Strongly \mathcal{K}-nonsingular Modules

Tha'ar Younis Ghawi
thar.younis@qu.edu.iq
Department of Mathematics, College of Education, AL-Qadisiyah University
AL-Qadisiyah, Iraq.

Article history: Received 12 August 2018, Accepted 26 September 2018, Publish January 2019

Abstract

A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly \mathcal{K}-nonsigular. We investigate some properties of strongly \mathcal{K}-nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.

Keywords: Modules; S-essential submodules; nonsingular modules; Strongly \mathcal{K}-nonsigular modules.

1. Introduction

A proper submodule N of a module M is said to be small if for any submodule K of M with $N+K=M$ implies $K=M[1]$. A nonzero module M is called Hollow if all its proper submodules are small [2]. The dual concept of small submodule is an essential submodule, where a nonzero submodule N of a module M is called essential if for any submodule K of M with $N \cap K=0$ implies $K=0$. A nonzero R-module M is said to be uniform if all its nonzero submodules are essential [3]. As mixing of concepts small and essential submodules, we introduced the following class of submodules. A submodule N of M is said to be s-essential if for any small K in M with $N \cap K=0$ implies $K=0$ [4]. It is clear essential submdules implies s-essential. Roman C.S. in [5], recall that an R-module M is called \mathcal{K}-nonsigular if for any endomorphism φ of M which has essential kernel, $\varphi=0 . \mathcal{K}$-a nonsingular module is studied in detail by [6]. In this research, we introduced concept of strongly \mathcal{K}-nonsigular modules which is stronger than \mathcal{K}-nonsigular modules. An R-module M is said to be strongly \mathcal{K}-nonsigular if for each endomorphism of M which has s-essential kernel, is zero. In section 2, we give some characterizations and properties of this concept. In section 3 , we proved a strongly \mathcal{K}-nonsigular module is inherited by direct summands. Also, we give a condition for finite direct sums of strongly \mathcal{K}-nonsigular modules to be strongly \mathcal{K}-nonsigular. Several connections between strongly \mathcal{K}-nonsigular and other classes, also some examples are proved in section 4 . Throughout this work, all rings are associative with identity and all modules are unitary right R-modules. For a right R-module M, the notations $N \subseteq$ $M, N \leq M, N \ll M, N \unlhd M, N \unlhd^{s} M$ or $N \leq{ }^{\oplus} M$ denotes that N is a subset, a submodule, a small submodule, an essential submodule, a s-essential submodule, or direct summand of M,
respectively. Also, for $N \leq M$, we denote the endomorphism ring of M by $\operatorname{End}_{R}(M), r_{R}(N)=$ $\{r \in R \mid N r=0\}$ and $\left[N:_{R} M\right]=\{r \in R \mid M r \subseteq N\}$.

Starting, we will state some properties of s-essential submodules in [4, Prop. 2.7] which needed in this work.

Proposition 1: Let M be a module. Then;
(1) Assume N, K, L are submodules of M with $K \leq N$.
(i) If $K \unlhd^{s} M$, then $K \unlhd^{s} N$ and $N \unlhd^{s} M$.
(ii) $N \unlhd^{s} M$ and $L \unlhd^{s} M$ if and only if $N \cap L \unlhd^{s} M$.
(2) If $\varphi: M \rightarrow \grave{M}$ is a homomorphism with $K \unlhd^{s} \grave{M}$, then $\varphi^{-1}(K) \unlhd^{s} M$.
(3) If $K_{1} \subseteq M_{1} \subseteq M, K_{2} \subseteq M_{2} \subseteq M$ and $M=M_{1} \oplus M_{2}$. Then $K_{1} \oplus K_{2} \unlhd^{s} M_{1} \oplus M_{2}$ if and only if $K_{i} \unlhd^{s} M_{i}$ for $i=1,2$.

2. Strongly \mathcal{K}-nonsigular Modules

In this section, we introduce the class of strongly \mathcal{K}-nonsigular modules as a stronger class of \mathcal{K}-nonsigular modules. Several various properties are proved.

Definition 2. An R-module M is said to be strongly \mathcal{K}-nonsigular if for all $\varphi \in \operatorname{End}_{R}(M)$ with $\operatorname{ker} \varphi$ is s-essential in M, implies $\varphi=0$. Also, a ring R is strongly \mathcal{K}-nonsigular if it is a strongly \mathcal{K}-nonsigular R-module.
for $N \leq M$, if $\operatorname{Hom}_{R}\left(\frac{M}{N}, M\right)=0$ then N is called quasi-invertible [7].
Firstly, we are now in a position to give a characterization the notion of strongly \mathcal{K}-nonsigular modules.

Theorem 3. A module M is strongly \mathcal{K}-nonsigular if and only if all its s-essential submodules are quasi-invertible.

Proof. Assume M is a strongly \mathcal{K}-nonsigular R-module. Let $N \unlhd^{s} M$ and N is not quasiinvertible, i.e. $\operatorname{Hom}_{R}\left(\frac{M}{N}, M\right) \neq 0$, so there exists $(0 \neq) \varphi: \frac{M}{N} \rightarrow M$. Consider $\psi=\varphi \circ \pi \in$ $E n d_{R}(M)$, where π is a natural epimorphism map. It is clear that $N \subseteq \operatorname{ker} \psi$, but $N \unlhd^{s} M$, this implies $\operatorname{ker} \psi \unlhd^{s} M$, and hence $\psi=0$, as M is strongly \mathcal{K}-nonsigular, thus $\varphi=0$, a contradiction. Therefore $N \unlhd^{s} M$ and N is quasi-invertible. Conversely, let $(0 \neq) f \in \operatorname{End}_{R}(M)$. If kerf $\unlhd^{s} M$, so by hypothesis kerf is quasi-invertible. But, we can define a homomorphism $h: \frac{M}{\text { kerf }} \rightarrow M$ by $h(m+\operatorname{Kerf})=f(m)$ for all $m \in M$. So $h \neq 0$ and hence $\operatorname{Hom}_{R}\left(\frac{M}{\text { kerf }}, M\right) \neq 0$ which is a contradiction with kerf is quasi-invertible. Therefore $\operatorname{kerf} \Phi^{s} M$ and M is a strongly \mathcal{K}-nonsigular R-module.

