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Abstract    

       A submodule N of a module M is said to be s-essential if it has nonzero intersection with any 
nonzero small submodule in M. In this article, we introduce and study a class of modules in which 
all its nonzero endomorphisms have non-s-essential kernels, named, strongly 𝒦-nonsigular. We 
investigate some properties of strongly 𝒦-nonsigular modules. Direct summand, direct sums and 
some connections of such modules are discussed.    
      
Keywords: Modules; S-essential submodules; nonsingular modules; Strongly 𝒦-nonsigular 
modules.   

 

1.  Introduction  

      A proper submodule N of a module M is said to be small if for any submodule K of M with 
𝑁 𝐾 𝑀 implies 𝐾 𝑀[1]. A nonzero module M is called Hollow if all its proper submodules 
are small [2]. The dual concept of small submodule is an essential submodule, where a nonzero 
submodule N of a module M is called essential if for any submodule K of M with 𝑁 ∩ 𝐾 0 

implies 𝐾 0. A nonzero R-module M is said to be uniform if all its nonzero submodules are 
essential [3]. As mixing of concepts small and essential submodules, we introduced the following 
class of submodules. A submodule N of M is said to be s-essential if for any small K in M with 
 𝑁 ∩ 𝐾 0 implies 𝐾 0 [4]. It is clear essential submdules implies s-essential. Roman C.S. in 
[5], recall that an R-module M is called 𝒦-nonsigular if for any endomorphism 𝜑 of M which has 
essential kernel, 𝜑 0. 𝒦-a nonsingular module is studied in detail by [6]. In this research, we 
introduced concept of strongly 𝒦-nonsigular modules which is stronger than 𝒦-nonsigular 
modules. An R-module M is said to be strongly 𝒦-nonsigular if for each endomorphism of M 
which has    s-essential kernel, is zero. In section 2, we give some characterizations and properties 
of this concept. In section 3, we proved a strongly 𝒦-nonsigular module is inherited by direct 
summands. Also, we give a condition for finite direct sums of strongly 𝒦-nonsigular modules to 
be strongly 𝒦-nonsigular. Several connections between strongly 𝒦-nonsigular and other classes, 
also some examples are proved in section 4. Throughout this work, all rings are associative with 
identity and all modules are unitary right R-modules. For a right R-module M, the notations𝑁 ⊆
𝑀, 𝑁 𝑀, 𝑁 ≪ 𝑀, 𝑁 ⊴ 𝑀, 𝑁 ⊴ 𝑀 or 𝑁 ⨁ 𝑀 denotes that N is a subset, a submodule, a small 
submodule, an essential submodule, a s-essential submodule, or direct summand of M, 
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respectively. Also, for 𝑁 𝑀, we denote the endomorphism ring of M by 𝐸𝑛𝑑 𝑀 , 𝑟 𝑁
𝑟 ∈ 𝑅| 𝑁𝑟 0  and  𝑁: 𝑀 𝑟 ∈ 𝑅| 𝑀𝑟 ⊆ 𝑁 .   

       Starting, we will state some properties of s-essential submodules in [4, Prop. 2.7] which 
needed in this work.  
 
Proposition 1: Let M be a module. Then; 
(1) Assume 𝑁, 𝐾, 𝐿 are submodules of M with  𝐾 𝑁. 
𝑖   If  𝐾 ⊴ 𝑀, then 𝐾 ⊴ 𝑁  and  𝑁 ⊴ 𝑀.  
𝑖𝑖  𝑁 ⊴ 𝑀 and  𝐿 ⊴ 𝑀  if and only if  𝑁 ∩ 𝐿 ⊴ 𝑀. 

 (2) If 𝜑: 𝑀 → 𝑀 is a homomorphism with 𝐾 ⊴ 𝑀, then  𝜑 𝐾 ⊴ 𝑀.   
(3) If 𝐾 ⊆ 𝑀 ⊆ 𝑀, 𝐾 ⊆ 𝑀 ⊆ 𝑀 and  𝑀 𝑀 ⨁𝑀 . Then  𝐾 ⨁𝐾 ⊴ 𝑀 ⨁𝑀   if and only if   
      𝐾 ⊴ 𝑀   for  𝑖 1,2.    
 
2.  Strongly 𝓚-nonsigular Modules  

    In this section, we introduce the class of strongly 𝒦-nonsigular modules as a stronger class of 
𝒦-nonsigular modules. Several various properties are proved.   
 
Definition 2. An R-module M is said to be strongly 𝒦-nonsigular if for all 𝜑 ∈ 𝐸𝑛𝑑 𝑀  with 

𝑘𝑒𝑟𝜑 is  s-essential in M, implies 𝜑 0. Also, a ring R is strongly 𝒦-nonsigular if it is a strongly  
𝒦-nonsigular   R-module.  

for  𝑁 𝑀, if  𝐻𝑜𝑚 , 𝑀 0 then N is called quasi-invertible [7].   

   Firstly, we are now in a position to give a characterization the notion of strongly 𝒦-nonsigular 
modules. 
 
Theorem 3. A module M is strongly 𝒦-nonsigular if and only if all its s-essential submodules are 
quasi-invertible. 
 
Proof. Assume M is a strongly 𝒦-nonsigular R-module. Let 𝑁 ⊴ 𝑀 and N is not quasi-

invertible, i.e. 𝐻𝑜𝑚 , 𝑀 0, so there exists 0 𝜑: → 𝑀. Consider 𝜓 𝜑 ∘ 𝜋 ∈

𝐸𝑛𝑑 𝑀 , where 𝜋 is a natural epimorphism map. It is clear that  𝑁 ⊆ 𝑘𝑒𝑟𝜓, but 𝑁 ⊴ 𝑀, this 
implies 𝑘𝑒𝑟𝜓 ⊴ 𝑀, and hence 𝜓 0, as M is strongly 𝒦-nonsigular, thus 𝜑 0, a 
contradiction. Therefore 𝑁 ⊴ 𝑀 and N is quasi-invertible. Conversely, let 0 𝑓 ∈ 𝐸𝑛𝑑 𝑀 . 
If 𝑘𝑒𝑟𝑓 ⊴ 𝑀, so by hypothesis 𝑘𝑒𝑟𝑓 is quasi-invertible. But, we can define a homomorphism 

ℎ: → 𝑀 by ℎ 𝑚 𝐾𝑒𝑟𝑓 𝑓 𝑚  for all 𝑚 ∈ 𝑀. So ℎ 0 and hence 𝐻𝑜𝑚 , 𝑀 0 

which is a contradiction with 𝑘𝑒𝑟𝑓 is quasi-invertible. Therefore 𝑘𝑒𝑟𝑓 ⋬ 𝑀 and M is a strongly 

𝒦-nonsigular R-module. ∎  
 
Corollary 4. Let M  be a strongly 𝒦-nonsigular module. If  𝑁 ⊴ 𝑀, then 𝑟 𝑁 𝑟 𝑀 . 
 
