

Strongly \mathcal{K} -nonsingular Modules

Tha'ar Younis Ghawi

thar.younis@qu.edu.iq
Department of Mathematics, College of Education, AL-Qadisiyah University
AL-Qadisiyah, Iraq.

Article history: Received 12 August 2018, Accepted 26 September 2018, Publish January 2019

Abstract

A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly \mathcal{K} -nonsigular. We investigate some properties of strongly \mathcal{K} -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.

Keywords: Modules; S-essential submodules; nonsingular modules; Strongly \mathcal{K} -nonsigular modules.

1. Introduction

A proper submodule N of a module M is said to be small if for any submodule K of M with N + K = M implies K = M[1]. A nonzero module M is called Hollow if all its proper submodules are small [2]. The dual concept of small submodule is an essential submodule, where a nonzero submodule N of a module M is called essential if for any submodule K of M with $N \cap K = 0$ implies K = 0. A nonzero R-module M is said to be uniform if all its nonzero submodules are essential [3]. As mixing of concepts small and essential submodules, we introduced the following class of submodules. A submodule N of M is said to be s-essential if for any small K in M with $N \cap K = 0$ implies K = 0 [4]. It is clear essential submodules implies s-essential. Roman C.S. in [5], recall that an R-module M is called K-nonsigular if for any endomorphism φ of M which has essential kernel, $\varphi = 0$. \mathcal{K} -a nonsingular module is studied in detail by [6]. In this research, we introduced concept of strongly \mathcal{K} -nonsigular modules which is stronger than \mathcal{K} -nonsigular modules. An R-module M is said to be strongly K-nonsigular if for each endomorphism of M which has s-essential kernel, is zero. In section 2, we give some characterizations and properties of this concept. In section 3, we proved a strongly \mathcal{K} -nonsigular module is inherited by direct summands. Also, we give a condition for finite direct sums of strongly \mathcal{K} -nonsigular modules to be strongly \mathcal{K} -nonsigular. Several connections between strongly \mathcal{K} -nonsigular and other classes, also some examples are proved in section 4. Throughout this work, all rings are associative with identity and all modules are unitary right R-modules. For a right R-module M, the notations $N \subseteq$ $M, N \leq M, N \ll M, N \leq M, N \leq^s M$ or $N \leq^{\oplus} M$ denotes that N is a subset, a submodule, a small submodule, an essential submodule, a s-essential submodule, or direct summand of M,

respectively. Also, for $N \le M$, we denote the endomorphism ring of M by $End_R(M)$, $r_R(N) = \{r \in R \mid Nr = 0\}$ and $[N:_R M] = \{r \in R \mid Mr \subseteq N\}$.

Starting, we will state some properties of s-essential submodules in [4, Prop. 2.7] which needed in this work.

Proposition 1: Let *M* be a module. Then;

- (1) Assume N, K, L are submodules of M with $K \leq N$.
- (i) If $K extleq^s M$, then $K extleq^s N$ and $N extleq^s M$.
- (ii) $N \preceq^s M$ and $L \preceq^s M$ if and only if $N \cap L \preceq^s M$.
- (2) If $\varphi: M \to \mathring{M}$ is a homomorphism with $K \preceq^s \mathring{M}$, then $\varphi^{-1}(K) \preceq^s M$.
- (3) If $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \trianglelefteq^s M_1 \oplus M_2$ if and only if $K_i \trianglelefteq^s M_i$ for i = 1,2.

2. Strongly K-nonsigular Modules

In this section, we introduce the class of strongly \mathcal{K} -nonsigular modules as a stronger class of \mathcal{K} -nonsigular modules. Several various properties are proved.

Definition 2. An *R*-module *M* is said to be strongly \mathcal{K} -nonsigular if for all $\varphi \in End_R(M)$ with $ker\varphi$ is s-essential in *M*, implies $\varphi = 0$. Also, a ring *R* is strongly \mathcal{K} -nonsigular if it is a strongly \mathcal{K} -nonsigular *R*-module.

for $N \le M$, if $Hom_R\left(\frac{M}{N}, M\right) = 0$ then N is called quasi-invertible [7].

Firstly, we are now in a position to give a characterization the notion of strongly \mathcal{K} -nonsigular modules.

Theorem 3. A module M is strongly \mathcal{K} -nonsigular if and only if all its s-essential submodules are quasi-invertible.

Proof. Assume M is a strongly \mathcal{K} -nonsigular R-module. Let $N \trianglelefteq^S M$ and N is not quasi-invertible, i.e. $Hom_R\left(\frac{M}{N},M\right) \neq 0$, so there exists $(0 \neq) \varphi : \frac{M}{N} \to M$. Consider $\psi = \varphi \circ \pi \in End_R(M)$, where π is a natural epimorphism map. It is clear that $N \subseteq ker\psi$, but $N \trianglelefteq^S M$, this implies $ker\psi \trianglelefteq^S M$, and hence $\psi = 0$, as M is strongly \mathcal{K} -nonsigular, thus $\varphi = 0$, a contradiction. Therefore $N \trianglelefteq^S M$ and N is quasi-invertible. Conversely, let $(0 \neq) f \in End_R(M)$. If $kerf \trianglelefteq^S M$, so by hypothesis kerf is quasi-invertible. But, we can define a homomorphism $h : \frac{M}{kerf} \to M$ by h(m + Kerf) = f(m) for all $m \in M$. So $h \neq 0$ and hence $Hom_R\left(\frac{M}{kerf},M\right) \neq 0$ which is a contradiction with kerf is quasi-invertible. Therefore $kerf \not\supseteq^S M$ and M is a strongly \mathcal{K} -nonsigular R-module. \blacksquare

Corollary 4. Let M be a strongly \mathcal{K} -nonsigular module. If $N \leq^s M$, then $r_R(N) = r_R(M)$.