Corollary 4. Let M be a strongly \mathcal{K}-nonsigular module. If $N \unlhd^{s} M$, then $r_{R}(N)=r_{R}(M)$.

Proof. Assume $N \unlhd^{s} M$, then by previous Theorem, N is a quasi-invertible submodule, and so $r_{R}(N)=r_{R}(M)$ by [7, Prop. 1.1.4].

Proposition 5. Let M be an R-module, $R^{*}=R / A$ and $A \subseteq r_{R}(M)$. Then M is a strongly \mathcal{K} nonsingular R-module if and only if M is a strongly \mathcal{K}-nonsigular R^{*}-module.
Proof. Assume $\pi: R \rightarrow R^{*}$ is a natural epimorphism, so by [8, Ex. P.51] $\operatorname{Hom}_{R}\left(\frac{M}{N}, M\right)=$ $\operatorname{Hom}_{R^{*}}\left(\frac{M}{N}, M\right)$ for each submodule N of M. So, the result is follow.

Proposition 6. Let M be a strongly \mathcal{K}-nonsigular module with M / X is a projective module for all $X \unlhd^{s} M$. Then M / A is a strongly \mathcal{K}-nonsigular module, for all $A \unlhd^{s} M$.

Proof. For $B / A \unlhd^{s} M / A$, to prove that $\operatorname{Hom}_{R}\left(\frac{M / A}{B / A}, \frac{M}{A}\right)=0$, that is; $\operatorname{Hom}_{R}\left(\frac{M}{B}, \frac{M}{A}\right)=0$. If false, so there is a nonzero homomorphism $\varphi: \frac{M}{B} \rightarrow \frac{M}{A}$. Note that $B \unlhd^{s} M$ (in fact, $A \subseteq B \subseteq M$ with $A \unlhd^{s} M$), so by hypothesis M / B is projective, hence there is a homomorphism $\psi: \frac{M}{B} \rightarrow M$ such that $\varphi=\pi \circ \psi$. It is clear $\psi \neq 0$, this implies $\operatorname{Hom}_{R}\left(\frac{M}{B}, M\right) \neq 0$ with $B \unlhd^{s} M$, is a contradiction with M is strongly \mathcal{K}-nonsigular. Thus $\varphi=0$ and M / A is a strongly \mathcal{K}-nonsigular R-module.

Definition 7. Let M be a module, define the $s-\mathcal{K}$-nonsigular submodule of M by $Z_{s}^{\mathcal{K}}(M)=$ $\sum_{\varphi \in S} \operatorname{Im} \varphi$, where $S=E n d_{R}(M)$ and $\operatorname{ker} \varphi \unlhd^{s} M$.
Now, we will give another characterization for a strongly \mathcal{K}-nonsigular module as follows.
Proposition 8. Let M be a module. Then M is strongly \mathcal{K}-nonsigular if and only if $Z_{s}^{\mathcal{K}}(M)=0$. Proof. If M is a strongly \mathcal{K}-nonsigular module, then for all $\varphi \in \operatorname{End}_{R}(M)$ with $\operatorname{ker} \varphi \unlhd^{s} M$, implies $\operatorname{Im} \varphi=0$, and hence $Z_{S}^{\mathcal{K}}(M)=\sum_{\varphi \in S} \operatorname{Im} \varphi=0$, where $S=\operatorname{End}_{R}(M)$ and $\operatorname{ker} \varphi \unlhd^{s} M$. Conversely, assume $Z_{s}^{\mathcal{K}}(M)=0$. Let $\psi \in \operatorname{End}_{R}(M)$ such that $\operatorname{ker} \psi \unlhd^{s} M$, then $\operatorname{Im} \psi \subseteq Z_{s}^{\mathcal{K}}(M)$ and so $\psi=0$. Hence M is a strongly \mathcal{K}-nonsigular module.
Let M be a module, recall that a submodule N is supplement of $K \leq M$ if, N is a minimal in the set of submodules $L \leq M$ with $K+L=M$ (Equivalently, N is supplement of $K \leq M$ if and only if $K+N=M$ and $K \cap N \ll N$) [9]. We say that a submodule N of a module M is a supplement if it is a supplement for some submodule L of M.

The transitive property of s-essential submodules need not be hold, see [4, Ex. 2.8]. So, we will give a condition for which the transitive property is hold of s-essential submodules.

Lemma 9. Let M be a module, and let N is a supplement submodule in M with $K \subseteq N \subseteq M$. If $K \unlhd^{s} N$ and $N \unlhd^{s} M$, then $K \unlhd^{s} M$.
Proof. Assume $L \ll M$ with $K \cap L=0$. If $L \subseteq N$, but N is a supplement in M, then by [10, Prop. 20.2] $L \ll N$, and hence $L=0$, since $K \unlhd^{s} N$. Now, if $L \nsubseteq N$. We have $L \cap N \subseteq N \subseteq M$, but ($L \ll M$ implies $L \cap N \ll M$), thus again by [10, Prop. 20.2] $L \cap N \ll N$, since N is a supplement in M. But $K \cap(L \cap N)=K \cap L=0$ and $K \unlhd^{s} N$, this implies $L \cap N=0$, and hence $L=0$, as $N \unlhd^{s} M$.
Now, we present the following Proposition.