Proof. Assume 𝑁 ⊴ 𝑀, then by previous Theorem, N is a quasi-invertible submodule, and so 
𝑟 𝑁 𝑟 𝑀  by [7, Prop. 1.1.4]. ∎   
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Proposition 5. Let M be an R-module, 𝑅∗ 𝑅 𝐴⁄  and 𝐴 ⊆ 𝑟 𝑀 . Then M is a strongly 𝒦-
nonsingular R-module if and only if M is a strongly 𝒦-nonsigular 𝑅∗-module.  

Proof. Assume 𝜋: 𝑅 → 𝑅∗ is a natural epimorphism, so by [8, Ex. P.51] 𝐻𝑜𝑚 , 𝑀

𝐻𝑜𝑚 ∗ , 𝑀  for each submodule N of M. So, the result is follow. ∎   

 
Proposition 6. Let M be a strongly 𝒦-nonsigular module with 𝑀 𝑋⁄  is a projective module for all 
𝑋 ⊴ 𝑀. Then  𝑀 𝐴⁄  is a strongly 𝒦-nonsigular module, for all  𝐴 ⊴ 𝑀.  
 

Proof. For 𝐵 𝐴 ⊴ 𝑀 𝐴⁄⁄ , to prove that  𝐻𝑜𝑚
⁄

⁄
, 0, that is; 𝐻𝑜𝑚 , 0. If false, 

so there is a nonzero homomorphism 𝜑: → . Note that 𝐵 ⊴ 𝑀 (in fact, 𝐴 ⊆ 𝐵 ⊆ 𝑀 with 

𝐴 ⊴ 𝑀), so by hypothesis 𝑀 𝐵⁄  is projective, hence there is a homomorphism  𝜓: → 𝑀 such 

that 𝜑 𝜋 ∘ 𝜓. It is clear 𝜓 0, this implies 𝐻𝑜𝑚 , 𝑀 0 with 𝐵 ⊴ 𝑀, is a contradiction 

with M is strongly 𝒦-nonsigular. Thus  𝜑 0 and 𝑀 𝐴⁄  is a strongly 𝒦-nonsigular R-module. ∎ 
  
Definition 7. Let M be a module, define the 𝑠-𝒦-nonsigular submodule of M by 𝑍𝒦 𝑀
∑ 𝐼𝑚𝜑∈ , where  𝑆 𝐸𝑛𝑑 𝑀   and  𝑘𝑒𝑟𝜑 ⊴ 𝑀.   

Now, we will give another characterization for a strongly 𝒦-nonsigular module as follows.  
 
 Proposition 8. Let M be a module. Then M is strongly 𝒦-nonsigular if and only if 𝑍𝒦 𝑀 0.  

Proof. If M is a strongly 𝒦-nonsigular module, then for all 𝜑 ∈ 𝐸𝑛𝑑 𝑀  with 𝑘𝑒𝑟𝜑 ⊴ 𝑀, 

implies 𝐼𝑚𝜑 0, and hence  𝑍𝒦 𝑀 ∑ 𝐼𝑚𝜑 0∈ , where 𝑆 𝐸𝑛𝑑 𝑀  and  𝑘𝑒𝑟𝜑 ⊴ 𝑀. 

Conversely, assume 𝑍𝒦 𝑀 0. Let 𝜓 ∈ 𝐸𝑛𝑑 𝑀  such that 𝑘𝑒𝑟𝜓 ⊴ 𝑀, then  𝐼𝑚𝜓 ⊆ 𝑍𝒦 𝑀  
and so 𝜓 0. Hence M is a strongly 𝒦-nonsigular module. ∎  
   Let M be a module, recall that a submodule N is supplement of 𝐾 𝑀 if, N is a minimal in the 
set of submodules 𝐿 𝑀 with 𝐾 𝐿 𝑀 (Equivalently, N is supplement of 𝐾 𝑀 if and only 
if 𝐾 𝑁 𝑀 and 𝐾 ∩ 𝑁 ≪ 𝑁) [9]. We say that a submodule N of a module M is a supplement if 
it is a supplement for some submodule L of M. 
     The transitive property of s-essential submodules need not be hold, see [4, Ex. 2.8]. So, we will 
give a condition for which the transitive property is hold of s-essential submodules.   
 
Lemma 9. Let M be a module, and let N is a supplement submodule in M with 𝐾 ⊆ 𝑁 ⊆ 𝑀. If 

𝐾 ⊴ 𝑁  and  𝑁 ⊴ 𝑀, then 𝐾 ⊴ 𝑀.  
Proof. Assume 𝐿 ≪ 𝑀 with 𝐾 ∩ 𝐿 0. If 𝐿 ⊆ 𝑁, but N is a supplement in M, then by [10, Prop. 
20.2] 𝐿 ≪ 𝑁, and hence 𝐿 0, since 𝐾 ⊴ 𝑁. Now, if 𝐿 ⊈ 𝑁. We have 𝐿 ∩ 𝑁 ⊆ 𝑁 ⊆ 𝑀, but   
(𝐿 ≪ 𝑀  implies 𝐿 ∩ 𝑁 ≪ 𝑀), thus again by [10, Prop. 20.2]  𝐿 ∩ 𝑁 ≪ 𝑁, since N is a supplement 
in M. But 𝐾 ∩ 𝐿 ∩ 𝑁 𝐾 ∩ 𝐿 0  and 𝐾 ⊴ 𝑁, this implies 𝐿 ∩ 𝑁 0, and hence 𝐿 0, as 
𝑁 ⊴ 𝑀 . ∎   
Now, we present the following Proposition.  
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Proposition 10. Let M be a quasi-injective R-module, and let N is a s-essential and supplement 

submodule in M. If M is a strongly 𝒦-nonsigular R-module, then so is N.   