Proof. Assume $N ext{ } extstyle extstyl$

Proposition 5. Let M be an R-module, $R^* = R/A$ and $A \subseteq r_R(M)$. Then M is a strongly \mathcal{K} -nonsingular R-module if and only if M is a strongly \mathcal{K} -nonsigular R^* -module.

Proof. Assume $\pi: R \to R^*$ is a natural epimorphism, so by [8, Ex. P.51] $Hom_R\left(\frac{M}{N}, M\right) = Hom_{R^*}\left(\frac{M}{N}, M\right)$ for each submodule N of M. So, the result is follow.

Proposition 6. Let M be a strongly \mathcal{K} -nonsigular module with M/X is a projective module for all $X \leq^s M$. Then M/A is a strongly \mathcal{K} -nonsigular module, for all $A \leq^s M$.

Proof. For $B/A ext{ } extstyle extstyle M/A$, to prove that $Hom_R\left(\frac{M/A}{B/A},\frac{M}{A}\right) = 0$, that is; $Hom_R\left(\frac{M}{B},\frac{M}{A}\right) = 0$. If false, so there is a nonzero homomorphism $\varphi: \frac{M}{B} \to \frac{M}{A}$. Note that B extstyle extstyle M (in fact, $A \subseteq B \subseteq M$ with A extstyle M), so by hypothesis M/B is projective, hence there is a homomorphism $\psi: \frac{M}{B} \to M$ such that $\varphi = \pi \circ \psi$. It is clear $\psi \neq 0$, this implies $Hom_R\left(\frac{M}{B},M\right) \neq 0$ with B extstyle M, is a contradiction with M is strongly \mathcal{K} -nonsigular. Thus $\varphi = 0$ and M/A is a strongly \mathcal{K} -nonsigular R-module. \blacksquare

Definition 7. Let M be a module, define the s- \mathcal{K} -nonsigular submodule of M by $Z_s^{\mathcal{K}}(M) = \sum_{\varphi \in S} Im\varphi$, where $S = End_R(M)$ and $ker\varphi \leq^S M$.

Now, we will give another characterization for a strongly \mathcal{K} -nonsigular module as follows.

Proposition 8. Let M be a module. Then M is strongly \mathcal{K} -nonsigular if and only if $Z_s^{\mathcal{K}}(M) = 0$. **Proof.** If M is a strongly \mathcal{K} -nonsigular module, then for all $\varphi \in End_R(M)$ with $ker\varphi \trianglelefteq^s M$, implies $Im\varphi = 0$, and hence $Z_s^{\mathcal{K}}(M) = \sum_{\varphi \in S} Im\varphi = 0$, where $S = End_R(M)$ and $ker\varphi \trianglelefteq^s M$. Conversely, assume $Z_s^{\mathcal{K}}(M) = 0$. Let $\psi \in End_R(M)$ such that $ker\psi \trianglelefteq^s M$, then $Im\psi \subseteq Z_s^{\mathcal{K}}(M)$ and so $\psi = 0$. Hence M is a strongly \mathcal{K} -nonsigular module.

Let M be a module, recall that a submodule N is supplement of $K \le M$ if, N is a minimal in the set of submodules $L \le M$ with K + L = M (Equivalently, N is supplement of $K \le M$ if and only if K + N = M and $K \cap N \ll N$) [9]. We say that a submodule N of a module M is a supplement if it is a supplement for some submodule L of M.

The transitive property of s-essential submodules need not be hold, see [4, Ex. 2.8]. So, we will give a condition for which the transitive property is hold of s-essential submodules.

Lemma 9. Let M be a module, and let N is a supplement submodule in M with $K \subseteq N \subseteq M$. If $K \trianglelefteq^s N$ and $N \trianglelefteq^s M$, then $K \trianglelefteq^s M$.

Proof. Assume $L \ll M$ with $K \cap L = 0$. If $L \subseteq N$, but N is a supplement in M, then by [10, Prop. 20.2] $L \ll N$, and hence L = 0, since $K \preceq^s N$. Now, if $L \nsubseteq N$. We have $L \cap N \subseteq M \subseteq M$, but $(L \ll M \text{ implies } L \cap N \ll M)$, thus again by [10, Prop. 20.2] $L \cap N \ll N$, since N is a supplement in M. But $K \cap (L \cap N) = K \cap L = 0$ and $K \preceq^s N$, this implies $L \cap N = 0$, and hence L = 0, as $N \preceq^s M$.

Now, we present the following Proposition.

Proposition 10. Let M be a quasi-injective R-module, and let N is a s-essential and supplement submodule in M. If M is a strongly \mathcal{K} -nonsigular R-module, then so is N.

Proof. Let $(0 \neq) f: N \to N$ be a homomrphism. Since M is a quasi-injective module, there exists $(0 \neq) \varphi \in End_R(M)$ such that $i \circ f = \varphi \circ i$, where $i: N \to M$ is an inclusion map. As M is strongly \mathcal{K} -nonsigular, we get $\ker \varphi \not\supseteq^S M$. Clearly, $\ker f \subseteq \ker \varphi$ then $\ker f \not\supseteq^S M$. If $\ker f \trianglelefteq^S N$, and since $N(\text{supplement}) \trianglelefteq^S M$, so by previous Lemma, $\ker f \trianglelefteq^S M$, is a contradiction. Therefore $\ker f \not\supseteq^S N$, and N is a strongly \mathcal{K} -nonsigular module.