Proposition 10. Let M be a quasi-injective R-module, and let N is a s-essential and supplement submodule in M. If M is a strongly \mathcal{K}-nonsigular R-module, then so is N.

Proof. Let $(0 \neq) f: N \rightarrow N$ be a homomrphism. Since M is a quasi-injective module, there exists $(0 \neq) \varphi \in \operatorname{End}_{R}(M)$ such that $i \circ f=\varphi \circ i$, where $i: N \rightarrow M$ is an inclusion map. As M is strongly \mathcal{K}-nonsigular, we get $\operatorname{ker} \varphi \Phi^{s} M$. Clearly, $\operatorname{kerf} \subseteq \operatorname{ker} \varphi$ then $\operatorname{kerf} \not^{s} M$. If kerf $\unlhd^{s} N$, and since N (supplement) $\unlhd^{s} M$, so by previous Lemma, $\operatorname{kerf} \unlhd^{s} M$, is a contradiction. Therefore $\operatorname{kerf} \Phi^{s} N$, and N is a strongly \mathcal{K}-nonsigular module.

A quasi-injective module $\overline{\bar{M}}$ is called quasi-injective hull of a module M if, there exists a monomorphism $\varphi: M \rightarrow \overline{\bar{M}}$ with $\operatorname{Im} \varphi \unlhd \overline{\bar{M}}$ [11].

Corollary 11. Let $\overline{\bar{M}}$ be a strongly \mathcal{K}-nonsigular module. If M is a supplement in $\overline{\bar{M}}$, then M is strongly \mathcal{K}-nonsigular.

Next, we will study the behavior of s-essential submodule and strongly \mathcal{K}-nonsigular module under localization. Firstly, we have the following Lemma.

Lemma 12. Let M be a module, $N \leq K \leq M$ and let S is a multiplicative closed subset of R, provided $S^{-1} L_{1}=S^{-1} L_{2}$ iff $L_{1}=L_{2}$ for all $L_{1}, L_{2} \leq M$. Then the following hold.
(i) $N \ll K$ in M as R-module if and only if $S^{-1} N \ll S^{-1} K$ in $S^{-1} M$ as $S^{-1} R$-module.
(ii) $N \unlhd^{s} K$ in M as R-module if and only if $S^{-1} N \unlhd^{s} S^{-1} K$ in $S^{-1} M$ as $S^{-1} R$-module.

Proof. (i) Assume $N \ll K \leq M$. Let $S^{-1} L \leq S^{-1} K$ with $S^{-1} N+S^{-1} L=S^{-1} K$, where $L \leq K$. But we have $S^{-1} N+S^{-1} L=S^{-1}(N+L)$, so $S^{-1}(N+L)=S^{-1} K$, and hence $N+L=K$ by hypothesis, thus $L=K$, as $N \ll K$. Therefore $S^{-1} L=S^{-1} K$, and so $S^{-1} N \ll S^{-1} K$ in $S^{-1} M$. Conversely, if $N+L=K$ where $L \leq K$. Then $S^{-1} N+S^{-1} L=S^{-1}(N+L)=S^{-1} K$, and hence $S^{-1} L=S^{-1} K$, as $S^{-1} N \ll S^{-1} K$. By hypothesis, $L=K$, and so $N \ll K$ in M.
(ii) If $N \unlhd^{s} K \leq M$. Let $S^{-1} L \ll S^{-1} K$ such that $S^{-1} N \cap S^{-1} L=S^{-1} 0$, where $L \leq K$. By (i), $L \ll K$. But, we have $S^{-1}(N \cap L)=S^{-1} N \cap S^{-1} L=S^{-1} 0, N \cap L=0$ by hypothesis. As $N \unlhd^{s} K$ and $L \ll K$ implies $L=0$, thus $S^{-1} L=S^{-1} 0$. Conversely, suppose $N \cap L=0$ where $L \ll K$, implies $S^{-1} L \ll S^{-1} K$, by (i). So $S^{-1} N \cap S^{-1} L=S^{-1}(N \cap L)=S^{-1} 0$, thus $S^{-1} L=S^{-1} 0$, as $S^{-1} N \unlhd^{s} S^{-1} K$. By hypothesis, $L=0$.
However, we get the following result.
Proposition 13. Let M be an R-module, and let S is a multiplicative closed subset of R such that $S^{-1} L=S^{-1} K$ iff $L=K$ for all $L, K \leq M$. Then M is a strongly \mathcal{K}-nonsigular R-module, whenever $S^{-1} M$ is a strongly \mathcal{K}-nonsigular $S^{-1} R$-module.

Proof. Assume $(0 \neq) g \in \operatorname{End}_{R}(M)$. We can define an $S^{-1} R$-homomorphism $S^{-1} g: S^{-1} M \rightarrow$ $S^{-1} M$ such that $S^{-1} g\left(\frac{m}{s}\right)=\frac{g(m)}{s}$ for each $m \in M, s \in S$. It is clear $S^{-1} g \neq 0$, so $\operatorname{ker}\left(S^{-1} g\right) \not \Phi^{s} S^{-1} M$, as $S^{-1} M$ is strongly \mathcal{K}-nonsigular. Also, it is easy to see that $\operatorname{ker}\left(S^{-1} g\right)=$ $S^{-1}(\mathrm{kerg})$, this implies that $S^{-1}(\mathrm{kerg}) \not \Phi^{s} S^{-1} M$, and hence by Lemma 12 (ii), $\operatorname{kerg} \not \oiint^{s} M$.

Proposition 14. Let M be an R-module, and let P is a maximal ideal of R. If M_{P} is a strongly \mathcal{K} nonsigular R_{P}-module, then M is a strongly \mathcal{K}-nonsigular R-module.