Proof. Let 0 𝑓: 𝑁 → 𝑁 be a homomrphism. Since M is a quasi-injective module, there exists 
0 𝜑 ∈ 𝐸𝑛𝑑 𝑀  such that 𝑖 ∘ 𝑓 𝜑 ∘ 𝑖, where 𝑖: 𝑁 → 𝑀 is an inclusion map. As M is 

strongly 𝒦-nonsigular, we get 𝑘𝑒𝑟𝜑 ⋬ 𝑀. Clearly, 𝑘𝑒𝑟𝑓 ⊆ 𝑘𝑒𝑟𝜑 then  𝑘𝑒𝑟𝑓 ⋬ 𝑀. If 
𝑘𝑒𝑟𝑓 ⊴ 𝑁, and since 𝑁(supplement) ⊴ 𝑀, so by previous Lemma, 𝑘𝑒𝑟𝑓 ⊴ 𝑀, is a 
contradiction. Therefore 𝑘𝑒𝑟𝑓 ⋬ 𝑁, and N is a strongly 𝒦-nonsigular module. ∎  

    A quasi-injective module 𝑀 is called quasi-injective hull of a module M if, there exists a 

monomorphism  𝜑: 𝑀 → 𝑀  with  𝐼𝑚𝜑 ⊴ 𝑀 [11].  
 

Corollary 11. Let 𝑀 be a strongly 𝒦-nonsigular module. If M is a supplement in 𝑀, then M is 
strongly 𝒦-nonsigular.  
    Next, we will study the behavior of s-essential submodule and strongly 𝒦-nonsigular module 
under localization. Firstly, we have the following Lemma.  
 
Lemma 12. Let M be a module, 𝑁 𝐾 𝑀 and let S is a multiplicative closed subset of R, 
provided 𝑆 𝐿 𝑆 𝐿   iff  𝐿 𝐿   for all  𝐿 , 𝐿 𝑀. Then the following hold. 
𝑖   𝑁 ≪ 𝐾 in M as R-module if and only if  𝑆 𝑁 ≪ 𝑆 𝐾 in 𝑆 𝑀 as 𝑆 𝑅-module.  
𝑖𝑖  𝑁 ⊴ 𝐾 in M as R-module if and only if  𝑆 𝑁 ⊴ 𝑆 𝐾 in 𝑆 𝑀 as 𝑆 𝑅-module. 

 
Proof. 𝑖  Assume 𝑁 ≪ 𝐾 𝑀. Let  𝑆 𝐿 𝑆 𝐾 with 𝑆 𝑁 𝑆 𝐿 𝑆 𝐾, where 𝐿 𝐾. 

But we have 𝑆 𝑁 𝑆 𝐿 𝑆 𝑁 𝐿 , so 𝑆 𝑁 𝐿 𝑆 𝐾, and hence 𝑁 𝐿 𝐾 by 
hypothesis, thus 𝐿 𝐾, as 𝑁 ≪ 𝐾. Therefore 𝑆 𝐿 𝑆 𝐾, and so 𝑆 𝑁 ≪ 𝑆 𝐾 in 𝑆 𝑀. 
Conversely, if 𝑁 𝐿 𝐾 where 𝐿 𝐾. Then 𝑆 𝑁 𝑆 𝐿 𝑆 𝑁 𝐿 𝑆 𝐾, and hence 
𝑆 𝐿 𝑆 𝐾, as 𝑆 𝑁 ≪ 𝑆 𝐾. By hypothesis, 𝐿 𝐾, and so 𝑁 ≪ 𝐾 in M.  
 𝑖𝑖  If 𝑁 ⊴ 𝐾 𝑀. Let  𝑆 𝐿 ≪ 𝑆 𝐾 such that 𝑆 𝑁 ∩ 𝑆 𝐿 𝑆 0, where 𝐿 𝐾. By 𝑖 , 
𝐿 ≪ 𝐾. But, we have 𝑆 𝑁 ∩ 𝐿 𝑆 𝑁 ∩ 𝑆 𝐿 𝑆 0, 𝑁 ∩ 𝐿 0 by hypothesis. As 𝑁 ⊴ 𝐾 
and 𝐿 ≪ 𝐾 implies 𝐿 0, thus 𝑆 𝐿 𝑆 0. Conversely, suppose 𝑁 ∩ 𝐿 0 where 𝐿 ≪ 𝐾, 
implies 𝑆 𝐿 ≪ 𝑆 𝐾, by 𝑖 . So 𝑆 𝑁 ∩ 𝑆 𝐿 𝑆 𝑁 ∩ 𝐿 𝑆 0, thus 𝑆 𝐿 𝑆 0, as 
𝑆 𝑁 ⊴ 𝑆 𝐾. By hypothesis, 𝐿 0. ∎  
   However, we get the following result. 

Proposition 13. Let M be an R-module, and let S is a multiplicative closed subset of R such that 

𝑆 𝐿 𝑆 𝐾  iff  𝐿 𝐾 for all 𝐿, 𝐾 𝑀. Then M is a strongly 𝒦-nonsigular R-module, 
whenever 𝑆 𝑀 is a strongly 𝒦-nonsigular 𝑆 𝑅-module.  

 

Proof. Assume 0 𝑔 ∈ 𝐸𝑛𝑑 𝑀 . We can define an 𝑆 𝑅-homomorphism 𝑆 𝑔: 𝑆 𝑀 →

𝑆 𝑀 such that 𝑆 𝑔   for each 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆. It is clear  𝑆 𝑔 0, so 

𝑘𝑒𝑟 𝑆 𝑔 ⋬ 𝑆 𝑀, as 𝑆 𝑀 is strongly 𝒦-nonsigular. Also, it is easy to see that 𝑘𝑒𝑟 𝑆 𝑔
𝑆 𝑘𝑒𝑟𝑔 , this implies that  𝑆 𝑘𝑒𝑟𝑔 ⋬ 𝑆 𝑀, and hence by Lemma 12 𝑖𝑖 , 𝑘𝑒𝑟𝑔 ⋬ 𝑀. ∎   
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Proposition 14. Let M be an R-module, and let P is a maximal ideal of R. If 𝑀  is a strongly 𝒦-

nonsigular 𝑅 -module, then M is a strongly 𝒦-nonsigular R-module.  