A quasi-injective module \overline{M} is called quasi-injective hull of a module M if, there exists a monomorphism $\varphi: M \to \overline{M}$ with $Im\varphi \subseteq \overline{M}$ [11].

Corollary 11. Let \overline{M} be a strongly \mathcal{K} -nonsigular module. If M is a supplement in \overline{M} , then M is strongly \mathcal{K} -nonsigular.

Next, we will study the behavior of s-essential submodule and strongly \mathcal{K} -nonsigular module under localization. Firstly, we have the following Lemma.

Lemma 12. Let M be a module, $N \le K \le M$ and let S is a multiplicative closed subset of R, provided $S^{-1}L_1 = S^{-1}L_2$ iff $L_1 = L_2$ for all $L_1, L_2 \le M$. Then the following hold.

- (i) $N \ll K$ in M as R-module if and only if $S^{-1}N \ll S^{-1}K$ in $S^{-1}M$ as $S^{-1}R$ -module.
- (ii) $N \leq^s K$ in M as R-module if and only if $S^{-1}N \leq^s S^{-1}K$ in $S^{-1}M$ as $S^{-1}R$ -module.

Proof. (i) Assume $N \ll K \leq M$. Let $S^{-1}L \leq S^{-1}K$ with $S^{-1}N + S^{-1}L = S^{-1}K$, where $L \leq K$. But we have $S^{-1}N + S^{-1}L = S^{-1}(N+L)$, so $S^{-1}(N+L) = S^{-1}K$, and hence N+L=K by hypothesis, thus L=K, as $N \ll K$. Therefore $S^{-1}L=S^{-1}K$, and so $S^{-1}N \ll S^{-1}K$ in $S^{-1}M$. Conversely, if N+L=K where $L \leq K$. Then $S^{-1}N + S^{-1}L = S^{-1}(N+L) = S^{-1}K$, and hence $S^{-1}L=S^{-1}K$, as $S^{-1}N \ll S^{-1}K$. By hypothesis, L=K, and so $N \ll K$ in M.

(ii) If $N ext{ } extstyle extstyle S^{-1}L extstyle S^{-1}K$ such that $S^{-1}N \cap S^{-1}L = S^{-1}0$, where L extstyle extstyle K. By (i), L extstyle K. But, we have $S^{-1}(N \cap L) = S^{-1}N \cap S^{-1}L = S^{-1}0$, $N \cap L = 0$ by hypothesis. As $N extstyle S^{-1}K$ and L extstyle K implies L = 0, thus $S^{-1}L = S^{-1}0$. Conversely, suppose $N \cap L = 0$ where L extstyle K, implies $S^{-1}L extstyle S^{-1}K$, by (i). So $S^{-1}N \cap S^{-1}L = S^{-1}(N \cap L) = S^{-1}0$, thus $S^{-1}L = S^{-1}0$, as $S^{-1}N extstyle S^{-1}K$. By hypothesis, L = 0.

However, we get the following result.

Proposition 13. Let M be an R-module, and let S is a multiplicative closed subset of R such that $S^{-1}L = S^{-1}K$ iff L = K for all $L, K \le M$. Then M is a strongly \mathcal{K} -nonsigular R-module, whenever $S^{-1}M$ is a strongly \mathcal{K} -nonsigular $S^{-1}R$ -module.

Proof. Assume $(0 \neq) g \in End_R(M)$. We can define an $S^{-1}R$ -homomorphism $S^{-1}g: S^{-1}M \to S^{-1}M$ such that $S^{-1}g\left(\frac{m}{s}\right) = \frac{g(m)}{s}$ for each $m \in M$, $s \in S$. It is clear $S^{-1}g \neq 0$, so $ker(S^{-1}g) \not\supseteq S^{-1}M$, as $S^{-1}M$ is strongly \mathcal{K} -nonsigular. Also, it is easy to see that $ker(S^{-1}g) = S^{-1}(kerg)$, this implies that $S^{-1}(kerg) \not\supseteq S^{-1}M$, and hence by Lemma 12 (ii), $kerg \not\supseteq S^{-1}M$.

Proposition 14. Let M be an R-module, and let P is a maximal ideal of R. If M_P is a strongly \mathcal{K} -nonsigular R_P -module, then M is a strongly \mathcal{K} -nonsigular R-module.

Recall that an R-module M is called multiplication if for each submodule N of M, N = MI for some ideal I of R (Equivalently, M a multiplication if and only if N = M. $[N:_R M]$) [12]. If $r_R(M) = 0$, then M is called a faithful R-module. An R-module M is said to be scalar if for any $\varphi \in End_R(M)$, $\varphi(m) = mr$ for some $r \in R$, and for all $m \in M$ [13].

Now, we will studied the strongly \mathcal{K} -nonsigular property for rings and modules. But, in a position we need the following Lemma.

Lemma 15. The following holds, for faithful multiplication *R*-module *M*.

- (i) $N \ll M$ if and only if $I \ll R$, where N = MI.
- (ii) $N \leq^{S} M$ if and only if $I \leq^{S} R$, where N = MI.

Proof. (i) Assume that $N \ll M$. Let J be any ideal of R with I + J = R, so M(I + J) = MR, that is; N + MJ = M, but $N \ll M$ implies MJ = M, and so J = R, since M is a faithful multiplication R-module. Thus $I \ll R$. Conversely, let $K \leq M$ with N + K = M. As M is multiplication, K = MJ for some $J \leq R$. Hence M(I + J) = N + K = M = MR, but M is a faithful multiplication R-module, so I + J = R, thus J = R (since $I \ll R$). Therefore, K = MJ = MR = M, and hence $N \ll M$.