Recall that an R-module M is called multiplication if for each submodule N of $M, N=M I$ for some ideal I of R (Equivalently, M a multiplication if and only if $N=M .\left[N:_{R} M\right]$) [12]. If $r_{R}(M)=0$, then M is called a faithful R-module. An R-module M is said to be scalar if for any $\varphi \in \operatorname{End}_{R}(M), \varphi(m)=m r$ for some $r \in R$, and for all $m \in M$ [13].

Now, we will studied the strongly \mathcal{K}-nonsigular property for rings and modules. But, in a position we need the following Lemma.

Lemma 15. The following holds, for faithful multiplication R-module M.
(i) $N \ll M$ if and only if $I \ll R$, where $N=M I$.
(ii) $N \unlhd^{s} M$ if and only if $I \unlhd^{s} R$, where $N=M I$.

Proof. (i) Assume that $N \ll M$. Let J be any ideal of R with $I+J=R$, so $M(I+J)=M R$, that is; $N+M J=M$, but $N \ll M$ implies $M J=M$, and so $J=R$, since M is a faithful multiplication R-module. Thus $I \ll R$. Conversely, let $K \leq M$ with $N+K=M$. As M is multiplication, $K=M J$ for some $J \leq R$. Hence $M(I+J)=N+K=M=M R$, but M is a faithful multiplication R module, so $I+J=R$, thus $J=R$ (since $I \ll R$). Therefore, $K=M J=M R=M$, and hence $N \ll$ M.
(ii) Let $N \unlhd^{s} M$. Suppose that $J \ll R$ with $I \cap J=0$, then $N \cap M J=M I \cap M J=M(I \cap J)=0$, but by (i), $M J \ll M$, hence $M J=0$, implies $J=0$ (since M is faithful). Thus $I \unlhd^{s} R$. Conversely, let $K \ll M$ such that $N \cap K=0$. Since M is multiplication, then there is a small ideal J of R with $K=M J$, by (i). Hence $M(I \cap J)=M I \cap M J=N \cap K=0$, so by faithfulty for M, we get $I \cap J=$ 0 , then $J=0$, as $J \ll R$ and $I \unlhd^{s} R$. Thus $K=M J=0$, and so $N \unlhd^{s} M$.

Proposition 16. Let M be a faithful multiplication R-module. If M is a strongly \mathcal{K}-nonsigular R module, then R is strongly \mathcal{K}-nonsigular. The converse hold, whenever M is finitely generated.

Proof. Assume that M is a strongly \mathcal{K}-nonsigular R-module. Let $(0 \neq) \varphi \in \operatorname{End}_{R}(R)$. For $r \in R$, we know $\varphi(a)=a . \varphi(1)$. We can define $\psi: M \rightarrow M$ by $\psi(m)=m . \varphi(1)$ for all $m \in M$. It is easy to see ψ is well-defined and homomorphism. If $\psi=0$, then $M . \varphi(1)=0$, hence $\varphi(1) \in$ $r_{R}(M)=0$, so $\varphi=0$ which is a contradiction. Hence $(0 \neq) \psi \in \operatorname{End}_{R}(M)$, and so $\operatorname{ker} \psi \not \oiint^{s} M$, as M is strongly \mathcal{K}-nonsigular. Since M is a multiplication R-module, $\operatorname{ker} \psi=M .\left[\operatorname{ker} \psi:_{R} M\right]$. But, we have $\left[\operatorname{ker} \psi:_{R} M\right]=\operatorname{ker} \varphi$, to see this: if $r \in\left[\operatorname{ker} \psi:_{R} M\right]$, $M r \subseteq \operatorname{ker} \psi$, so $\psi(M r)=$ $\operatorname{Mr} . \varphi(1)=M . \varphi(r)=0$, hence $\varphi(r) \in r_{R}(M)=0$, thus $r \in \operatorname{ker} \varphi$. Now, if $x \in \operatorname{ker} \varphi, \varphi(x)=$ $x . \varphi(1)=0$ hence $M x . \varphi(1)=0$, so $\psi(M x)=0$ implies $M x \subseteq k e r \psi$, thus $x \in\left[k e r \psi:_{R} M\right]$. Since $\operatorname{ker} \psi \Phi^{s} M$, so $M .\left[\operatorname{ker} \psi:_{R} M\right] \Phi^{s} M$, so by Lemma 15 (ii), $\left[\operatorname{ker} \psi:_{R} M\right] \not \Phi^{s} R$, which hence $\operatorname{ker} \varphi \oiint^{s} R$, therefore R is strongly \mathcal{K}-nonsigular. Conversely, let $(0 \neq) g \in \operatorname{End}_{R}(M)$. If M is finitely generated multiplication R-module, then M is a scalar R-module, by [14, Th. 2.3]. Hence $g(m)=m r$ for some $r \in R$, and for all $m \in M$. It follows that $h \in \operatorname{End}_{R}(R)$ defined by $h(x)=x r$ for all $x \in R$. Note $h(1)=1 . r=r \neq 0$ (in fact, if $r=0$ implies $g=0$), and hence $(0 \neq) h \in \operatorname{End}_{R}(R)$, but R is strongly \mathcal{K}-nonsigular, then $\operatorname{kerh} \Phi^{s} R$. On the other hand, we have
$\operatorname{kerh}=\left[\mathrm{kerg}:_{R} M\right]$ which implies $\left[\mathrm{kerg}:_{R} M\right] \not \Phi^{s} R$, and hence $M .\left[\operatorname{kerg}:_{R} M\right] \not \Phi^{s} M$, by Lemma 15 (ii), thus $\operatorname{kerg} \nleftarrow^{s} M$, and M is a strongly \mathcal{K}-nonsigular R-module.