    Recall that an R-module M is called multiplication if for each submodule N of M, 𝑁 𝑀𝐼 for 
some ideal I of R (Equivalently, M a multiplication if and only if  𝑁 𝑀. 𝑁: 𝑀 ) [12]. If 
𝑟 𝑀 0, then M is called a faithful R-module. An R-module M is said to be scalar if for any 
𝜑 ∈ 𝐸𝑛𝑑 𝑀 ,  𝜑 𝑚 𝑚𝑟  for some  𝑟 ∈ 𝑅, and for all  𝑚 ∈ 𝑀 [13].    
    Now, we will studied the strongly 𝒦-nonsigular property for rings and modules. But, in a 
position we need the following Lemma.  
 
Lemma 15. The following holds, for faithful multiplication R-module M.  
𝑖   𝑁 ≪ 𝑀 if and only if  𝐼 ≪ 𝑅, where 𝑁 𝑀𝐼.  
𝑖𝑖  𝑁 ⊴ 𝑀 if and only if  𝐼 ⊴ 𝑅, where 𝑁 𝑀𝐼. 

 
 Proof. 𝑖  Assume that  𝑁 ≪ 𝑀. Let J  be any ideal of R with 𝐼 𝐽 𝑅, so 𝑀 𝐼 𝐽 𝑀𝑅, that 
is; 𝑁 𝑀𝐽 𝑀, but 𝑁 ≪ 𝑀 implies 𝑀𝐽 𝑀, and so 𝐽 𝑅, since M is a faithful multiplication 

R-module. Thus 𝐼 ≪ 𝑅. Conversely, let 𝐾 𝑀 with 𝑁 𝐾 𝑀. As M is multiplication, 𝐾 𝑀𝐽 
for some 𝐽 𝑅. Hence 𝑀 𝐼 𝐽 𝑁 𝐾 𝑀 𝑀𝑅, but M is a faithful multiplication R-
module, so 𝐼 𝐽 𝑅, thus 𝐽 𝑅 (since 𝐼 ≪ 𝑅). Therefore, 𝐾 𝑀𝐽 𝑀𝑅 𝑀, and hence 𝑁 ≪
𝑀.  
𝑖𝑖  Let  𝑁 ⊴ 𝑀. Suppose that  𝐽 ≪ 𝑅 with 𝐼 ∩ 𝐽 0, then 𝑁 ∩ 𝑀𝐽 𝑀𝐼 ∩ 𝑀𝐽 𝑀 𝐼 ∩ 𝐽 0, 

but by 𝑖 , 𝑀𝐽 ≪ 𝑀, hence 𝑀𝐽 0, implies 𝐽 0 (since M is faithful). Thus 𝐼 ⊴ 𝑅. Conversely, 
let 𝐾 ≪ 𝑀 such that 𝑁 ∩ 𝐾 0. Since M is multiplication, then there is a small ideal J of R  with 

𝐾 𝑀𝐽, by 𝑖 . Hence 𝑀 𝐼 ∩ 𝐽 𝑀𝐼 ∩ 𝑀𝐽 𝑁 ∩ 𝐾 0, so by faithfulty for M, we get 𝐼 ∩ 𝐽
0, then  𝐽 0, as  𝐽 ≪ 𝑅  and  𝐼 ⊴ 𝑅. Thus  𝐾 𝑀𝐽 0, and so 𝑁 ⊴ 𝑀. ∎ 
 
Proposition 16. Let M be a faithful multiplication R-module. If M is a strongly 𝒦-nonsigular  R-
module, then R is strongly 𝒦-nonsigular. The converse hold, whenever M is finitely generated. 
 
Proof. Assume that M is a strongly 𝒦-nonsigular R-module. Let 0 𝜑 ∈ 𝐸𝑛𝑑 𝑅 . For 𝑟 ∈ 𝑅, 

we know 𝜑 𝑎 𝑎. 𝜑 1 . We can define 𝜓: 𝑀 → 𝑀 by  𝜓 𝑚 𝑚. 𝜑 1   for all 𝑚 ∈ 𝑀. It is 
easy to see 𝜓 is well-defined and homomorphism. If  𝜓 0, then 𝑀. 𝜑 1 0, hence 𝜑 1 ∈
𝑟 𝑀 0, so 𝜑 0 which is a contradiction. Hence 0 𝜓 ∈ 𝐸𝑛𝑑 𝑀 , and so 𝑘𝑒𝑟𝜓 ⋬ 𝑀, 
as M is strongly 𝒦-nonsigular. Since M is a multiplication R-module, 𝑘𝑒𝑟𝜓 𝑀. 𝑘𝑒𝑟𝜓: 𝑀 . 

But, we have 𝑘𝑒𝑟𝜓: 𝑀 𝑘𝑒𝑟𝜑, to see this: if 𝑟 ∈ 𝑘𝑒𝑟𝜓: 𝑀 , 𝑀𝑟 ⊆ 𝑘𝑒𝑟𝜓, so 𝜓 𝑀𝑟
𝑀𝑟. 𝜑 1  𝑀. 𝜑 𝑟 0, hence 𝜑 𝑟 ∈ 𝑟 𝑀 0, thus 𝑟 ∈ 𝑘𝑒𝑟𝜑. Now, if 𝑥 ∈ 𝑘𝑒𝑟𝜑, 𝜑 𝑥
𝑥. 𝜑 1 0 hence 𝑀𝑥. 𝜑 1 0, so 𝜓 𝑀𝑥 0 implies 𝑀𝑥 ⊆ 𝑘𝑒𝑟𝜓, thus 𝑥 ∈ 𝑘𝑒𝑟𝜓: 𝑀 . 
Since 𝑘𝑒𝑟𝜓 ⋬ 𝑀, so 𝑀. 𝑘𝑒𝑟𝜓: 𝑀 ⋬ 𝑀, so by Lemma 15 𝑖𝑖 , 𝑘𝑒𝑟𝜓: 𝑀 ⋬ 𝑅, which 
hence 𝑘𝑒𝑟𝜑 ⋬ 𝑅, therefore R is strongly 𝒦-nonsigular. Conversely, let 0 𝑔 ∈ 𝐸𝑛𝑑 𝑀 . If 
M is finitely generated multiplication R-module, then M is a scalar R-module, by [14, Th. 2.3]. 

