1,2)^*$ -b- ω -neighborhood, soft $(1,2)^*$ - β - ω -neighborhood) of a soft point \tilde{x} in \tilde{U} if there exists a soft $(1,2)^*-\omega$ -open (resp. soft $(1,2)^*-\alpha$ - ω -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^*$ -b- ω -open, soft $(1,2)^*$ - β - ω -open) set (H,P) in \tilde{U} such that $\tilde{x} \in (H,P) \subseteq (N,P)$.

Definition (1.23)[8]: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft bitopological space over U and $\varphi \neq Y \subseteq U$. Then $\tilde{\tau}_{1\tilde{Y}} = \{(M, P) \cap \widetilde{Y} : (M, P) \in \tilde{\tau}_1\}$ and $\tilde{\tau}_{2\tilde{Y}} = \{(N, P) \cap \widetilde{Y} : (N, P) \in \tilde{\tau}_2\}$ are called the relative soft topologies on \widetilde{Y} and $(Y, \widetilde{\tau}_{1\widetilde{Y}}, \widetilde{\tau}_{2\widetilde{Y}}, P)$ is called the relative soft bitopological space of $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$.

2. Soft (1,2)*-Omega Separation Axioms and Weak Soft (1,2)*-Omega Separation Axioms

Now, we introduce and study new types of soft separation axioms in soft bitopological spaces called soft $(1,2)^*-\omega$ -separation axioms and weak soft $(1,2)^*-\omega$ -separation axioms such as soft $(1,2)^*-\omega - \tilde{T}_i$ -spaces, soft $(1,2)^*-\alpha - \omega - \tilde{T}_i$ -spaces, soft $(1,2)^*$ -pre- $\omega - \tilde{T}_i$ -spaces, soft

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

 $(1,2)^*$ -b- ω - \tilde{T}_i -spaces, and soft $(1,2)^*$ - β - ω - \tilde{T}_i -spaces, for $i = 0, \frac{1}{2}, 1, 2$. The fundamental properties and equivalent definitions of these types of soft separation axioms also, have been studied.

Definitions (2.1): A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^* - \omega - \tilde{T}_0$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_0$ -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{U} , there exists a soft $(1,2)^* - \omega$ -open (resp. soft $(1,2)^* - \alpha - \omega$ -open, soft $(1,2)^* - \rho - \omega$ -open, soft $(1,2)^* - \rho - \omega$ -open, soft $(1,2)^* - \rho - \omega$ -open) set in \tilde{U} containing one of the soft points but not the other.

Proposition (2.2): Every soft $(1,2)^*$ - \tilde{T}_0 -space is a soft $(1,2)^*$ - ω - \tilde{T}_0 -space (resp. soft $(1,2)^*$ - α - ω - \tilde{T}_0 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_0 -space, soft $(1,2)^*$ - β - ω - \tilde{T}_0 -space).

Proof: It is obvious.

Remark (2.3): The converse of proposition (2.2) is not true in general we can see by the following example:

Example (2.4): Let $U = \{a, b, c\}$ and $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}, (H_2, P)\}$ be soft topologies over U, where $(H_1, P) = \{(p_1, \{a\}), (p_2, \{a\})\}, (H_2, P) = \{(p_1, \{b\}), (p_2, \{b\})\}$ and $(H_3, P) = \{(p_1, \{a, b\}), (p_2, \{a, b\})\}$. The soft sets in $\{\tilde{U}, \tilde{\varphi}, (H_1, P), (H_2, P), (H_3, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1, 2)^* - \tilde{\omega} - \tilde{T}_0$ -space (resp. soft $(1, 2)^* - \alpha - \tilde{\omega} - \tilde{T}_0$ -space, soft $(1, 2)^* - \mu - \tilde{T}_0$ -space, soft $(1, 2)^* - \mu - \tilde{T}_0$ -space, soft $(1, 2)^* - \tilde{T}_$

Proof: Let $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. Since $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_0$ -space, then there exists a soft $(1,2)^* - \omega$ -open set (H,P) containing \tilde{x} , but not \tilde{y} . Therefore $\tilde{U} - (H,P)$ is a soft $(1,2)^* - \omega$ -closed set containing \tilde{y} , but not \tilde{x} . Hence $(1,2)^* - \omega \operatorname{cl}(\{\tilde{y}\}) \subseteq \tilde{U} - (H,P)$. Since $\tilde{x} \notin \tilde{U} - (H,P)$, this implies that $\tilde{x} \notin (1,2)^* - \omega \operatorname{cl}(\{\tilde{y}\})$. So we get, $\tilde{x} \in (1,2)^* - \omega \operatorname{cl}(\{\tilde{x}\})$, but $\tilde{x} \notin (1,2)^* - \omega \operatorname{cl}(\{\tilde{y}\})$. Thus $(1,2)^* - \omega \operatorname{cl}(\{\tilde{x}\}) \neq (1,2)^* - \omega \operatorname{cl}(\{\tilde{y}\})$.

Conversely, to prove that $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^{*}-\omega - \tilde{T}_0$ -space. Let $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. Since $(1,2)^{*}-\omega cl(\{\tilde{x}\}) \neq (1,2)^{*}-\omega cl(\{\tilde{y}\})$, then there exists $\tilde{z} \in \tilde{U}$ such that $\tilde{z} \in (1,2)^{*}-\omega cl(\{\tilde{x}\})$, but $\tilde{z} \notin (1,2)^{*}-\omega cl(\{\tilde{y}\})$. Suppose $\tilde{z} \in (1,2)^{*}-\omega cl(\{\tilde{x}\})$, to show that $\tilde{x} \notin (1,2)^{*}-\omega cl(\{\tilde{y}\})$. If $\tilde{x} \in (1,2)^{*}-\omega cl(\{\tilde{y}\}) \Rightarrow \{\tilde{x}\} \subset (1,2)^{*}-\omega cl(\{\tilde{y}\}) \Rightarrow (1,2)^{*}-\omega cl(\{\tilde{x}\})$ $\subset (1,2)^{*}-\omega cl(\{\tilde{y}\})$. If $\tilde{x} \in (1,2)^{*}-\omega cl(\{\tilde{y}\}) \Rightarrow \{\tilde{x}\} \subset (1,2)^{*}-\omega cl(\{\tilde{y}\}) \Rightarrow (1,2)^{*}-\omega cl(\{\tilde{x}\}) \Rightarrow \tilde{z} \in (1,2)^{*}-\omega cl(\{\tilde{y}\})) = (1,2)^{*}-\omega cl(\{\tilde{y}\})$. Since $\tilde{z} \in (1,2)^{*}-\omega cl(\{\tilde{x}\}) \Rightarrow \tilde{z} \in (1,2)^{*}-\omega cl(\{\tilde{y}\})$ which is a contradiction. Thus $\tilde{x} \notin (1,2)^{*}-\omega cl(\{\tilde{y}\}) \Rightarrow \tilde{x} \in \tilde{U} - (1,2)^{*}-\omega cl(\{\tilde{y}\})$, but $(1,2)^{*}-\omega cl(\{\tilde{y}\})$ is soft $(1,2)^{*}-\omega -closed$, so $\tilde{U} - (1,2)^{*}-\omega cl(\{\tilde{y}\})$ is soft $(1,2)^{*}-\omega -cl(\{\tilde{y}\})$ is a soft $(1,2)^{*}-\omega -\tilde{T}_{0}$ -space. Similarly, we can prove other cases.