Next, proved that the property of strongly \mathcal{K}-nonsigular of modules is inherited by isomorphism.

Proposition 17. For two modules M_{1} and M_{2}, if $M_{1} \cong M_{2}$ then M_{2} is a strongly \mathcal{K}-nonsigular module, whenever M_{1} is strongly \mathcal{K}-nonsigular.

Proof. Since $M_{1} \cong M_{2}$, there exists an isomorphism $f: M_{1} \rightarrow M_{2}$. Assume M_{1} is a strongly \mathcal{K} nonsigular module. Let $g \in \operatorname{End}_{R}\left(M_{2}\right)$ such that $\operatorname{kerg} \unlhd^{s} M_{2}$. Consider $\psi=f^{-1} \circ g \circ f \in$ $\operatorname{End}_{R}\left(M_{1}\right)$, where $f^{-1}: M_{2} \rightarrow M_{1}$ isomorphism. Now, we have $\operatorname{ker} \psi=f^{-1}(\operatorname{kerg})$, to see this: $\operatorname{ker} \psi=\left\{x \in M_{1} \mid f^{-1} \circ g \circ f(x)=0\right\}=\left\{x \in M_{1} \mid g \circ f(x) \in \operatorname{ker} f^{-1}=0\right\}=$ $\left\{x \in M_{1} \mid f(x) \in \operatorname{kerg}\right\}=\left\{x \in M_{1} \mid x \in f^{-1}(\operatorname{kerg})\right\}=f^{-1}(\operatorname{kerg})$. By Proposition 1.1(2), we get $f^{-1}(\mathrm{kerg}) \unlhd^{s} M_{1}$, (since $\operatorname{kerg} \unlhd^{s} M_{2}$), this implies $\operatorname{ker} \psi \unlhd^{s} M_{1}$ and hence $\psi=0$, as M_{1} is strongly \mathcal{K}-nonsigular. Thus, $0=f^{-1} \circ g(\operatorname{Imf})=f^{-1} \circ g\left(M_{2}\right)$, thus $\quad \operatorname{Img} \subseteq k e r f^{-1}=0$. Therefore $g=0$.

Proposition 18. Let M be a faithful scalar R-module. Then R is strongly \mathcal{K}-nonsigular if and only if $S=\operatorname{End}_{R}(M)$ is strongly \mathcal{K}-nonsigular.

Proof. Since M is a scalar R-module, then by [15, Lemma 3.6.2] $S=\operatorname{End}_{R}(M) \cong R / r_{R}(M)$, but M is faithful, hence $S=\operatorname{End}_{R}(M) \cong R$. By Proposition 17, the result is follow.

Proposition 19. Let M be a faithful multiplication R-module. If R is strongly \mathcal{K}-nonsigular, then $r_{R}(N)=r_{R}(M)$ for all $N \unlhd^{s} M$.

Proof. As M is a faithful multiplication R-module, if $N \unlhd^{s} M$, there is $I \unlhd^{s} R$ with $N=M I$, by Lemma 15 (ii). For $r \in r_{R}(N), N r=0$, then MI. $r=0$, hence $I r \subseteq r_{R}(M)=0$, so $r \in r_{R}(I)$ implies $r_{R}(N)=r_{R}(I)$. Since R is strongly \mathcal{K}-nonsigular with $I \unlhd^{s} R$, then I is a quasi-invertible ideal (by Theorem 2.2), so $r_{R}(I)=r_{R}(R)=0$ by [7, Prop. 1.1.4]. Hence $r_{R}(N)=0=r_{R}(M)$.

3. Direct Summand and Direct Sums

We start with following result.
Proposition 20. Let M be a strongly \mathcal{K}-nonsigular module, and $A \leq M$. If $A \unlhd^{s} B_{i} \leq{ }^{\oplus} M$, then $B_{1}=B_{2}$ for $i \in\{1,2\}$.

Proof. Consider $\rho_{i}: M \rightarrow B_{i}$ is the canonical projection map, for $i=1,2$. We have $\rho_{1}(A)=A=$ $\rho_{2}(A)$. Since $\left(1-\rho_{1}\right) \rho_{2} \in \operatorname{End}_{R}(M)$, so we have $\left(\left(1-\rho_{1}\right) \rho_{2}\right)(A)=\left(1-\rho_{1}\right)\left(\rho_{2}(A)\right)=$ $\left(1-\rho_{1}\right)\left(\rho_{1}(A)\right)=\left(\left(1-\rho_{1}\right) \rho_{1}\right)(A)=0$ (since ρ_{1} is an idempotent), then $A \subseteq \operatorname{ker}\left(1-\rho_{1}\right) \rho_{2}$. Now, $\quad B_{2} \leq{ }^{\oplus} M$, so $M=\dot{B_{2}} \oplus B_{2}$ for some $\dot{B_{2}} \leq M$. Hence $\left(\left(1-\rho_{1}\right) \rho_{2}\right)\left(\dot{B_{2}}\right)=(1-$ $\left.\rho_{1}\right)\left(\rho_{2}\left(\dot{B_{2}}\right)\right)=\left(1-\rho_{1}\right)(0)=0$, thus $\dot{B_{2}} \subseteq \operatorname{ker}\left(1-\rho_{1}\right) \rho_{2}$. Therefore $\dot{B_{2}} \oplus A \subseteq \operatorname{ker}\left(1-\rho_{1}\right) \rho_{2}$. On the other hand, $\dot{B_{2}} \unlhd^{s} \dot{B_{2}}$ and $A \unlhd^{s} B_{2}$, then $\dot{B_{2}} \oplus A \unlhd^{s} \dot{B_{2}} \oplus B_{2}=M$ by Proposition 1 (3), and
so $\operatorname{ker}\left(1-\rho_{1}\right) \rho_{2} \unlhd^{s} M$ which implies $\left(1-\rho_{1}\right) \rho_{2}=0$, as M is strongly \mathcal{K}-nonsigular. Hence $\rho_{2}=\rho_{1} \rho_{2}$, so $B_{2}=\rho_{2}\left(B_{2}\right)=\rho_{1} \rho_{2}\left(B_{2}\right)=\rho_{1}\left(\rho_{2}\left(B_{2}\right)\right)=\rho_{1}\left(B_{2}\right) \subseteq B_{1} \Rightarrow B_{2} \subseteq B_{1}$. Similarly, taking $\left(1-\rho_{2}\right) \rho_{1} \in \operatorname{End}_{R}(M)$, and we get $B_{1} \subseteq B_{2}$.