Hence 𝑔 𝑚 𝑚𝑟 for some 𝑟 ∈ 𝑅, and for all 𝑚 ∈ 𝑀. It follows that ℎ ∈ 𝐸𝑛𝑑 𝑅  defined by 
ℎ 𝑥 𝑥𝑟 for all 𝑥 ∈ 𝑅. Note ℎ 1 1. 𝑟 𝑟 0 (in fact, if  𝑟 0  implies 𝑔 0), and hence 
0 ℎ ∈ 𝐸𝑛𝑑 𝑅 , but R is strongly 𝒦-nonsigular, then 𝑘𝑒𝑟ℎ ⋬ 𝑅. On the other hand, we have 
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𝑘𝑒𝑟ℎ 𝑘𝑒𝑟𝑔: 𝑀  which implies 𝑘𝑒𝑟𝑔: 𝑀 ⋬ 𝑅, and hence 𝑀. 𝑘𝑒𝑟𝑔: 𝑀 ⋬ 𝑀, by Lemma 
15 𝑖𝑖 , thus 𝑘𝑒𝑟𝑔 ⋬ 𝑀, and M is a strongly 𝒦-nonsigular R-module. ∎   
     Next, proved that the property of strongly 𝒦-nonsigular of modules is inherited by 
isomorphism. 
 
Proposition 17. For two modules 𝑀  and 𝑀 , if 𝑀 ≅ 𝑀  then 𝑀  is a strongly 𝒦-nonsigular 
module, whenever 𝑀  is strongly 𝒦-nonsigular. 
 
Proof. Since 𝑀 ≅ 𝑀 , there exists an isomorphism 𝑓: 𝑀 ⟶ 𝑀 . Assume 𝑀  is a strongly 𝒦-
nonsigular module. Let 𝑔 ∈ 𝐸𝑛𝑑 𝑀  such that 𝑘𝑒𝑟𝑔 ⊴ 𝑀 . Consider 𝜓 𝑓 ∘ 𝑔 ∘ 𝑓 ∈
𝐸𝑛𝑑 𝑀 , where 𝑓 : 𝑀 ⟶ 𝑀  isomorphism. Now, we have 𝑘𝑒𝑟𝜓 𝑓 𝑘𝑒𝑟𝑔 , to see this: 
𝑘𝑒𝑟𝜓  𝑥 ∈ 𝑀 |  𝑓 ∘ 𝑔 ∘ 𝑓 𝑥 0  𝑥 ∈ 𝑀 |  𝑔 ∘ 𝑓 𝑥 ∈ 𝑘𝑒𝑟𝑓 0
𝑥 ∈ 𝑀 |  𝑓 𝑥 ∈ 𝑘𝑒𝑟𝑔   𝑥 ∈ 𝑀 | 𝑥 ∈ 𝑓 𝑘𝑒𝑟𝑔 𝑓 𝑘𝑒𝑟𝑔 . By Proposition 1.1(2), we 

get 𝑓 𝑘𝑒𝑟𝑔 ⊴ 𝑀 , (since 𝑘𝑒𝑟𝑔 ⊴ 𝑀 ), this implies 𝑘𝑒𝑟𝜓 ⊴ 𝑀  and hence 𝜓 0, as 𝑀  is 
strongly 𝒦-nonsigular. Thus, 0  𝑓 ∘ 𝑔 𝐼𝑚𝑓 𝑓 ∘ 𝑔 𝑀 , thus  𝐼𝑚𝑔 ⊆ 𝑘𝑒𝑟𝑓 0. 
Therefore 𝑔 0. ∎  
 
Proposition 18. Let M be a faithful scalar R-module. Then R is strongly 𝒦-nonsigular if and only 
if  𝑆 𝐸𝑛𝑑 𝑀  is strongly 𝒦-nonsigular. 
 
Proof. Since M is a scalar R-module, then by [15, Lemma 3.6.2] 𝑆 𝐸𝑛𝑑 𝑀 ≅ 𝑅 𝑟 𝑀⁄ , but 
M is faithful, hence  𝑆 𝐸𝑛𝑑 𝑀 ≅ 𝑅. By Proposition 17, the result is follow. ∎  
 
Proposition 19. Let M be a faithful multiplication R-module. If R is strongly 𝒦-nonsigular, then  

𝑟 𝑁 𝑟 𝑀  for all  𝑁 ⊴ 𝑀.   
 
Proof. As M is a faithful multiplication R-module, if 𝑁 ⊴ 𝑀, there is 𝐼 ⊴ 𝑅 with 𝑁 𝑀𝐼, by 

Lemma 15 𝑖𝑖 . For 𝑟 ∈ 𝑟 𝑁 , 𝑁𝑟 0, then 𝑀𝐼. 𝑟 0, hence 𝐼𝑟 ⊆ 𝑟 𝑀 0, so 𝑟 ∈ 𝑟 𝐼  
implies 𝑟 𝑁  𝑟 𝐼 . Since R is strongly 𝒦-nonsigular with 𝐼 ⊴ 𝑅, then I is a quasi-invertible 
ideal (by Theorem 2.2), so 𝑟 𝐼 𝑟 𝑅 0 by [7, Prop. 1.1.4]. Hence 𝑟 𝑁 0  𝑟 𝑀 . ∎   
     
3.  Direct Summand and Direct Sums  

    We start with following result. 
Proposition 20. Let M be a strongly 𝒦-nonsigular module, and 𝐴 𝑀. If  𝐴 ⊴ 𝐵 ⨁ 𝑀, then 
𝐵 𝐵   for 𝑖 ∈ 1,2  . 
 
Proof. Consider 𝜌 : 𝑀 ⟶ 𝐵  is the canonical projection map, for 𝑖 1,2. We have 𝜌 𝐴 𝐴
𝜌 𝐴 . Since 1 𝜌 𝜌 ∈ 𝐸𝑛𝑑 𝑀 , so we have 1 𝜌 𝜌 𝐴 1 𝜌 𝜌 𝐴
1 𝜌 𝜌 𝐴  1 𝜌 𝜌 𝐴 0 (since 𝜌  is an idempotent), then 𝐴 ⊆ 𝑘𝑒𝑟 1 𝜌 𝜌 . 

Now, 𝐵 ⨁ 𝑀, so 𝑀 𝐵 ⨁𝐵  for some 𝐵 𝑀. Hence 1 𝜌 𝜌 𝐵  1
𝜌 𝜌 𝐵  1 𝜌 0 0, thus 𝐵 ⊆ 𝑘𝑒𝑟 1 𝜌 𝜌 . Therefore 𝐵 ⨁𝐴 ⊆ 𝑘𝑒𝑟 1 𝜌 𝜌 . 