(ii) Let $N riangleq^s M$. Suppose that J lines R with $I \cap J = 0$, then $N \cap MJ = MI \cap MJ = M(I \cap J) = 0$, but by (i), MJ lines M, hence MJ = 0, implies J = 0 (since M is faithful). Thus $I riangleq^s R$. Conversely, let K lines M such that $N \cap K = 0$. Since M is multiplication, then there is a small ideal J of R with K = MJ, by (i). Hence $M(I \cap J) = MI \cap MJ = N \cap K = 0$, so by faithfulty for M, we get $I \cap J = 0$, then J = 0, as J lines R and $I riangleq^s R$. Thus K = MJ = 0, and so $N riangleq^s M$.

Proposition 16. Let M be a faithful multiplication R-module. If M is a strongly \mathcal{K} -nonsigular R-module, then R is strongly \mathcal{K} -nonsigular. The converse hold, whenever M is finitely generated.

Proof. Assume that M is a strongly \mathcal{K} -nonsigular R-module. Let $(0 \neq) \varphi \in End_R(R)$. For $r \in R$, we know $\varphi(a) = a. \varphi(1)$. We can define $\psi \colon M \to M$ by $\psi(m) = m. \varphi(1)$ for all $m \in M$. It is easy to see ψ is well-defined and homomorphism. If $\psi = 0$, then $M. \varphi(1) = 0$, hence $\varphi(1) \in r_R(M) = 0$, so $\varphi = 0$ which is a contradiction. Hence $(0 \neq) \psi \in End_R(M)$, and so $ker\psi \not\supseteq^S M$, as M is strongly \mathcal{K} -nonsigular. Since M is a multiplication R-module, $ker\psi = M. [ker\psi:_R M]$. But, we have $[ker\psi:_R M] = ker\varphi$, to see this: if $r \in [ker\psi:_R M]$, $Mr \subseteq ker\psi$, so $\psi(Mr) = Mr. \varphi(1) = M. \varphi(r) = 0$, hence $\varphi(r) \in r_R(M) = 0$, thus $r \in ker\varphi$. Now, if $x \in ker\varphi$, $\varphi(x) = x. \varphi(1) = 0$ hence $Mx. \varphi(1) = 0$, so $\psi(Mx) = 0$ implies $Mx \subseteq ker\psi$, thus $x \in [ker\psi:_R M]$. Since $ker\psi \not\supseteq^S M$, so $M. [ker\psi:_R M] \not\supseteq^S M$, so by Lemma 15 (ii), $[ker\psi:_R M] \not\supseteq^S R$, which hence $ker\varphi \not\supseteq^S R$, therefore R is strongly R-nonsigular. Conversely, let $(0 \neq) g \in End_R(M)$. If R is finitely generated multiplication R-module, then R is a scalar R-module, by R is finitely generated multiplication R-module, then R is a scalar R-module, by R is finitely R in R is strongly R-nonsigular, then R is R. On the other hand, we have R is R is strongly R-nonsigular, then R is R. On the other hand, we have

https://doi.org/10.30526/32.1.1919

 $kerh = [kerg:_R M]$ which implies $[kerg:_R M] \not =^s R$, and hence $M.[kerg:_R M] \not =^s M$, by Lemma 15 (ii), thus $kerg \not =^s M$, and M is a strongly \mathcal{K} -nonsigular R-module.

Next, proved that the property of strongly \mathcal{K} -nonsigular of modules is inherited by isomorphism.

Proposition 17. For two modules M_1 and M_2 , if $M_1 \cong M_2$ then M_2 is a strongly \mathcal{K} -nonsigular module, whenever M_1 is strongly \mathcal{K} -nonsigular.

Proof. Since $M_1 \cong M_2$, there exists an isomorphism $f: M_1 \to M_2$. Assume M_1 is a strongly \mathcal{K} -nonsigular module. Let $g \in End_R(M_2)$ such that $kerg \trianglelefteq^s M_2$. Consider $\psi = f^{-1} \circ g \circ f \in End_R(M_1)$, where $f^{-1}: M_2 \to M_1$ isomorphism. Now, we have $ker\psi = f^{-1}(kerg)$, to see this: $ker\psi = \{x \in M_1 | f^{-1} \circ g \circ f(x) = 0\} = \{x \in M_1 | g \circ f(x) \in kerf^{-1} = 0\} = \{x \in M_1 | f(x) \in kerg\} = \{x \in M_1 | x \in f^{-1}(kerg)\} = f^{-1}(kerg)$. By Proposition 1.1(2), we get $f^{-1}(kerg) \trianglelefteq^s M_1$, (since $kerg \trianglelefteq^s M_2$), this implies $ker\psi \trianglelefteq^s M_1$ and hence $\psi = 0$, as M_1 is strongly \mathcal{K} -nonsigular. Thus, $0 = f^{-1} \circ g(Imf) = f^{-1} \circ g(M_2)$, thus $Img \subseteq kerf^{-1} = 0$. Therefore g = 0.

Proposition 18. Let M be a faithful scalar R-module. Then R is strongly \mathcal{K} -nonsigular if and only if $S = End_R(M)$ is strongly \mathcal{K} -nonsigular.

Proof. Since M is a scalar R-module, then by [15, Lemma 3.6.2] $S = End_R(M) \cong R/r_R(M)$, but M is faithful, hence $S = End_R(M) \cong R$. By Proposition 17, the result is follow.