Based on our result, we prove that direct summands of a strongly \mathcal{K}-nonsigular module inherit the property.

Proposition 21. A direct summand of a strongly \mathcal{K}-nonsigular module is strongly \mathcal{K}-nonsigular.
Proof. Let M be a strongly \mathcal{K}-nonsigular module, and $A \leq{ }^{\oplus} M$, so $M=A \oplus B$ for some $B \leq M$. Assume that $f \in \operatorname{End}_{R}(A)$ such that $\operatorname{kerf} \unlhd^{s} A$. Consider $h=i \circ f \circ \rho \in \operatorname{End}_{R}(M)$, where ρ is the canonical projection map onto A, and i is the inclusion map from A to M. So, we have $\operatorname{Kerh}=$ $\operatorname{Kerf} \oplus B$, to see this: for $x \in \operatorname{kerh}, x=a+b$ where $a \in A$ and $b \in B$ with $h(x)=0$, so $f(a)=$ $i \circ f(a)=i \circ f(\rho(x))=h(x)=0$, then $a \in \operatorname{kerf}$, and hence $x=a+b \in \operatorname{kerf}+B$, that is; kerh $=\operatorname{ker} f+B$. On the other hand, $\operatorname{kerf} \cap B \subseteq A \cap B=0$, which implies $\operatorname{kerh}=\operatorname{kerf} \oplus B$. Since $k e r f \unlhd^{s} A$ and $B \unlhd^{s} B$, then kerh $=\operatorname{kerf} \oplus B \unlhd^{s} A \oplus B=M$ by Proposition 1.1(3). Thus $h=0$, as M strongly \mathcal{K}-nonsigular. Hence $\operatorname{Im} f=f(A)=i \circ f(A)=i \circ f(\rho(M))=h(M)=0$. Therfore $f=0$ and A is strongly \mathcal{K}-nonsigular.

Definition 22. Let M and N be two R-modules. Then M is called strongly \mathcal{K}-nonsigular relative to N if, every $\varphi \in \operatorname{Hom}_{R}(M, N)$ such that $\operatorname{ker} \varphi \unlhd^{s} M$, implies $\varphi=0$. Obviously, M is strongly \mathcal{K} nonsigular if and only if M is strongly \mathcal{K}-nonsigular relative to M.

Proposition 23. If M is a strongly \mathcal{K}-nonsigular module. For $N \leq M, M$ is strongly \mathcal{K}-nonsigular relative to N.

Proof. If $N=M$, clear that M is strongly \mathcal{K}-nonsigular relative to N. Assume that $N \neq M$, if $\psi \in$ $\operatorname{Hom}_{R}(M, N)$ with $\operatorname{ker} \psi \unlhd^{s} M$. Consider $h=i \circ \psi$, where i is the inclusion map from N to M. So $h \in \operatorname{End}_{R}(M)$ such that $\operatorname{kerh}=\operatorname{ker} \psi \unlhd^{s} M$, then $h=0$, as M is strongly \mathcal{K}-nonsigular, hence $\operatorname{Im} \psi=\psi(M)=i(\psi(M))=h(M)=0$, thus $\psi=0$.

Lemma 24. For a module M, if $N_{i} \unlhd^{s} K_{i} \leq M$ for $i \in \wedge=\{1,2, \ldots, n\}$, then $\bigcap_{i=1}^{n} N_{i} \unlhd^{s} \bigcap_{i=1}^{n} K_{i}$. Proof. Consider the case when the index set $\wedge=\{1,2\}$. Let $X \ll K_{1} \cap K_{2}$ with $\left(N_{1} \cap N_{2}\right) \cap X=$ 0 , then $N_{1} \cap\left(N_{2} \cap X\right)=0$. Since $X \ll K_{1} \cap K_{2} \subseteq K_{1}$, then $X \ll K_{1}$ and hence $N_{2} \cap X \ll K_{1}$ implies $N_{2} \cap X=0$, as $N_{1} \unlhd^{s} K_{1}$. Also, $X \ll K_{2}$ and $N_{2} \unlhd^{s} K_{2}$, hence $X=0$. Thus $N_{1} \cap$ $N_{2} \unlhd^{s} K_{1} \cap K_{2}$.

Theorem 25. Let $M=M_{1} \oplus M_{2}$ be an R-module. Then M is strongly \mathcal{K}-nonsigular if and only if M_{i} is strongly \mathcal{K}-nonsigular relative to M_{j}, for $i, j \in\{1,2\}$.