On the other hand, 𝐵 ⊴ 𝐵  and 𝐴 ⊴ 𝐵 , then 𝐵 ⨁𝐴 ⊴ 𝐵 ⨁𝐵 𝑀 by Proposition 1 (3), and 
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so 𝑘𝑒𝑟 1 𝜌 𝜌 ⊴ 𝑀 which implies 1 𝜌 𝜌 0, as M is strongly 𝒦-nonsigular. Hence 

𝜌 𝜌 𝜌 , so 𝐵 𝜌 𝐵 𝜌 𝜌 𝐵 𝜌 𝜌 𝐵 𝜌 𝐵 ⊆ 𝐵  ⇒ 𝐵 ⊆ 𝐵 . Similarly, 

taking 1 𝜌 𝜌 ∈ 𝐸𝑛𝑑 𝑀 , and we get  𝐵 ⊆ 𝐵 . ∎  
    Based on our result, we prove that direct summands of a strongly 𝒦-nonsigular module inherit 
the property. 
 
Proposition 21. A direct summand of a strongly 𝒦-nonsigular module is strongly 𝒦-nonsigular. 
 
Proof. Let 𝑀 be a strongly 𝒦-nonsigular module, and  𝐴 ⨁ 𝑀, so 𝑀 𝐴⨁𝐵 for some 𝐵 𝑀. 
Assume that  𝑓 ∈ 𝐸𝑛𝑑 𝐴  such that 𝑘𝑒𝑟𝑓 ⊴ 𝐴. Consider  ℎ 𝑖 ∘ 𝑓 ∘ 𝜌 ∈ 𝐸𝑛𝑑 𝑀 , where  𝜌 is 
the canonical projection map onto 𝐴, and i is the inclusion map from 𝐴 to 𝑀. So, we have 𝐾𝑒𝑟ℎ  
𝐾𝑒𝑟𝑓⨁𝐵, to see this: for 𝑥 ∈ 𝑘𝑒𝑟ℎ, 𝑥 𝑎 𝑏 where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 with ℎ 𝑥 0, so 𝑓 𝑎  

𝑖 ∘ 𝑓 𝑎 𝑖 ∘ 𝑓 𝜌 𝑥 ℎ 𝑥 0, then 𝑎 ∈ 𝑘𝑒𝑟𝑓, and hence 𝑥 𝑎 𝑏 ∈ 𝑘𝑒𝑟𝑓 𝐵, that is; 

𝑘𝑒𝑟ℎ 𝑘𝑒𝑟𝑓 𝐵. On the other hand, 𝑘𝑒𝑟𝑓 ∩ 𝐵 ⊆ 𝐴 ∩ 𝐵 0, which implies  𝑘𝑒𝑟ℎ 𝑘𝑒𝑟𝑓⨁𝐵. 
Since 𝑘𝑒𝑟𝑓 ⊴ 𝐴 and 𝐵 ⊴ 𝐵, then  𝑘𝑒𝑟ℎ 𝑘𝑒𝑟𝑓⨁𝐵 ⊴ 𝐴⨁𝐵 𝑀 by Proposition 1.1(3). Thus 

ℎ 0, as M strongly 𝒦-nonsigular. Hence 𝐼𝑚𝑓 𝑓 𝐴 𝑖 ∘ 𝑓 𝐴 𝑖 ∘ 𝑓 𝜌 𝑀 ℎ 𝑀 0. 

Therfore 𝑓 0 and  𝐴 is strongly 𝒦-nonsigular. ∎   
 
Definition 22. Let M and N be two R-modules. Then M is called strongly 𝒦-nonsigular relative to 

N if, every 𝜑 ∈ 𝐻𝑜𝑚 𝑀, 𝑁  such that  𝑘𝑒𝑟𝜑 ⊴ 𝑀, implies  𝜑 0. Obviously, M is strongly 𝒦-
nonsigular if and only if M is strongly 𝒦-nonsigular relative to M.  
 
Proposition 23. If M is a strongly 𝒦-nonsigular module. For 𝑁 𝑀, M is strongly 𝒦-nonsigular 
relative to N.  
 
Proof. If 𝑁 𝑀, clear that M is strongly 𝒦-nonsigular relative to N. Assume that 𝑁 𝑀, if 𝜓 ∈
𝐻𝑜𝑚 𝑀, 𝑁  with  𝑘𝑒𝑟𝜓 ⊴ 𝑀. Consider ℎ 𝑖 ∘ 𝜓, where  𝑖 is the inclusion map from N to M. 
So  ℎ ∈ 𝐸𝑛𝑑 𝑀  such that 𝑘𝑒𝑟ℎ 𝑘𝑒𝑟𝜓 ⊴ 𝑀, then ℎ 0, as M is strongly 𝒦-nonsigular, 

hence 𝐼𝑚𝜓 𝜓 𝑀 𝑖 𝜓 𝑀 ℎ 𝑀 0, thus  𝜓 0. ∎   

 
Lemma 24. For a module M, if  𝑁 ⊴ 𝐾 𝑀 for  𝑖 ∈∧ 1,2, … , 𝑛 , then  ⋂ 𝑁 ⊴ ⋂ 𝐾 .  
Proof. Consider the case when the index set  ∧ 1,2 . Let 𝑋 ≪ 𝐾 ∩ 𝐾  with 𝑁 ∩ 𝑁 ∩ 𝑋
0, then 𝑁 ∩ 𝑁 ∩ 𝑋 0. Since 𝑋 ≪ 𝐾 ∩ 𝐾 ⊆ 𝐾 , then 𝑋 ≪ 𝐾  and hence 𝑁 ∩ 𝑋 ≪ 𝐾  
implies 𝑁 ∩ 𝑋 0, as 𝑁 ⊴ 𝐾 . Also, 𝑋 ≪ 𝐾  and 𝑁 ⊴ 𝐾 , hence 𝑋 0. Thus  𝑁 ∩
𝑁 ⊴ 𝐾 ∩ 𝐾 .∎ 
 
Theorem 25. Let 𝑀 𝑀 ⨁𝑀  be an R-module. Then M is strongly 𝒦-nonsigular if and only if 
𝑀  is strongly 𝒦-nonsigular relative to 𝑀 , for 𝑖, 𝑗 ∈ 1,2 . 