Proposition 19. Let M be a faithful multiplication R-module. If R is strongly \mathcal{K} -nonsigular, then $r_R(N) = r_R(M)$ for all $N \leq^S M$.

Proof. As M is a faithful multiplication R-module, if $N ext{ } extstyle extstyle S$ M, there is I extstyle S R with N = MI, by Lemma 15 (ii). For $r \in r_R(N)$, Nr = 0, then MI.r = 0, hence $Ir \subseteq r_R(M) = 0$, so $r \in r_R(I)$ implies $r_R(N) = r_R(I)$. Since R is strongly \mathcal{K} -nonsigular with I extstyle S R, then I is a quasi-invertible ideal (by Theorem 2.2), so $r_R(I) = r_R(R) = 0$ by [7, Prop. 1.1.4]. Hence $r_R(N) = 0 = r_R(M)$.

3. Direct Summand and Direct Sums

We start with following result.

Proposition 20. Let M be a strongly \mathcal{K} -nonsigular module, and $A \leq M$. If $A \leq^s B_i \leq^{\oplus} M$, then $B_1 = B_2$ for $i \in \{1,2\}$.

Proof. Consider $\rho_i: M \to B_i$ is the canonical projection map, for i = 1,2. We have $\rho_1(A) = A = \rho_2(A)$. Since $(1 - \rho_1)\rho_2 \in End_R(M)$, so we have $((1 - \rho_1)\rho_2)(A) = (1 - \rho_1)(\rho_2(A)) = (1 - \rho_1)(\rho_1(A)) = ((1 - \rho_1)\rho_1)(A) = 0$ (since ρ_1 is an idempotent), then $A \subseteq ker(1 - \rho_1)\rho_2$. Now, $B_2 \leq^{\oplus} M$, so $M = \mathring{B}_2 \oplus B_2$ for some $\mathring{B}_2 \leq M$. Hence $((1 - \rho_1)\rho_2)(\mathring{B}_2) = (1 - \rho_1)(\rho_2(\mathring{B}_2)) = (1 - \rho_1)(0) = 0$, thus $\mathring{B}_2 \subseteq ker(1 - \rho_1)\rho_2$. Therefore $\mathring{B}_2 \oplus A \subseteq ker(1 - \rho_1)\rho_2$. On the other hand, $\mathring{B}_2 \trianglelefteq^s \mathring{B}_2$ and $A \trianglelefteq^s B_2$, then $\mathring{B}_2 \oplus A \trianglelefteq^s \mathring{B}_2 \oplus B_2 = M$ by Proposition 1 (3), and

so $ker(1-\rho_1)\rho_2 \trianglelefteq^s M$ which implies $(1-\rho_1)\rho_2 = 0$, as M is strongly \mathcal{K} -nonsigular. Hence $\rho_2 = \rho_1\rho_2$, so $B_2 = \rho_2(B_2) = \rho_1\rho_2(B_2) = \rho_1\left(\rho_2(B_2)\right) = \rho_1(B_2) \subseteq B_1 \Rightarrow B_2 \subseteq B_1$. Similarly, taking $(1-\rho_2)\rho_1 \in End_R(M)$, and we get $B_1 \subseteq B_2$.

Based on our result, we prove that direct summands of a strongly K-nonsigular module inherit the property.

Proposition 21. A direct summand of a strongly \mathcal{K} -nonsigular module is strongly \mathcal{K} -nonsigular.

Proof. Let M be a strongly \mathcal{K} -nonsigular module, and $A \leq^{\bigoplus} M$, so $M = A \oplus B$ for some $B \leq M$. Assume that $f \in End_R(A)$ such that $kerf \trianglelefteq^s A$. Consider $h = i \circ f \circ \rho \in End_R(M)$, where ρ is the canonical projection map onto A, and i is the inclusion map from A to M. So, we have $Kerh = Kerf \oplus B$, to see this: for $x \in kerh$, x = a + b where $a \in A$ and $b \in B$ with h(x) = 0, so $f(a) = i \circ f(a) = i \circ f(\rho(x)) = h(x) = 0$, then $a \in kerf$, and hence $x = a + b \in kerf + B$, that is; kerh = kerf + B. On the other hand, $kerf \cap B \subseteq A \cap B = 0$, which implies $kerh = kerf \oplus B$. Since $kerf \trianglelefteq^s A$ and $B \trianglelefteq^s B$, then $kerh = kerf \oplus B \trianglelefteq^s A \oplus B = M$ by Proposition 1.1(3). Thus h = 0, as M strongly \mathcal{K} -nonsigular. Hence $Imf = f(A) = i \circ f(A) = i \circ f(\rho(M)) = h(M) = 0$. Therfore f = 0 and A is strongly \mathcal{K} -nonsigular. \blacksquare

Definition 22. Let M and N be two R-modules. Then M is called strongly \mathcal{K} -nonsigular relative to N if, every $\varphi \in Hom_R(M,N)$ such that $ker\varphi \trianglelefteq^s M$, implies $\varphi = 0$. Obviously, M is strongly \mathcal{K} -nonsigular if and only if M is strongly \mathcal{K} -nonsigular relative to M.

Proposition 23. If M is a strongly \mathcal{K} -nonsigular module. For $N \leq M$, M is strongly \mathcal{K} -nonsigular relative to N.