Proof. Assume $M=M_{1} \oplus M_{2}$ a strongly \mathcal{K}-nonsigular module. By Proposition 21, M_{i} is strongly \mathcal{K}-nonsigular, for $i \in\{1,2\}$. Hence M_{i} is strongly \mathcal{K}-nonsigular relative to M_{i}, for $i \in\{1,2\}$. Now, let $\varphi \in \operatorname{Hom}_{R}\left(M_{1}, M_{2}\right)$ such that $\operatorname{ker} \varphi \unlhd^{s} M_{1}$. Consider $\psi=i \circ \varphi \circ \rho \in \operatorname{End}_{R}(M)$, where ρ is
the canonical projection map onto $M_{1}, i: M_{2} \rightarrow M$ is the inclusion map. Clearly, $\operatorname{ker} \psi=$ $\operatorname{ker} \varphi \oplus M_{2}$, so $\operatorname{ker} \psi=\operatorname{ker} \varphi \oplus M_{2} \unlhd^{s} M_{1} \oplus M_{2}=M$, hence $\psi=0$ (since M is strongly \mathcal{K} nonsigular). Thus, $\varphi=0$ and so M_{1} is strongly \mathcal{K}-nonsigular relative to $M_{2} . M_{2}$ is strongly \mathcal{K} nonsigular relative to M_{1}, similarly. Conversely, if $f \in \operatorname{End}_{R}(M)$ such that $\operatorname{kerf} \unlhd^{s} M$, so we have $\operatorname{ker} f \cap M_{1} \unlhd^{s} M_{1}$, by Lemma 24. Consider $\left.f\right|_{M_{1}}: M_{1} \rightarrow M$ which defined by $\left.f\right|_{M_{1}}(x)=$ $f(x+0)$ for all $x \in M$. We have $\operatorname{ker}\left(\left.f\right|_{M_{1}}\right)=\operatorname{kerf} \cap M_{1}$ as follows: if $a \in \operatorname{kerf} \cap M_{1}$ then $0=$ $f(a)=f(a+0)=\left.f\right|_{M_{1}}(a)$ and $a \in M_{1}$, thus $a \in \operatorname{ker}\left(\left.f\right|_{M_{1}}\right)$. Now, if $x \in \operatorname{ker}\left(\left.f\right|_{M_{1}}\right)$ then $0=$ $\left.f\right|_{M_{1}}(x)=f(x+0)=f(x)$, so $x \in \operatorname{kerf} \cap M_{1}$. Consider $g_{i}=\left.\rho_{i} \circ f\right|_{M_{1}}$, where ρ_{i} is the canonical projection map onto M_{i}, for $i \in\{1,2\}$. To prove that $\operatorname{ker}\left(\left.f\right|_{M_{1}}\right)=\bigcap_{i=1}^{2} \operatorname{kerg}_{i}$. If $x \in$ $\operatorname{ker}\left(\left.f\right|_{M_{1}}\right), 0=\left.f\right|_{M_{1}}(x)$, so $g_{i}(x)=\left.\rho_{i} \circ f\right|_{M_{1}}(x)=\rho_{i}\left(\left.f\right|_{M_{1}}(x)\right)=\rho_{i}(0)=0$, this implies $x \in$ $\bigcap_{i=1}^{2} \operatorname{kerg}_{i}$. Now, if $x \in \bigcap_{i=1}^{2} \operatorname{kerg}_{i}$, so $g_{i}(x)=0 \Rightarrow \rho_{i}\left(\left.f\right|_{M_{1}}(x)\right)=\left.0 \Rightarrow f\right|_{M_{1}}(x) \in$ $\bigcap_{i=1}^{2} \operatorname{kerp}_{i}=M_{2} \cap M_{1}=0 \Rightarrow x \in \operatorname{ker}\left(\left.f\right|_{M_{1}}\right) \quad$ for $\quad i \in\{1,2\}$. So $\bigcap_{i=1}^{2} \operatorname{kerg}_{i}=\operatorname{ker}\left(\left.f\right|_{M_{1}}\right)=$ $\operatorname{kerf} \cap M_{1} \unlhd^{s} M_{1}$, hence by Proposition 1, $\operatorname{kerg}_{1} \unlhd^{s} M_{1}$ and $\operatorname{kerg}_{2} \unlhd^{s} M_{1}$. By hypothesis, $g_{i}=$ $0 \Rightarrow \rho_{i}\left(\left.\operatorname{Im} f\right|_{M_{1}}\right)=\left.0 \Rightarrow \operatorname{Imf}\right|_{M_{1}} \subseteq \bigcap_{i=1}^{2} \operatorname{ker}_{i}=0$ for $i \in\{1,2\}$, implies $\left.f\right|_{M_{1}}=0$. Similarly, we obtain $h_{i}=\left.\rho_{i} \circ f\right|_{M_{2}}=0$ for $i \in\{1,2\}$, and hence $\left.f\right|_{M_{2}}=0$. So $\left.f\right|_{M_{i}}=0$ for $i \in\{1,2\}$. Therefore $f=0$, and $M=M_{1} \oplus M_{2}$ is strongly \mathcal{K}-nonsigular.

Corollary 26. If $M=\bigoplus_{i=1}^{n} M_{i}$. Then M is a strongly \mathcal{K}-nonsigular module if and only if M_{i} is strongly \mathcal{K}-nonsigular relative to M_{j}, for $i, j \in\{1,2, \ldots, n\}$.

Proposition 27. Let $M=M_{1}+M_{2}$ be an R-module, where $M_{1}, M_{2} \leq M$. If $\frac{M}{M_{1} \cap M_{2}}$ is a strongly \mathcal{K}-nonsigular R-module, then both of $\frac{M}{M_{1}}$ and $\frac{M}{M_{2}}$ is strongly \mathcal{K}-nonsigular.