Theorem (2.6): Every soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega$ - \tilde{T}_0 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_0 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_0 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_0 -space).

Proof: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be any soft bitopological space and $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. Since $\tilde{U} - {\tilde{y}}$ is a soft $(1,2)^* - \omega$ -open (resp. soft $(1,2)^* - \alpha$ - ω -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^* - \beta$ - ω -open, soft $(1,2)^* - \beta$ - ω -open, soft $(1,2)^* - \beta$ - ω -open) subset of \tilde{U} containing \tilde{x} , but not \tilde{y} . Therefore $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega$ - \tilde{T}_0 -space (resp. soft $(1,2)^* - \alpha$ - ω - \tilde{T}_0 -space, soft $(1,2)^* - \rho$ - ω - \tilde{T}_0 -space).

Corollary (2.7): Every soft subspace of a soft $(1,2)^*-\omega$ - \tilde{T}_0 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_0 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_0 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_0 -space) is a soft $(1,2)^*-\omega$ - \tilde{T}_0 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_0 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_0 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_0 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_0 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_0 -space). **Proof:** It is obvious.

Proposition (2.8): If $(U, \tilde{\tau}_1, P)$ or $(U, \tilde{\tau}_2, P)$ is a soft \tilde{T}_0 -space, then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega-\tilde{T}_0$ -space (resp. soft $(1,2)^*-\alpha-\omega-\tilde{T}_0$ -space, soft $(1,2)^*$ -pre- $\omega-\tilde{T}_0$ -space, soft $(1,2)^*$ -b- $\omega-\tilde{T}_0$ -space, soft $(1,2)^*-\beta-\omega-\tilde{T}_0$ -space).

Proof: It follows from the fact $\tilde{\tau}_i \subseteq \text{soft } \tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{U} , i = 1,2 and proposition (2.2).

Remark (2.9): The converse of proposition (2.8) is not true in general in example (2.4), $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_0$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_0$ -space, soft $(1,2)^*$ -pre- $\omega - \tilde{T}_0$ -space, soft $(1,2)^* - b - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_0$ -space), but both $(U, \tilde{\tau}_1, P)$ and $(U, \tilde{\tau}_2, P)$ are not soft \tilde{T}_0 -space.

Definition (2.10): A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is called a soft $(1,2)^*-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^*-\alpha-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*$ -b- ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-\beta-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-\beta-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space) if every soft singleton set in \tilde{U} is either soft $(1,2)^*-\omega$ -open (resp. soft $(1,2)^*-\alpha-\omega$ -open, soft $(1,2)^*-\alpha-\omega$ -open, soft $(1,2)^*-\beta-\omega$ -open) or soft $(1,2)^*-\omega$ -closed (resp. soft $(1,2)^*-\alpha-\omega$ -closed, soft $(1,2)^*$ -pre- ω -closed, soft $(1,2)^*-\beta-\omega$ -closed, soft $(1,2)^*-\beta-\omega$ -closed).

Proposition (2.11): Every soft $(1,2)^* \cdot \widetilde{T}_{\frac{1}{2}}$ -space is a soft $(1,2)^* \cdot \omega \cdot \widetilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^* \cdot \alpha \cdot \omega \cdot \widetilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* \cdot pre \cdot \omega \cdot \widetilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* \cdot b \cdot \omega \cdot \widetilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* \cdot \beta \cdot \omega \cdot \widetilde{T}_{\frac{1}{2}}$ -space).

Proof: It is obvious.

Remark (2.12): The converse of proposition (2.11) is not true in general. In example (2.4) (U, $\tilde{\tau}_1, \tilde{\tau}_2, P$) is a soft (1,2)*- ω - $\tilde{T}_{\frac{1}{2}}$ -space (resp. soft (1,2)*- α - ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft (1,2)*-pre- ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft (1,2)*-b- ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft (1,2)*- β - ω - $\tilde{T}_{\frac{1}{2}}$ -space), but is not soft (1,2)*- $\tilde{T}_{\frac{1}{2}}$ -space.

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

المجلد ٣١ العدد (٢) عام ٢٠١٨

Proposition (2.13): Every soft $(1,2)^* - \tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \alpha - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space) is a soft $(1,2)^* - \tilde{T}_0$ -space (resp. soft $(1,2)^* - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \alpha - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_0$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_0$ -space).

Proof: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space and let $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. If $\{\tilde{x}\}$ is soft $(1,2)^* - \omega$ -open, then $\{\tilde{x}\}$ is a soft $(1,2)^* - \omega$ -open set containing \tilde{x} , but not \tilde{y} and if $\{\tilde{x}\}$ is soft $(1,2)^* - \omega$ -closed, then $\tilde{U} - \{\tilde{x}\}$ is a soft $(1,2)^* - \omega$ -open set containing \tilde{y} , but not \tilde{x} . Therefore $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_0$ -space. Similarly, we can prove that other cases.