Proof. If N = M, clear that M is strongly \mathcal{K} -nonsigular relative to N. Assume that $N \neq M$, if $\psi \in Hom_R(M,N)$ with $ker\psi \trianglelefteq^s M$. Consider $h = i \circ \psi$, where i is the inclusion map from N to M. So $h \in End_R(M)$ such that $kerh = ker\psi \trianglelefteq^s M$, then h = 0, as M is strongly \mathcal{K} -nonsigular, hence $Im\psi = \psi(M) = i(\psi(M)) = h(M) = 0$, thus $\psi = 0$.

Lemma 24. For a module M, if $N_i ext{ } ext{$\leq$ M for } i \in \land = \{1,2,...,n\}$, then <math>\bigcap_{i=1}^n N_i ext{ } ext{\leq i} \cap_{i=1}^n K_i$.$ **Proof.** Consider the case when the index set $\land = \{1,2\}$. Let $X ext{ } ext{$<$ $K_1 \cap K_2$ with } (N_1 \cap N_2) \cap X = 0$, then <math>N_1 \cap (N_2 \cap X) = 0$. Since $X ext{ } ext{$<$ $K_1 \cap K_2 \subseteq K_1$},$ then $X ext{ } ext{$<$ K_1 and hence } N_2 \cap X ext{ } ext{$<$ K_1 implies } N_2 \cap X = 0$, as <math>N_1 ext{ } ext{\leq K_1}.$ Also, $X ext{ } ext{$<$ K_2}$ and $N_2 ext{ } ext{$\leq$ K_2},$ hence X = 0. Thus $N_1 \cap N_2 ext{ } ext{$\leq$ $K_1 \cap K_2$.}$

Theorem 25. Let $M = M_1 \oplus M_2$ be an *R*-module. Then *M* is strongly \mathcal{K} -nonsigular if and only if M_i is strongly \mathcal{K} -nonsigular relative to M_j , for $i, j \in \{1, 2\}$.

Proof. Assume $M = M_1 \oplus M_2$ a strongly \mathcal{K} -nonsigular module. By Proposition 21, M_i is strongly \mathcal{K} -nonsigular, for $i \in \{1,2\}$. Hence M_i is strongly \mathcal{K} -nonsigular relative to M_i , for $i \in \{1,2\}$. Now, let $\varphi \in Hom_R(M_1, M_2)$ such that $ker\varphi \trianglelefteq^s M_1$. Consider $\psi = i \circ \varphi \circ \rho \in End_R(M)$, where ρ is

the canonical projection map onto M_1 , $i: M_2 \to M$ is the inclusion map. Clearly, $ker\psi =$ $ker \phi \oplus M_2$, so $ker \psi = ker \phi \oplus M_2 \leq^s M_1 \oplus M_2 = M$, hence $\psi = 0$ (since M is strongly Knonsigular). Thus, $\varphi = 0$ and so M_1 is strongly \mathcal{K} -nonsigular relative to M_2 . M_2 is strongly \mathcal{K} nonsigular relative to M_1 , similarly. Conversely, if $f \in End_R(M)$ such that $kerf \leq^s M$, so we have $kerf \cap M_1 \leq^s M_1$, by Lemma 24. Consider $f|_{M_1}: M_1 \to M$ which defined by $f|_{M_1}(x) =$ f(x+0) for all $x \in M$. We have $ker(f|_{M_1}) = kerf \cap M_1$ as follows: if $a \in kerf \cap M_1$ then 0 = $f(a) = f(a + 0) = f|_{M_1}(a)$ and $a \in M_1$, thus $a \in ker(f|_{M_1})$. Now, if $x \in ker(f|_{M_1})$ then 0 = $f|_{M_1}(x) = f(x+0) = f(x)$, so $x \in kerf \cap M_1$. Consider $g_i = \rho_i \circ f|_{M_1}$, where ρ_i is the canonical projection map onto M_i , for $i \in \{1,2\}$. To prove that $ker(f|_{M_1}) = \bigcap_{i=1}^2 kerg_i$. If $x \in \{1,2\}$ $ker(f|_{M_1}), 0 = f|_{M_1}(x), \text{ so } g_i(x) = \rho_i \circ f|_{M_1}(x) = \rho_i (f|_{M_1}(x)) = \rho_i(0) = 0, \text{ this implies } x \in \mathbb{R}$ $\bigcap_{i=1}^2 kerg_i$. Now, if $x \in \bigcap_{i=1}^2 kerg_i$, so $g_i(x) = 0 \Rightarrow \rho_i(f|_{M_1}(x)) = 0 \Rightarrow f|_{M_1}(x) \in$ $\bigcap_{i=1}^{2} ker \rho_{i} = M_{2} \cap M_{1} = 0 \Rightarrow x \in ker(f|_{M_{1}})$ for $i \in \{1,2\}$. So $\bigcap_{i=1}^{2} ker g_{i} = ker(f|_{M_{1}}) = 0$ $kerf \cap M_1 \trianglelefteq^s M_1$, hence by Proposition 1, $kerg_1 \trianglelefteq^s M_1$ and $kerg_2 \trianglelefteq^s M_1$. By hypothesis, $g_i =$ $0 \Rightarrow \rho_i (Im f|_{M_1}) = 0 \Rightarrow Im f|_{M_1} \subseteq \bigcap_{i=1}^2 ker \rho_i = 0 \text{ for } i \in \{1,2\}, \text{ implies } f|_{M_1} = 0. \text{ Similarly,}$ we obtain $h_i = \rho_i \circ f|_{M_2} = 0$ for $i \in \{1,2\}$, and hence $f|_{M_2} = 0$. So $f|_{M_i} = 0$ for $i \in \{1,2\}$. Therefore f = 0, and $M = M_1 \oplus M_2$ is strongly \mathcal{K} -nonsigular.