 
Proof. Assume 𝑀 𝑀 ⨁𝑀  a strongly 𝒦-nonsigular module. By Proposition 21, 𝑀  is strongly 
𝒦-nonsigular, for 𝑖 ∈ 1,2 . Hence 𝑀  is strongly 𝒦-nonsigular relative to 𝑀 , for 𝑖 ∈ 1,2 . Now, 
let 𝜑 ∈ 𝐻𝑜𝑚 𝑀 , 𝑀  such that  𝑘𝑒𝑟𝜑 ⊴ 𝑀 . Consider  𝜓 𝑖 ∘ 𝜑 ∘ 𝜌 ∈ 𝐸𝑛𝑑 𝑀 , where  𝜌 is 
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the canonical projection map onto 𝑀 , 𝑖: 𝑀 ⟶ 𝑀 is the inclusion map. Clearly,  𝑘𝑒𝑟𝜓
𝑘𝑒𝑟𝜑⨁𝑀 , so 𝑘𝑒𝑟𝜓 𝑘𝑒𝑟𝜑⨁𝑀 ⊴ 𝑀 ⨁𝑀 𝑀, hence 𝜓 0 (since M is strongly 𝒦-
nonsigular). Thus, 𝜑 0 and so 𝑀  is strongly 𝒦-nonsigular relative to 𝑀 . 𝑀  is strongly 𝒦-
nonsigular relative to 𝑀 , similarly. Conversely, if  𝑓 ∈ 𝐸𝑛𝑑 𝑀  such that 𝑘𝑒𝑟𝑓 ⊴ 𝑀, so we 
have 𝑘𝑒𝑟𝑓 ∩ 𝑀 ⊴ 𝑀 , by Lemma 24. Consider 𝑓| : 𝑀 → 𝑀 which defined by 𝑓| 𝑥

𝑓 𝑥 0  for all 𝑥 ∈ 𝑀. We have 𝑘𝑒𝑟 𝑓| 𝑘𝑒𝑟𝑓 ∩ 𝑀  as follows: if 𝑎 ∈ 𝑘𝑒𝑟𝑓 ∩ 𝑀  then 0

𝑓 𝑎 𝑓 𝑎 0 𝑓| 𝑎  and 𝑎 ∈ 𝑀 , thus 𝑎 ∈ 𝑘𝑒𝑟 𝑓| . Now, if 𝑥 ∈ 𝑘𝑒𝑟 𝑓|  then 0

𝑓| 𝑥 𝑓 𝑥 0 𝑓 𝑥 ,  so 𝑥 ∈ 𝑘𝑒𝑟𝑓 ∩ 𝑀 . Consider  𝑔 𝜌 ∘ 𝑓| , where 𝜌  is the 

canonical projection map onto 𝑀 , for 𝑖 ∈ 1,2 . To prove that 𝑘𝑒𝑟 𝑓| ⋂ 𝑘𝑒𝑟𝑔 . If 𝑥 ∈

𝑘𝑒𝑟 𝑓| , 0 𝑓| 𝑥 , so 𝑔 𝑥 𝜌 ∘ 𝑓| 𝑥 𝜌 𝑓| 𝑥 𝜌 0 0, this implies 𝑥 ∈

⋂ 𝑘𝑒𝑟𝑔 . Now, if 𝑥 ∈ ⋂ 𝑘𝑒𝑟𝑔 , so  𝑔 𝑥 0 ⇒  𝜌  𝑓| 𝑥 0  ⇒  𝑓| 𝑥 ∈

⋂ 𝑘𝑒𝑟𝜌 𝑀 ∩ 𝑀 0 ⇒ 𝑥 ∈ 𝑘𝑒𝑟 𝑓|  for 𝑖 ∈ 1,2 . So ⋂ 𝑘𝑒𝑟𝑔 𝑘𝑒𝑟 𝑓|

𝑘𝑒𝑟𝑓 ∩ 𝑀 ⊴ 𝑀 , hence by Proposition 1, 𝑘𝑒𝑟𝑔 ⊴ 𝑀  and  𝑘𝑒𝑟𝑔 ⊴ 𝑀 . By hypothesis, 𝑔
0  ⇒  𝜌 𝐼𝑚 𝑓| 0  ⇒  𝐼𝑚𝑓| ⊆ ⋂ 𝑘𝑒𝑟𝜌 0 for 𝑖 ∈ 1,2 , implies  𝑓| 0. Similarly, 

we obtain ℎ 𝜌 ∘ 𝑓| 0 for 𝑖 ∈ 1,2 , and hence  𝑓| 0. So  𝑓| 0  for  𝑖 ∈ 1,2 . 

Therefore 𝑓 0, and  𝑀 𝑀 ⨁𝑀  is strongly  𝒦-nonsigular. ∎   
 
Corollary 26. If 𝑀 ⊕ 𝑀 . Then M is a strongly 𝒦-nonsigular module if and only if 𝑀  is 
strongly 𝒦-nonsigular relative to 𝑀 , for  𝑖, 𝑗 ∈ 1,2, … , 𝑛 .  

 

Proposition 27. Let 𝑀 𝑀 𝑀  be an R-module, where 𝑀 , 𝑀 𝑀. If  
∩

 is a strongly 

𝒦-nonsigular R-module, then both of    and    is strongly 𝒦-nonsigular.  

 

Proof. We have 
∩ ∩ ∩ ∩

, also 
∩

∩
∩

∩

∩
0

∩
, thus 

∩ ∩
⨁

∩
 . As 

∩
  is strongly 𝒦-nonsigular, so by Proposition 3.2, 

∩
 is 

strongly 𝒦-nonsigular for 𝑖 1,2. But, we have  
∩

≅   and   
∩

≅

, so by Proposition 16,   and    are strongly 𝒦-nonsigular. ∎  

 
4.  Connections to other Topics   

     In this section, we can prove some relations between strongly 𝒦-nonsigular modules and other 
classes of modules, such examples, semisimple, Rickart, quasi-Dedekind and prime modules. 
  
Example 28. Every module has no nonzero small submodule, all its submodules are s-essential, 
and hence does not strongly 𝒦-nonsigular. Notice, every submodule in 𝑍  is s-essential, because 
the zero is the only small submodule of 𝑍 , hence 𝑍  is not strongly 𝒦-nonsigular. In particular, 
every simple (semisimple) module is not strongly 𝒦-nonsigular. But, we know every semisimple 
module is 𝒦-nonsigular.  
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Remark 29. It is clear that every strongly 𝒦-nonsigular module is 𝒦-nonsigular, but the converse 

need not be true, in general, a semisimple module is 𝒦-nonsigular but not strongly 𝒦-nonsigular. 
 