Remark (2.14): The soft $(1,2)^*$ - \tilde{T}_0 -space may not be soft $(1,2)^*$ - $\tilde{T}_{\frac{1}{2}}$ -space in general we can see in the following example:

Example (2.15): Let U = {a,b} and P = {p₁,p₂} and let $\tilde{\tau}_1 = {\tilde{U}, \tilde{\varphi}, (H_1, P)}$ and $\tilde{\tau}_2 = {\tilde{U}, \tilde{\varphi}, (H_2, P)}$ be soft topologies over U, where $(H_1, P) = {(p_1, {a}), (p_2, {b})}, (H_2, P) = {(p_1, {b}), (p_2, {b})}$ and $(H_3, P) = {(p_1, {a,b}), (p_2, {b})}$. The soft sets in ${\tilde{U}, \tilde{\varphi}, (H_1, P), (H_2, P), (H_3, P)}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets. Thus $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \tilde{T}_0$ -space, but is not soft $(1,2)^* - \tilde{T}_{1/2}$ -space, since ${(p_1, {a})} = {\tilde{x}}$ is not soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open and is not soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed.

Theorem (2.16): Every soft bitopological space is a soft $(1,2)^*-\omega - \tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^*-\alpha - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*$ -pre- $\omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-b-\omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-\beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space).

Proof: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be any soft bitopological space and $\tilde{x} \in \tilde{U}$. Since $\tilde{U} - \{\tilde{x}\}$ is a soft $(1,2)^* \cdot \omega \cdot \text{open}$ (resp. soft $(1,2)^* \cdot \alpha \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot \text{open}$, soft $(1,2)^* \cdot \mu \cdot \omega \cdot (1,2)^* \cdot \mu \cdot (1,2)^* \cdot \mu \cdot \omega \cdot (1,2)^* \cdot \mu \cdot (1,2)^* \cdot \mu \cdot \omega \cdot (1,2)^* \cdot \mu \cdot (1,2)^* \cdot \mu \cdot \omega \cdot (1,2)$

Corollary (2.17): A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \omega - \tilde{T}_{0}$ -space, soft $(1,2)^* - \alpha - \omega - \tilde{T}_{0}$ -space, soft $(1,2)^* - \alpha - \omega - \tilde{T}_{0}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{0}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{0}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{0}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{0}$ -space). **Proof:** It follows that from the proposition (2.13) and theorem (2.16).

Corollary (2.18): Every soft subspace of a soft $(1,2)^*-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^*-\alpha$ - ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*$ -pre- ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-\beta$ - ω - $\tilde{T}_{\frac{1}{2}}$ -space).

Proof: It follows that from the theorem (2.16).

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Proposition (2.19): If $(U, \tilde{\tau}_1, P)$ or $(U, \tilde{\tau}_2, P)$ is a soft $\tilde{T}_{\frac{1}{2}}$ -space, then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space, then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space).

Proof: It follows from the fact $\tilde{\tau}_i \cong \operatorname{soft} \tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{U} , i = 1,2 and proposition (2.11). **Remark (2.20):** The converse of proposition (2.19) is not true in general in example (2.4) (U, $\tilde{\tau}_1, \tilde{\tau}_2, P$) is a soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*$ -pre- ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*$ -b- $\omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_{\frac{1}{2}}$ -space), but both (U, $\tilde{\tau}_1, P$) and (U, $\tilde{\tau}_2, P$) are not soft $(1,2)^* - \tilde{T}_{\frac{1}{2}}$ -space.

Proposition (2.22): Every soft $(1,2)^*-\omega$ - \tilde{T}_1 -space (resp. soft $(1,2)^*$ - \tilde{T}_1 -space, soft $(1,2)^*-\alpha$ - ω - \tilde{T}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^*-\beta$ - ω - \tilde{T}_1 -space) is a soft $(1,2)^*-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^*-\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-\alpha$ - ω - $\tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^*-\omega$ - $\tilde{T}_{\frac{1}{2}}$ -space).

Remark (2.23): The soft $(1,2)^*$ - $\tilde{T}_{\frac{1}{2}}$ -space may not be soft $(1,2)^*$ - \tilde{T}_1 -space in general we can see in the following example:

Example (2.24): Let $U = \{a, b\}$ and $P = \{p\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}\}$ be soft topologies over U, where $(H, P) = \{(p, \{a\})\}$. The soft sets in $\{\tilde{U}, \tilde{\varphi}, (H, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets. Thus $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1, 2)^* - \tilde{T}_{\frac{1}{2}}$ -space, but is not soft $(1, 2)^* - \tilde{T}_1$ -space, since $(p, \{a\}) = \tilde{x} \neq \tilde{y} = (p, \{b\})$, but there exists no soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set containing \tilde{y} , but not containing \tilde{x} .

Proposition (2.25): Every soft $(1,2)^*$ - \tilde{T}_1 -space is a soft $(1,2)^*$ - ω - \tilde{T}_1 -space (resp. soft $(1,2)^*$ - α - ω - \tilde{T}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^*$ - β - ω - \tilde{T}_1 -space).

Proof: It is obvious.

Remark (2.26): The converse of proposition (2.25) is not true in general. We see that in the following example:

Example (2.27): Let U = {a,b} and P = {p₁,p₂} and let $\tilde{\tau}_1 = {\tilde{U}, \tilde{\varphi}, (H_1, P)}$ and $\tilde{\tau}_2 = {\tilde{U}, \tilde{\varphi}, (H_2, P)}$ be soft topologies over U, where $(H_1, P) = {(p_1, {a}), (p_2, {b})}$ and $(H_2, P) = {(p_1, {b}), (p_2, {a})}$. The soft sets in ${\tilde{U}, \tilde{\varphi}, (H_1, P), (H_2, P)}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1, 2)^* - \omega - \tilde{T}_1$ -space (resp. soft $(1, 2)^* - \omega - \tilde{T}_1$ -space, soft $(1, 2)^* - \omega - \tilde{T}_1$ -space, soft $(1, 2)^* - \tilde{T}_1$ -space.

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Theorem (2.28): In a soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ the following statements are equivalent.