Corollary 26. If $M = \bigoplus_{i=1}^{n} M_i$. Then M is a strongly \mathcal{K} -nonsigular module if and only if M_i is strongly \mathcal{K} -nonsigular relative to M_i , for $i, j \in \{1, 2, ..., n\}$.

Proposition 27. Let $M = M_1 + M_2$ be an R-module, where $M_1, M_2 \le M$. If $\frac{M}{M_1 \cap M_2}$ is a strongly \mathcal{K} -nonsigular R-module, then both of $\frac{M}{M_1}$ and $\frac{M}{M_2}$ is strongly \mathcal{K} -nonsigular.

Proof. We have $\frac{M_1}{M_1 \cap M_2} + \frac{M_2}{M_1 \cap M_2} = \frac{M_1 + M_2}{M_1 \cap M_2} = \frac{M}{M_1 \cap M_2}$, also $\frac{M_1}{M_1 \cap M_2} \cap \frac{M_2}{M_1 \cap M_2} = \frac{M_1 \cap M_2}{M_1 \cap M_2} = 0_{\frac{M}{M_1 \cap M_2}}$, thus $\frac{M}{M_1 \cap M_2} = \frac{M_1}{M_1 \cap M_2} \oplus \frac{M_2}{M_1 \cap M_2}$. As $\frac{M}{M_1 \cap M_2}$ is strongly \mathcal{K} -nonsigular, so by Proposition 3.2, $\frac{M_i}{M_1 \cap M_2}$ is strongly \mathcal{K} -nonsigular for i = 1,2. But, we have $\frac{M_2}{M_1 \cap M_2} \cong \frac{M_1 + M_2}{M_1} = \frac{M}{M_1}$ and $\frac{M_1}{M_1 \cap M_2} \cong \frac{M_1 + M_2}{M_2} = \frac{M}{M_2}$, so by Proposition 16, $\frac{M}{M_1}$ and $\frac{M}{M_2}$ are strongly \mathcal{K} -nonsigular.

4. Connections to other Topics

In this section, we can prove some relations between strongly \mathcal{K} -nonsigular modules and other classes of modules, such examples, semisimple, Rickart, quasi-Dedekind and prime modules.

Example 28. Every module has no nonzero small submodule, all its submodules are s-essential, and hence does not strongly \mathcal{K} -nonsigular. Notice, every submodule in Z_Z is s-essential, because the zero is the only small submodule of Z_Z , hence Z_Z is not strongly \mathcal{K} -nonsigular. In particular, every simple (semisimple) module is not strongly \mathcal{K} -nonsigular. But, we know every semisimple module is \mathcal{K} -nonsigular.

Remark 29. It is clear that every strongly \mathcal{K} -nonsigular module is \mathcal{K} -nonsigular, but the converse need not be true, in general, a semisimple module is \mathcal{K} -nonsigular but not strongly \mathcal{K} -nonsigular.

Lemma 30. Let M be a Hollow (not simple) module, and $A \le M$. Then A is essential if and only if A is s-essential.

Proof. \Rightarrow) Clear. \Leftarrow) Assume $(0 \neq)A \trianglelefteq^s M$ such that $A \cap B = 0$, where $B \leq M$. If B = M, then A = 0, a contradiction. Thus B is a proper in M, hence $B \ll M$ (since M is Hollow), and so B = 0, as $A \trianglelefteq^s M$. Therfore $A \trianglelefteq M$.

However, we consider the following Proposition by Lemma 30.

Proposition 31. Let M be a Hollow (not simple) module. Then M is strongly \mathcal{K} -nonsigular if and only if M is \mathcal{K} -nonsigular.

An *R*-module *M* is said to be Rickart if $r_M(\varphi) = Ker\varphi$ is a direct summand of *M* for each $\varphi \in End_R(M)$ [16]. Recall that an *R*-module *M* is quasi-Dedekind if, for any $(0 \neq) \varphi \in End_R(M)$, is a monomorphism (*i.e.* $ker\varphi = 0$) [7].

Obviously, Rickart, quasi-Dedekind modules are \mathcal{K} -nonsigular. Note that the Z-module Z_6 is semisimple, so it is Rickart, but not strongly \mathcal{K} -nonsigular. Also we know Z_Z is quasi-Dedekind, but it is not strongly \mathcal{K} -nonsigular. However, we have the following Corollary which follows by Proposition 4.4.

Corollary 32. For a Hollow (not simple) module M. If M is Rickart (or quasi-Dedekind), then M is strongly \mathcal{K} -nonsignalar.

Lemma 33. Let M be an R-module. If $S = End_R(M)$ is a regular ring, then M is Rickart.

Proof. Assume $\varphi \in S = End_R(M)$. Since S is a regular ring, so φ a regular element, thus $ker\varphi \leq^{\oplus} M$, by [17, Cor. 3.2]. Hence M is a Rickart module.

Corollary 34. If M is a Hollow (not simple) R-module with $S = End_R(M)$ is a regular ring, then M is strongly \mathcal{K} -nonsigular.

Proof. It follows directly by Lemma 33 and Corollary 34. ■

Lemma 35. If M is a uniform module has nonzero small submodule, then s-essential submodule implies essential.

Proof. Assume $X \le M$. Put X = 0. Let N be a nonzero small submodule of M, then $X \cap N = 0$ which implies $X \not\subseteq M$. Hence the result is obtained.

Note that Z-module Z is uniform, the zero submodule of Z_Z is s-essential but not essential (in fact, 0 is the only small submodule of Z_Z).