Lemma 30. Let M be a Hollow (not simple) module, and 𝐴 𝑀. Then 𝐴 is essential if and only 
if 𝐴 is    s-essential.  
Proof. ⇒  Clear.  ⇐  Assume 0 𝐴 ⊴ 𝑀 such that 𝐴 ∩ 𝐵 0, where 𝐵 𝑀. If 𝐵 𝑀, then 

𝐴 0,   a contradiction. Thus B is a proper in M, hence 𝐵 ≪ 𝑀 (since M is Hollow), and so 𝐵
0, as 𝐴 ⊴ 𝑀. Therfore 𝐴 ⊴ 𝑀. ∎  
   However, we consider the following Proposition by Lemma 30.  
 
Proposition 31. Let M be a Hollow (not simple) module. Then M is strongly 𝒦-nonsigular if and 

only if M is 𝒦-nonsigular.  
     An R-module M is said to be Rickart if 𝑟 𝜑 𝐾𝑒𝑟𝜑 is a direct summand of M for each  𝜑 ∈
𝐸𝑛𝑑 𝑀  [16]. Recall that an R-module M is quasi-Dedekind if, for any 0 𝜑 ∈ 𝐸𝑛𝑑 𝑀 , is a 
monomorphism (i.e. 𝑘𝑒𝑟𝜑 0) [7].  
     Obviously, Rickart, quasi-Dedekind modules are 𝒦-nonsigular. Note that the Z-module 𝑍  is 
semisimple, so it is Rickart, but not strongly 𝒦-nonsigular. Also we know 𝑍  is quasi-Dedekind, 
but it is not strongly 𝒦-nonsigular. However, we have the following Corollary which follows by 
Proposition 4.4. 
 
Corollary 32. For a Hollow (not simple) module M. If M is Rickart (or quasi-Dedekind), then M 
is strongly 𝒦-nonsigular.  
 
Lemma 33. Let M be an R-module. If  𝑆 𝐸𝑛𝑑 𝑀  is a regular ring, then M is Rickart. 
 
Proof. Assume 𝜑 ∈ 𝑆 𝐸𝑛𝑑 𝑀 . Since 𝑆 is a regular ring, so 𝜑 a regular element, thus 

𝑘𝑒𝑟𝜑 ⨁ 𝑀, by [17, Cor. 3.2]. Hence M is a Rickart module. ∎ 
  
Corollary 34. If M is a Hollow (not simple) R-module with 𝑆 𝐸𝑛𝑑 𝑀  is a regular ring, then 
M is strongly 𝒦-nonsigular.  
 
Proof. It follows directly by Lemma 33 and Corollary 34. ∎  
 
Lemma 35. If M is a uniform module has nonzero small submodule, then s-essential submodule 
implies essential.   
 
Proof. Assume 𝑋 𝑀. Put 𝑋 0. Let N be a nonzero small submodule of M, then 𝑋 ∩ 𝑁 0 
which implies 𝑋 ⋬ 𝑀. Hence the result is obtained. ∎  
    Note that Z-module Z is uniform, the zero submodule of 𝑍  is s-essential but not essential (in 
fact, 0 is the only small submodule of 𝑍 ).  
  However, we have the following. 
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Proposition 36. Let M be a uniform module has nonzero small submodule. Then M is strongly 𝒦-
nonsigular if and only if M is 𝒦-nonsigular. 
 
Proof. It follows by Lemma 35. ∎    
    Recall [18], a module M is called prime if for all nonzero submodule N of M,  𝑟 𝑁 𝑟 𝑀 . 
Mijbass in [7, Th. 2.3.14], presented the following Theorem.  
 
Theorem 37. A module 𝑀 is uniform quasi-Dedekind if and only if it is uniform prime. 
 
Proposition 38. Let 𝑀 be a uniform R-module has nonzero small submodule. Then the following 
asseretions are equivalent. 
𝑖   𝑀 is Rickart.  
𝑖𝑖  𝑀 is 𝒦-nonsigular.  
𝑖𝑖𝑖   𝑀 is strongly 𝒦-nonsigular.  
𝑖𝑣  𝑀 is quasi-Dedekind.  
𝑣   𝑀 is prime.  
𝑣𝑖  For 𝑁 ⊴ 𝑀, 𝑟 𝑁 𝑟 𝑀 . 

 
Proof. 𝑖 ⇒ 𝑖𝑣  Since 𝑀 is a uniform R-module, then 𝑀 is indecomposable. Let 𝜑 ∈ 𝐸𝑛𝑑 𝑀  
with 𝜑 0, then 𝑘𝑒𝑟𝜑 ⨁ 𝑀, as 𝑀 is Rickart. So, either 𝑘𝑒𝑟𝜑 𝑀 or  𝑘𝑒𝑟𝜑 0. If  𝑘𝑒𝑟𝜑 𝑀 
then  𝜑 0, a contradiction. Hence 𝑘𝑒𝑟𝜑 0, implies 𝑀 is quasi-Dedekind.  

𝑖𝑣 ⇒ 𝑖  Let 𝜑 ∈ 𝐸𝑛𝑑 𝑀 . If 𝜑 0, then 𝑘𝑒𝑟𝜑 𝑀 ⨁ 𝑀. Assume that 𝜑 0, but 𝑀 is a 
quasi-Dedekind module, so 𝑘𝑒𝑟𝜑 0 ⨁ 𝑀. Thus 𝑀 is Rickart. 
𝑖𝑖 ⇔ 𝑖𝑖𝑖  It follows by Proposition 36. 
𝑖𝑖 ⇔ 𝑖𝑣  Since 𝑀 is a uniform module, the result is follow. 
𝑖𝑣 ⇔ 𝑣  It follows by Theorem 37. 
𝑣 ⇔ 𝑣𝑖  Since 𝑀 is uniform has nonzero small submodule, then all its nonzero submodules are            

s-essential, so the result is obtained. ∎    
   
5. Conclusion  
       The most important results of the article are: 

 (1)  Let M be a faithful multiplication R-module. If M is a strongly 𝒦-nonsigular R-module, 
then R is strongly 𝒦-nonsigular. The converse holds, whenever M is finitely generated. 

(2)  A direct summand of a strongly 𝒦-nonsigular module is strongly 𝒦-nonsigular. 
(3)  If 𝑀 ⊕ 𝑀 . Then M is a strongly 𝒦-nonsigular module if and only if 𝑀  is strongly 

𝒦-nonsingular relative to 𝑀 , for  𝑖, 𝑗 ∈ 1,2, … , 𝑛 .   
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