- (i) $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* \omega \tilde{T}_1$ -space (resp. soft $(1,2)^* \alpha \omega \tilde{T}_1$ -space, soft $(1,2)^*$ -pre- $\omega \tilde{T}_1$ -space, soft $(1,2)^* b \omega \tilde{T}_1$ -space, soft $(1,2)^* \beta \omega \tilde{T}_1$ -space)
- (ii) For each $\tilde{x} \in \tilde{U}, \{\tilde{x}\}$ is a soft $(1,2)^*$ - ω -closed (resp. soft $(1,2)^*$ - α - ω -closed, soft $(1,2)^*$ -pre- ω -closed, soft $(1,2)^*$ - β - ω -closed) set in \tilde{U} .
- (iii) Every soft subset of Ũ is the intersection of all soft (1,2)*-ω-open (resp. soft (1,2)*-α-ω-open, soft (1,2)*-pre-ω-open, soft (1,2)*-β-ω-open) sets containing it.
- (iv) The intersection of all soft $(1,2)^*-\omega$ -open (resp. soft $(1,2)^*-\alpha-\omega$ -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^*-\beta-\omega$ -open) sets containing the soft point $\tilde{x} \in \tilde{U}$ is $\{\tilde{x}\}$.

Proof: (i) \Rightarrow (ii). Let $\tilde{x} \in \tilde{U}$. To prove that { \tilde{x} } is soft (1,2)*- ω -closed in \tilde{U} . Let $\tilde{y} \notin {\tilde{x}} \Rightarrow \tilde{x} \neq \tilde{y}$. Since $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega$ - \tilde{T}_1 -space, then there is a soft $(1,2)^*-\omega$ -open set (H, P) in \tilde{U} such that $\tilde{y} \in (H, P)$, but $\tilde{x} \notin (H, P) \Rightarrow {\tilde{x}} \cap (H, P) = \tilde{\varphi} \Rightarrow {\tilde{x}} \subset (H, P)^c \Rightarrow (1,2)^*-\omega cl({\tilde{x}}) \subset (1,2)^*-\omega cl((H, P)^c) = (H, P)^c$. Since $\tilde{y} \notin (H, P)^c \Rightarrow \tilde{y} \notin (1,2)^*-\omega cl({\tilde{x}}) = {\tilde{x}}$. Therefore ${\tilde{x}}$ is a soft $(1,2)^*-\omega$ -closed set in \tilde{U} .

(ii) \Rightarrow (iii). Let $(H,P) \subset \widetilde{U}$ and $\widetilde{y} \notin (H,P)$. Then $(H,P) \subset \{\widetilde{y}\}^c$ and $\{\widetilde{y}\}^c$ is soft $(1,2)^*$ - ω -open in \widetilde{U} . Hence $(H,P) = \widetilde{\bigcap}\{\{\widetilde{y}\}^c : \widetilde{y} \in (H,P)^c\}$ is the intersection of all soft $(1,2)^*$ - ω -open sets containing (H,P).

(iii) ⇒ (iv). Obvious.

(iv) \Rightarrow (i). Let $\tilde{x}, \tilde{y} \in \tilde{X}, \tilde{x} \neq \tilde{y}$. By our assumption there exist at least a soft $(1,2)^*$ - ω -open set containing \tilde{x} , but not \tilde{y} and also a soft $(1,2)^*$ - ω -open set containing \tilde{y} , but not \tilde{x} . Therefore $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \tilde{T}_1 -space. Similarly, we can prove that other cases.

Theorem (2.29): Every soft bitopological space is a soft $(1,2)^*-\omega$ - \tilde{T}_1 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_1 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_1 -space).

Proof: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be any soft bitopological space and $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. Since $\tilde{U} - {\tilde{x}}$ and $\tilde{U} - {\tilde{y}}$ are soft $(1,2)^* \cdot \omega$ -open (resp. soft $(1,2)^* \cdot \alpha \cdot \omega$ -open, soft $(1,2)^* \cdot \rho \cdot \omega$ -open, soft $(1,2)^* \cdot \beta \cdot \omega$ -open) sets in \tilde{U} such that $\tilde{U} - {\tilde{y}}$ containing \tilde{x} , but not \tilde{y} and $\tilde{U} - {\tilde{x}}$ containing \tilde{y} , but not \tilde{x} . Therefore $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* \cdot \omega \cdot \tilde{T}_1$ -space (resp. soft $(1,2)^* - \alpha \cdot \omega \cdot \tilde{T}_1$ -space, soft $(1,2)^* - \beta \cdot \omega \cdot \tilde{T}_1$ -space, soft $(1,2)^* - \beta \cdot \omega \cdot \tilde{T}_1$ -space).

Corollary (2.30): A soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_1$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_1$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_1$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_1$ -space) iff it is a soft $(1,2)^* - \omega - \tilde{T}_{\frac{1}{2}}$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_{\frac{1}{2}}$ -space, soft $(1,2)^* - \rho - \omega - \tilde{T}_{\frac{1}{2}}$ -space).

Proof: It follows that from the proposition (2.22) and theorem (2.29).

Corollary (2.31): Every soft subspace of a soft $(1,2)^*-\omega$ - \tilde{T}_1 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_1 -space) is a

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

soft $(1,2)^*-\omega$ - \tilde{T}_1 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_1 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^*$ -b- ω - \tilde{T}_1 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_1 -space).

Proof: It follows that from the theorem (2.29).

Proposition (2.32): If $(U, \tilde{\tau}_1, P)$ or $(U, \tilde{\tau}_2, P)$ is a soft \tilde{T}_1 -space, then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega-\tilde{T}_1$ -space (resp. soft $(1,2)^*-\alpha-\omega-\tilde{T}_1$ -space, soft $(1,2)^*$ -pre- $\omega-\tilde{T}_1$ -space, soft $(1,2)^*$ -b- $\omega-\tilde{T}_1$ -space, soft $(1,2)^*-\beta-\omega-\tilde{T}_1$ -space).

Proof: It follows from the fact $\tilde{\tau}_i \cong \operatorname{soft} \tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{U} , i = 1,2 and proposition (2.25). **Remark (2.33):** The converse of proposition (2.32) is not true in general in example (2.27) $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_1$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_1$ -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_1 -space, soft $(1,2)^* - \omega - \tilde{T}_1$ -space), but both $(U, \tilde{\tau}_1, P)$ and $(U, \tilde{\tau}_2, P)$ are not soft \tilde{T}_1 -space.

Proposition (2.35): Every soft $(1,2)^*-\omega$ - \tilde{T}_2 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_2 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_2 -space, soft $(1,2)^*-b-\omega$ - \tilde{T}_2 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_2 -space) is a soft $(1,2)^*-\omega$ - \tilde{T}_1 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_1 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_1 -space, soft $(1,2)^*-\beta-\omega$ - \tilde{T}_1 -space).