However, we have the following.

Proposition 36. Let M be a uniform module has nonzero small submodule. Then M is strongly \mathcal{K} -nonsigular if and only if M is \mathcal{K} -nonsigular.

Proof. It follows by Lemma 35. ■

Recall [18], a module M is called prime if for all nonzero submodule N of M, $r_R(N) = r_R(M)$. Mijbass in [7, Th. 2.3.14], presented the following Theorem.

Theorem 37. A module *M* is uniform quasi-Dedekind if and only if it is uniform prime.

Proposition 38. Let *M* be a uniform *R*-module has nonzero small submodule. Then the following assertions are equivalent.

- (i) M is Rickart.
- (ii) M is \mathcal{K} -nonsigular.
- (iii) M is strongly \mathcal{K} -nonsigular.
- (*iv*) *M* is quasi-Dedekind.
- (v) M is prime.
- (vi) For $N \leq^s M$, $r_R(N) = r_R(M)$.

Proof. (i) \Rightarrow (iv) Since M is a uniform R-module, then M is indecomposable. Let $\varphi \in End_R(M)$ with $\varphi \neq 0$, then $ker\varphi \leq^{\oplus} M$, as M is Rickart. So, either $ker\varphi = M$ or $ker\varphi = 0$. If $ker\varphi = M$ then $\varphi = 0$, a contradiction. Hence $ker\varphi = 0$, implies M is quasi-Dedekind.

- $(iv) \Rightarrow (i)$ Let $\varphi \in End_R(M)$. If $\varphi = 0$, then $ker\varphi = M \leq^{\oplus} M$. Assume that $\varphi \neq 0$, but M is a quasi-Dedekind module, so $ker\varphi = 0 \leq^{\oplus} M$. Thus M is Rickart.
- $(ii) \Leftrightarrow (iii)$ It follows by Proposition 36.
- $(ii) \Leftrightarrow (iv)$ Since M is a uniform module, the result is follow.
- $(iv) \Leftrightarrow (v)$ It follows by Theorem 37.
- $(v) \Leftrightarrow (vi)$ Since M is uniform has nonzero small submodule, then all its nonzero submodules are s-essential, so the result is obtained.

5. Conclusion

The most important results of the article are:

- (1) Let M be a faithful multiplication R-module. If M is a strongly \mathcal{K} -nonsigular R-module, then R is strongly \mathcal{K} -nonsigular. The converse holds, whenever M is finitely generated.
- (2) A direct summand of a strongly \mathcal{K} -nonsigular module is strongly \mathcal{K} -nonsigular.
- (3) If $M = \bigoplus_{i=1}^{n} M_i$. Then M is a strongly \mathcal{K} -nonsingular module if and only if M_i is strongly \mathcal{K} -nonsingular relative to M_j , for $i, j \in \{1, 2, ..., n\}$.

References

- 1. Leonard, W.W. Small modules. Pro. Amer. Math. Soc. 1966, 2, 527-531.
- 2. Fluery, P. Hollow modules and local endomorphism rings. *Pacific J. Math.* **1974**, *4*, 379-385.

- 3. Goodearl, K.R. *Ring theory, Nonsingular rings and modules*. Marcel Dekker. Newyork and Basel. **1976**.
- 4. Zhou, D.X.; Zhang, X.R. Small-essential submodules and morita duality. *Southeast Asian Bulletin of math.* **2011**, *35*, *6*, 1051-1062.
- Roman, C.S. Baer and Quasi-Baer modules. Doctoral Dissertation. The Ohio state Univ. 2004.
- Rizvi, S.T; Roman, C.S. On *K*-nonsigular modules and applications. *comm. In Algebra*. 2007, 3, 2960-2982.
- 7. Mijbass, A.S. Quasi-Dedekind modules. Ph.D. Thesis. College of Science. University of Baghdad. Iraq. **1997**.
- 8. Kasch, F. Modules and Rings. Academic press. New York. 1982.
- 9. Wisbauer, R. Foundations of module and ring theory, reading. Gordon and Breach Science Pub. **1991**.
- 10. Clark, J.; Lomp C.; Vanaja, N.; Wisbauer, R. *Lifting modules*. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhauser. Basel. **2006**.
- 11. Zelmanowitz, J.M. Representation of rings with faithful polyform modules. *comm. In Algebra.* **1986**, *14*, *6*, 1141-1169.
- 12. Branard, B. Multiplication modules. *Journal of Algebra*. **1981**, *3*, 170-178.
- 13. Shihab, B.N. Scalar reflexive modules. Ph.D. Thesis. University of Baghdad. Iraq. 2004.
- 14. Naoum, A.G. On the ring of Endomorphisms of finitely generated multiplication modules. *Periodica Math. Hungarica.* **1990**, *21*, *3*, 249-255.
- 15. Mohamed-Ali, E.A. On Ikeda-Nakayama modules. Ph.D. Thesis. University of Baghdad. Iraq. **2006**.
- 16. Lee, G.; Rizvi, S.T.; Roman, C.S. Rickart modules. *Commutative In Algebra*. **2010**, *4*, 4005-4027.
- 17. Ware, R. Endomorphism rings of projective modules. *Trans. Amer. Math. Soc.* **1971**, 233-256.
- 18. Desale, G.; Nicholson, W.K. Endoprimitive rings. J. Algebra. 1981, 548-560.
- 19. Hadi, I. M-A and Ghawi, Th.Y. Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules. *Ibn AL-Haitham J. For Pure & Appl. Sci.* **2011**, *24*, *3*, 102-113.