Proof: Let $\tilde{x}, \tilde{y} \in \tilde{U}, \tilde{x} \neq \tilde{y}$. By our assumption there are two soft $(1,2)^*$ - ω -open sets (H,P) and (K,P) in \tilde{U} such that $\tilde{x} \in (H,P), \tilde{y} \in (K,P)$ and $(H,P) \cap (K,P) = \tilde{\varphi}$. Thus (H,P) and (K,P) are soft $(1,2)^*$ - ω -open sets in \tilde{U} such that (H,P) containing \tilde{x} , but not \tilde{y} and (K,P) containing \tilde{y} , but not \tilde{x} . Therefore $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - ω - \tilde{T}_1 -space. Similarly, we can prove that other cases.

Remark (2.36): The converse of proposition (2.35) is not true in general. We see that in the following example:

Example (2.37): Let X = \Re and P = {p₁, p₂} and let $\tilde{\tau}_1 = \{(H, P) \subseteq \tilde{U} : (H, P)^c \text{ is finite}\} \tilde{\bigcup}$

 $\{\tilde{\varphi}\}\$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}\}\$ be soft topologies over U. Thus $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_1$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_1$ -space, soft $(1,2)^* - \mu - \tilde{T}_1$ -space), clear that is not soft $(1,2)^* - \mu - \tilde{T}_2$ -space.

Proposition (2.38):(i): Every soft $(1,2)^*$ - \tilde{T}_2 -space is a soft $(1,2)^*$ - ω - \tilde{T}_2 -space.

(ii) Every soft $(1,2)^*-\omega$ - \tilde{T}_2 -space is a soft $(1,2)^*-\alpha$ - ω - \tilde{T}_2 -space.

(iii) Every soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_2 -space is a soft $(1,2)^*$ -pre- ω - \tilde{T}_2 -space.

(iv) Every soft $(1,2)^*$ -pre- ω - \tilde{T}_2 -space is a soft $(1,2)^*$ -b- ω - \tilde{T}_2 -space.

(v) Every soft $(1,2)^*$ -b- ω - \tilde{T}_2 -space is a soft $(1,2)^*$ - β - ω - \tilde{T}_2 -space.

Remark (2.39): The converse of proposition (2.38) is not true in general as shown by the following examples:

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 🕻

Vol. 31 (†) 2018

Example (2.40): Let $U = \{a, b, c\}$ and $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}, (H_2, P)\}$ be soft topologies over U, where $(H_1, P) = \{(p_1, \{a, c\}), (p_2, \{a\})\}$ and $(H_2, P) = \{(p_1, \{b\}), (p_2, \{b, c\})\}$. The soft sets in $\{\tilde{U}, \tilde{\varphi}, (H_1, P), (H_2, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus

 $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_2$ -space, but is not soft $(1,2)^* - \tilde{T}_2$ -space. Since $(p_1, \{a\}) = \tilde{x} \neq \tilde{y} = (p_2, \{a\})$, but there exists no soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set (K_1, P) containing \tilde{x} and soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set (K_2, P) containing \tilde{y} such that $(K_1, P) \cap (K_2, P) = \tilde{\varphi}$.

Example (2.41): Let $U = \Re$ and $P = \{p\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}, (H_2, P)\}$ be soft topologies over U, where $(H_1, P) = \{(p, \{-1\})\}, (H_2, P) = \{(p, \{1\})\}$ and $(H_3, P) = \{(p, \{1\})\}$

{(p,{1,-1})}. The soft sets in { $\tilde{U}, \tilde{\varphi}, (H_1, P), (H_2, P), (H_3, P)$ } are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus (U, $\tilde{\tau}_1, \tilde{\tau}_2, P$) is a soft (1,2)*- α - ω - \tilde{T}_2 -space, clear that is not soft (1,2)*- ω - \tilde{T}_2 -space.

Example (2.42): Let $U = \Re$ and $P = \{p\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}\}$ be soft topologies over U, where $(H, P) = \{(p, \{1\})\}$. The soft sets in $\{\tilde{U}, \tilde{\varphi}, (H, P)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1, 2)^*$ -pre- ω - \tilde{T}_2 -space, but is not soft $(1, 2)^*$ - α - ω - \tilde{T}_2 -space. Since $(p, \{2\}) = \tilde{x} \neq \tilde{y} = (p, \{3\})$, but there exists no a soft $(1, 2)^*$ - α - ω -open set (K_1, P) containing \tilde{x} and a soft $(1, 2)^*$ - α - ω -open set (K_2, P) containing \tilde{y} such that $(K_1, P) \cap (K_2, P) = \tilde{\varphi}$.

Theorem (2.43): For a soft bitopological space $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ the following statements are equivalent.

- (i) $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* \omega \tilde{T}_2$ -space (resp. soft $(1,2)^* \alpha \omega \tilde{T}_2$ -space, soft $(1,2)^*$ -pre- $\omega \tilde{T}_2$ -space, soft $(1,2)^* b \omega \tilde{T}_2$ -space, soft $(1,2)^* \beta \omega \tilde{T}_2$ -space)
- (ii) If $\tilde{x} \in \tilde{U}$, then for each $\tilde{y} \neq \tilde{x}$, there is a soft $(1,2)^*$ - ω -neighborhood (resp. soft $(1,2)^*$ - α - ω -neighborhood, soft $(1,2)^*$ -pre- ω -neighborhood, soft $(1,2)^*$ -b- ω -neighborhood, soft $(1,2)^*$ - β - ω -neighborhood) (N,P) of \tilde{x} such that $\tilde{y} \notin (1,2)^*$ - ω cl(N,P) (resp. $\tilde{y} \notin (1,2)^*$ - α - ω cl(N,P), $\tilde{y} \notin (1,2)^*$ -pre- ω cl(N,P), $\tilde{y} \notin (1,2)^*$ - β - ω cl(N,P)).
- (iii) For each $\tilde{x} \in \tilde{U}$, $\tilde{\cap} \{ (1,2)^* \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* \omega \text{neighborhood of } \tilde{x} \}$ (resp. $\tilde{\cap} \{ (1,2)^* - \alpha - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \alpha - \omega - \text{neighborhood of } \tilde{x} \}$, $\tilde{\cap} \{ (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) : (N,P) \text{ is a soft } (1,2)^* - \beta - \omega cl(N,P) = \{\tilde{x}\}.$

Proof: (i) \Rightarrow (ii). Let $\tilde{x} \in \tilde{U}$. If $\tilde{y} \in \tilde{U}$ such that $\tilde{y} \neq \tilde{x}$, then there exists disjoint soft (1,2)*- ω -open sets (H,P) and (K,P) such that $\tilde{x} \in (H,P)$ and $\tilde{y} \in (K,P)$. Hence $\tilde{x} \in (H,P) \subseteq (K,P)^c$ which implies that $(K,P)^c$ is a soft (1,2)*- ω -neighborhood of \tilde{x} . Also $(K,P)^c$ is soft

(K, P) which implies that (K, P) is a soft $(1,2)^*-\omega$ -neighborhood of X. Also (K, P) is soft $(1,2)^*-\omega$ -closed and $\tilde{y} \notin (K, P)^c$. Let $(N, P) = (K, P)^c$. Then $\tilde{y} \notin (1,2)^*-\omega cl(N, P)$. (ii) \Rightarrow (iii). Obvious.

(iii) \Rightarrow (i). Let $\tilde{x}, \tilde{y} \in \tilde{U}, \tilde{x} \neq \tilde{y}$. By hypothesis, there is at least a soft $(1,2)^*$ - ω -neighborhood (N,P) of \tilde{x} such that $\tilde{y} \notin (1,2)^*$ - $\omega cl(N,P)$. We have $\tilde{x} \notin ((1,2)^*$ - $\omega cl(N,P))^c$ which is soft $(1,2)^*$ - ω -open. Since (N,P) is a soft $(1,2)^*$ - ω -neighborhood of \tilde{x} , then there exists a soft $(1,2)^*$ - ω -open set (H,P) in \tilde{U} such that $\tilde{x} \in (H,P) \subseteq (N,P)$ and $(H,P) \cap ((1,2)^*$ - $\omega cl(N,P))^c$ $= \tilde{\phi}$. Hence $(U,\tilde{\tau}_1,\tilde{\tau}_2,P)$ is a soft $(1,2)^*$ - ω - \tilde{T}_2 -space. Similarly, we can prove that other cases.

https://doi.org/10.30526/31.2.1953 Mathmatics | 148

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Lemma (2.44): Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft bitopological space and $Y \subseteq U$. If (H, P) is a soft $(1,2)^*\text{-}\omega\text{-}\text{open set in }\widetilde{U}$, then $(H,P)\,\widetilde{\cap}\,\widetilde{Y}\,$ is a soft $(1,2)^*\text{-}\omega\text{-}\text{open set in }\widetilde{Y}$.

Proof: Let (H,P) be a soft $(1,2)^*$ - ω -open set in \widetilde{U} . To prove that $(H,P) \cap \widetilde{Y}$ is a soft $(1,2)^*$ ω-open set in \widetilde{Y} . Let $\widetilde{y} \in (H, P) \cap \widetilde{Y} \Rightarrow \widetilde{y} \in (H, P)$. Since (H, P) is soft $(1, 2)^*$ -ω-open in \widetilde{U} $\Rightarrow \exists$ a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set (V,P) in \tilde{U} such that $\tilde{y} \in (V,P)$ and (V,P) - (H,P) is a soft countable set. Hence $\widetilde{Y} \cap (V, P)$ is a soft $\widetilde{\tau}_{1Y} \widetilde{\tau}_{2Y}$ -open set in \widetilde{Y} . Since $(\widetilde{Y} \cap (V, P)) - (\widetilde{Y} \cap V)$ $(H,P) = \widetilde{Y} \cap ((V,P) - (H,P)) \subset ((V,P) - (H,P)), \text{ then } (\widetilde{Y} \cap (V,P)) - (\widetilde{Y} \cap (H,P)) \text{ is soft}$ countable. Thus $(H, P) \cap \widetilde{Y}$ is a soft $(1,2)^*$ - ω -open set in \widetilde{Y} .

Proposition (2.45): Every soft subspace of a soft $(1,2)^*-\omega$ - \widetilde{T}_2 -space is a soft $(1,2)^*-\omega$ - \widetilde{T}_2 space.

Proof: Let $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ be a soft $(1,2)^* - \omega - \tilde{T}_2$ -space and $(Y, \tilde{\tau}_{1\tilde{Y}}, \tilde{\tau}_{2\tilde{Y}}, P)$ be a soft subspace of $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$. To prove that $(Y, \tilde{\tau}_{1\widetilde{Y}}, \tilde{\tau}_{2\widetilde{Y}}, P)$ is a soft $(1,2)^* - \omega - \widetilde{T}_2$ -space. Let $\tilde{x}, \tilde{y} \in \widetilde{Y}$ such that $\tilde{x} \neq \tilde{y}$. Since $\tilde{Y} \subseteq \tilde{U}$, then $\tilde{x}, \tilde{y} \in \tilde{U}$. But $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_2$ -space, then there are two soft (1,2)*- ω -open sets (H,P) and (K,P) in \widetilde{U} such that $\widetilde{x} \in (H,P), \widetilde{y} \in (K,P)$ and $(H,P) \cap (K,P) = \tilde{\varphi}$. By lemma (2.44), $(H',P) = (H,P) \cap \tilde{Y}$ and $(K',P) = (K,P) \cap \tilde{Y}$ are soft $(1,2)^*$ - ω -open sets in \widetilde{Y} such that $\widetilde{x} \in (H',P)$ and $\widetilde{y} \in (K',P)$. Since $(H',P) \cap (K',P) =$ $((H,P)\widetilde{\cap} \widetilde{Y})\widetilde{\cap} ((K,P)\widetilde{\cap} \widetilde{Y}) = ((H,P)\widetilde{\cap} (K,P))\widetilde{\cap} \widetilde{Y} = \widetilde{\varphi}\widetilde{\cap} \widetilde{Y} = \widetilde{\varphi}. \text{ Thus } (Y,\widetilde{\tau}_{1\widetilde{Y}},\widetilde{\tau}_{2\widetilde{Y}},P) \text{ is a }$ soft $(1,2)^*-\omega$ - \tilde{T}_2 -space.

Remark (2.46): Soft subspace of a soft $(1,2)^*-\alpha-\omega-\widetilde{T}_2$ -space is not a soft $(1,2)^*-\alpha-\omega-\widetilde{T}_2$ space as shown in the following example:

Example (2.47): Let $U = \Re$ and $P = \{p\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}, (H_2, P)\}$ be soft topologies over U, where $(H_1, P) = \{(p, \{-1\})\}, (H_2, P) = \{(p, \{1\})\} \text{ and } (H_3, P) = \{(p, \{1\})\} \}$

{(p,{1,-1})}. Then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \alpha - \omega - \tilde{T}_2$ -space. If $Y = \Re - \{1\} \subset U = \Re$, then $\tilde{\tau}_{1\widetilde{Y}} = \{\widetilde{Y}, \widetilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_{2\widetilde{Y}} = \{\widetilde{Y}, \widetilde{\varphi}\}$ are soft topologies over Y. The soft sets in $\{\widetilde{Y}, \widetilde{\phi}, (H_1, P)\} \text{ are soft } \widetilde{\tau}_{\widetilde{Y}_1} \widetilde{\tau}_{\widetilde{Y}_2} \text{ -open. Therefore } (Y, \widetilde{\tau}_{1\widetilde{Y}}, \widetilde{\tau}_{2\widetilde{Y}}, P) \text{ is not a soft } (1,2)^* - \alpha - \omega - \widetilde{T}_2 - \widetilde{T}_2 - \widetilde{T}_2 - \widetilde{T}_2 - \omega - \widetilde{T}_2 - \omega$ space, since $(p, \{3\}) = \tilde{x} \neq \tilde{y} = (p, \{4\})$, but there exists no soft $(1,2)^* - \alpha - \omega$ -open sets (K_1, P) and (K_2, P) in \widetilde{Y} such that $\widetilde{x} \in (K_1, P), \widetilde{y} \in (K_2, P)$ and $(K_1, P) \cap (K_2, P) = \widetilde{\varphi}$.

Proposition (2.48): If $(U, \tilde{\tau}_1, P)$ or $(U, \tilde{\tau}_2, P)$ is a soft \tilde{T}_2 -space, then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*-\omega$ - \tilde{T}_2 -space (resp. soft $(1,2)^*-\alpha-\omega$ - \tilde{T}_2 -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_2 -space, soft $(1,2)^*$ -bω- \tilde{T}_2 -space, soft (1,2)*-β-ω- \tilde{T}_2 -space).

Proof: It follows from the fact $\tilde{\tau}_i \subseteq \text{soft } \tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{U} , i = 1,2 and proposition (2.38).

Remark (2.49): The converse of proposition (2.48) is not true in general. We see that by the following example:

Example (2.50): Let $U = \{a, b, c, d\}$ and $P = \{p_1, p_2\}$ and let $\tilde{\tau}_1 = \{\tilde{U}, \tilde{\varphi}, (H_1, P)\}$ and $\tilde{\tau}_2 = \{\tilde{U}, \tilde{\varphi}, (H_2, P)\}$ be soft topologies over U, where $(H_1, P) = \{(p_1, \{a, b\}), (p_2, \{a, b\})\}$ and $(H_2, P) = \{(p_1, \{a\}), (p_2, \{a\})\}$. The soft sets in $\{\widetilde{U}, \widetilde{\varphi}, (H_1, P), (H_2, P)\}$ are soft $\widetilde{\tau}_1 \widetilde{\tau}_2$ -open.

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

pre- ω - \tilde{T}_2 -space, soft (1,2)*-b- ω - \tilde{T}_2 -space, soft (1,2)*- β - ω - \tilde{T}_2 -space), but both (U, $\tilde{\tau}_1$,P) and (U, $\tilde{\tau}_2$,P) are not soft \tilde{T}_2 -space.

Definition (2.51): A soft function $f:(U, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is called strongly soft $(1,2)^*-\omega$ -continuous (resp. strongly soft $(1,2)^*-\alpha$ - ω -continuous, strongly soft $(1,2)^*$ -pre- ω -continuous, strongly soft $(1,2)^*-\beta$ - ω -continuous) if $f^{-1}((H, P))$ is a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set in \tilde{U} for each soft $(1,2)^*-\beta$ - ω -open (resp. soft $(1,2)^*-\alpha$ - ω -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^*-\beta$ - ω -open) set (H, P) in \tilde{V} .

Theorem (2.52): Let $f: (U, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ be a strongly soft $(1,2)^*$ - ω -continuous (resp. strongly soft $(1,2)^*$ - α - ω -continuous, strongly soft $(1,2)^*$ -pre- ω -continuous, strongly soft $(1,2)^*$ - β - ω -continuous) injective function. If $(V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a soft $(1,2)^*$ - ω - \tilde{T}_i -space (resp. soft $(1,2)^*$ - α - ω - \tilde{T}_i -space, soft $(1,2)^*$ -pre- ω - \tilde{T}_i -space, soft $(1,2)^*$ - β - ω - \tilde{T}_i -space, then $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^*$ - \tilde{T}_i -space, for $i = 0, \frac{1}{2}, 1, 2$.

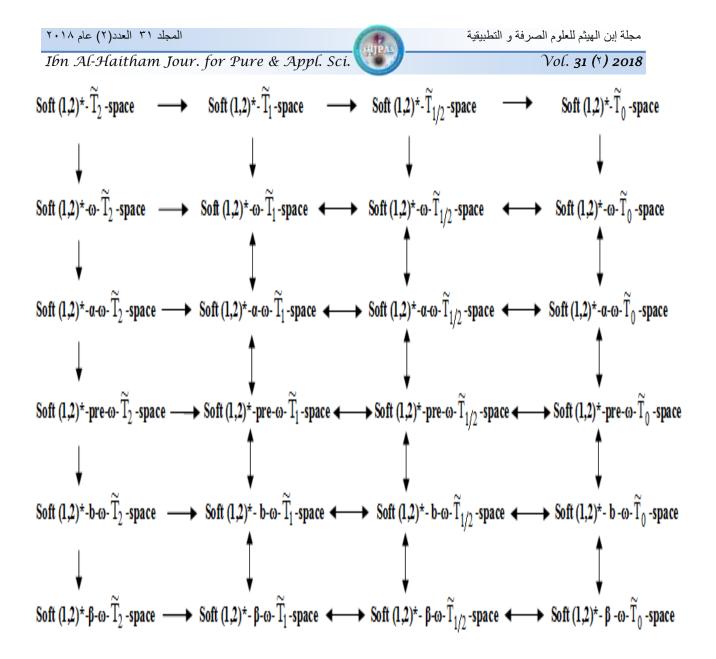
Proof: Suppose that $(V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_2$ -space. Let $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. Since f is injective and $(V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_2$ -space, then there exists disjoint soft $(1,2)^* - \omega$ -open sets (H_1, P) and (H_2, P) in \tilde{V} such that $f(\tilde{x}) \in (H_1, P)$ and $f(\tilde{y}) \in (H_2, P)$. By definition (2.51), $f^{-1}((H_1, P))$ and $f^{-1}((H_2, P))$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{U} such that $\tilde{x} \in f^{-1}((H_1, P)), \tilde{y} \in f^{-1}((H_2, P))$ and $f^{-1}((H_1, P)) \cap f^{-1}((H_2, P)) = \tilde{\varphi}$. Hence $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \tilde{T}_2$ -space. Similarly, we can prove that other cases.

Definition (2.53): A soft function $f:(U, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is called strongly soft $(1,2)^*-\omega$ -open (resp. strongly soft $(1,2)^*-\alpha$ - ω -open, strongly soft $(1,2)^*$ -pre- ω -open, strongly soft $(1,2)^*-\beta$ - ω -open) if f((H, P)) is a soft $\tilde{\sigma}_1\tilde{\sigma}_2$ -open set in \tilde{V} for each soft $(1,2)^*-\omega$ -open (resp. soft $(1,2)^*-\alpha$ - ω -open, soft $(1,2)^*$ -pre- ω -open, soft $(1,2)^*-\beta$ - ω -open) set (H, P) in \tilde{U} .

Theorem (2.54): Let $f: (U, \tilde{\tau}_1, \tilde{\tau}_2, P) \rightarrow (V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ be a strongly soft $(1,2)^* - \omega$ -open (resp. strongly soft $(1,2)^* - \alpha - \omega$ -open, strongly soft $(1,2)^* - \alpha - \omega$ -open, strongly soft $(1,2)^* - \beta - \omega$ -open) bijective function. If $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^* - \omega - \tilde{T}_i$ -space (resp. soft $(1,2)^* - \alpha - \omega - \tilde{T}_i$ -space, soft $(1,2)^* - \omega - \tilde{T}_i$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_i$ -space, soft $(1,2)^* - \beta - \omega - \tilde{T}_i$ -space), then $(V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a soft $(1,2)^* - \tilde{T}_i$ -space, for $i = 0, \frac{1}{2}, 1, 2$.

Proof: Suppose that $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^{*} - \omega - \tilde{T}_2$ -space. Let $\tilde{y}_1, \tilde{y}_2 \in \tilde{V}$ such that $\tilde{y}_1 \neq \tilde{y}_2$. Since f is surjective, then there exists $\tilde{x}_1, \tilde{x}_2 \in \tilde{U}$ such that $f(\tilde{x}_1) = \tilde{y}_1$ and $f(\tilde{x}_2) = \tilde{y}_2$. Since f is a function, then $\tilde{x}_1 \neq \tilde{x}_2$. But $(U, \tilde{\tau}_1, \tilde{\tau}_2, P)$ is a soft $(1,2)^{*} - \omega - \tilde{T}_2$ -space, then there exists disjoint soft $(1,2)^{*} - \omega$ -open sets (H_1,P) and (H_2,P) in \tilde{U} such that $\tilde{x}_1 \in (H_1,P)$ and $\tilde{x}_2 \in (H_2,P)$. By definition (2.53), $f((H_1,P))$ and $f((H_2,P))$ are soft $\tilde{\sigma}_1 \tilde{\sigma}_2$ -open sets in \tilde{V} such that $f(\tilde{x}_1) \in f((H_1,P))$ and $f(\tilde{x}_2) \in f((H_2,P))$. Since f is injective, then $f((H_1,P)) \cap f((H_2,P)) = \tilde{\varphi}$. Hence $(V, \tilde{\sigma}_1, \tilde{\sigma}_2, P)$ is a soft $(1,2)^{*} - \tilde{T}_2$ -space. By the same way we can prove that other cases.

The following diagram shows the relation among soft $(1,2)^* - \tilde{T}_i$ -spaces, soft $(1,2)^* - \omega - \tilde{T}_i$ -spaces, soft $(1,2)^* - \alpha - \omega - \tilde{T}_i$ -spaces, soft $(1,2)^* - \mu - \omega - \tilde{T}_i$ -spaces, soft $(1,2)^* - \mu - \omega - \tilde{T}_i$ -spaces, and soft $(1,2)^* - \beta - \omega - \tilde{T}_i$ -spaces, for $i = 0, \frac{1}{2}, 1, 2$.



References

- 1. Molodtsov, D. (1999), "Soft set theory-First results", Computers and Mathematics with Applications, 37 (4-5):19-31.
- 2. Shabir, M. and Naz, M. (2011), "On soft topological spaces", Computers and Mathematics with Applications, 61(7):1786-1799.
- ^v. Senel, G. and Çagman, N. (2014), "Soft closed sets on soft bitopological space", Journal of new results in science, 5:57-66.
- [£]. Mahmood, S. I. and Abdul-Hady, A. A. ,(2018), "Weak Forms of Soft (1,2)*-Omega Open Sets in Soft Bitopological Spaces", Iraqi Journal of Science, 59 (1C): 572-580.
- Das, S. and Samanta, S.K. ,(2012)," Soft metric", Annals of Fuzzy Mathematics and Informatics,1-18.
- ⁷. Maji, P. K.; Biswas, R. and Roy, A. R. (2003), "Soft set theory", Computers and Mathematics with Applications, 45: 555-562.
- Mahmood, S. I. (2017)" Weak Soft Separation Axioms and Weak Soft (1,2)*-D-Separation Axioms in Soft Bitopological Spaces", Journal of Al-Nahrain University, 20 (3): 137-148.
- ^A. Hussein, A. M. (2016) "Soft Pre-Open Sets in Soft Bitopological Spaces", American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 26 (4) : 42-53.