Proof. We have $\frac{M_{1}}{M_{1} \cap M_{2}}+\frac{M_{2}}{M_{1} \cap M_{2}}=\frac{M_{1}+M_{2}}{M_{1} \cap M_{2}}=\frac{M}{M_{1} \cap M_{2}}$, also $\frac{M_{1}}{M_{1} \cap M_{2}} \cap \frac{M_{2}}{M_{1} \cap M_{2}}=\frac{M_{1} \cap M_{2}}{M_{1} \cap M_{2}}=0 \frac{M}{M_{1} \cap M_{2}}$, thus $\frac{M}{M_{1} \cap M_{2}}=\frac{M_{1}}{M_{1} \cap M_{2}} \oplus \frac{M_{2}}{M_{1} \cap M_{2}}$. As $\frac{M}{M_{1} \cap M_{2}}$ is strongly \mathcal{K}-nonsigular, so by Proposition 3.2, $\frac{M_{i}}{M_{1} \cap M_{2}}$ is strongly \mathcal{K}-nonsigular for $i=1,2$. But, we have $\frac{M_{2}}{M_{1} \cap M_{2}} \cong \frac{M_{1}+M_{2}}{M_{1}}=\frac{M}{M_{1}}$ and $\frac{M_{1}}{M_{1} \cap M_{2}} \cong \frac{M_{1}+M_{2}}{M_{2}}=$ $\frac{M}{M_{2}}$, so by Proposition 16, $\frac{M}{M_{1}}$ and $\frac{M}{M_{2}}$ are strongly \mathcal{K}-nonsigular.

4. Connections to other Topics

In this section, we can prove some relations between strongly \mathcal{K}-nonsigular modules and other classes of modules, such examples, semisimple, Rickart, quasi-Dedekind and prime modules.

Example 28. Every module has no nonzero small submodule, all its submodules are s-essential, and hence does not strongly \mathcal{K}-nonsigular. Notice, every submodule in Z_{Z} is s-essential, because the zero is the only small submodule of Z_{Z}, hence Z_{Z} is not strongly \mathcal{K}-nonsigular. In particular, every simple (semisimple) module is not strongly \mathcal{K}-nonsigular. But, we know every semisimple module is \mathcal{K}-nonsigular.

Remark 29. It is clear that every strongly \mathcal{K}-nonsigular module is \mathcal{K}-nonsigular, but the converse need not be true, in general, a semisimple module is \mathcal{K}-nonsigular but not strongly \mathcal{K}-nonsigular.

Lemma 30. Let M be a Hollow (not simple) module, and $A \leq M$. Then A is essential if and only if A is s-essential.
Proof. \Rightarrow) Clear. $\Leftrightarrow)$ Assume $(0 \neq) A \unlhd^{s} M$ such that $A \cap B=0$, where $B \leq M$. If $B=M$, then $A=0$, a contradiction. Thus B is a proper in M, hence $B \ll M$ (since M is Hollow), and so $B=$ 0 , as $A \unlhd^{s} M$. Therfore $A \unlhd M$.
However, we consider the following Proposition by Lemma 30.

Proposition 31. Let M be a Hollow (not simple) module. Then M is strongly \mathcal{K}-nonsigular if and only if M is \mathcal{K}-nonsigular.

An R-module M is said to be Rickart if $r_{M}(\varphi)=\operatorname{Ker} \varphi$ is a direct summand of M for each $\varphi \in$ $E n d_{R}(M)$ [16]. Recall that an R-module M is quasi-Dedekind if, for any $(0 \neq) \varphi \in \operatorname{End}_{R}(M)$, is a monomorphism (i.e. $\operatorname{ker} \varphi=0$) [7].

Obviously, Rickart, quasi-Dedekind modules are \mathcal{K}-nonsigular. Note that the Z-module Z_{6} is semisimple, so it is Rickart, but not strongly \mathcal{K}-nonsigular. Also we know Z_{Z} is quasi-Dedekind, but it is not strongly \mathcal{K}-nonsigular. However, we have the following Corollary which follows by Proposition 4.4.

Corollary 32. For a Hollow (not simple) module M. If M is Rickart (or quasi-Dedekind), then M is strongly \mathcal{K}-nonsigular.

Lemma 33. Let M be an R-module. If $S=E n d_{R}(M)$ is a regular ring, then M is Rickart.
Proof. Assume $\varphi \in S=\operatorname{End}_{R}(M)$. Since S is a regular ring, so φ a regular element, thus $\operatorname{ker} \varphi \leq^{\oplus} \quad M$, by [17, Cor. 3.2]. Hence M is a Rickart module.

Corollary 34. If M is a Hollow (not simple) R-module with $S=\operatorname{End}_{R}(M)$ is a regular ring, then M is strongly \mathcal{K}-nonsigular.

Proof. It follows directly by Lemma 33 and Corollary 34.

Lemma 35. If M is a uniform module has nonzero small submodule, then s-essential submodule implies essential.

Proof. Assume $X \leq M$. Put $X=0$. Let N be a nonzero small submodule of M, then $X \cap N=0$ which implies $X \not \Phi^{s} M$. Hence the result is obtained.
Note that Z-module Z is uniform, the zero submodule of Z_{Z} is s-essential but not essential (in fact, 0 is the only small submodule of Z_{Z}).
However, we have the following.

Proposition 36. Let M be a uniform module has nonzero small submodule. Then M is strongly \mathcal{K} nonsigular if and only if M is \mathcal{K}-nonsigular.

Proof. It follows by Lemma 35.
Recall [18], a module M is called prime if for all nonzero submodule N of $M, r_{R}(N)=r_{R}(M)$. Mijbass in [7, Th. 2.3.14], presented the following Theorem.

Theorem 37. A module M is uniform quasi-Dedekind if and only if it is uniform prime.

Proposition 38. Let M be a uniform R-module has nonzero small submodule. Then the following asseretions are equivalent.
(i) M is Rickart.
(ii) M is \mathcal{K}-nonsigular.
(iii) M is strongly \mathcal{K}-nonsigular.
(iv) M is quasi-Dedekind.
(v) M is prime.
(vi) For $N \unlhd^{s} M, r_{R}(N)=r_{R}(M)$.

Proof. $(i) \Rightarrow(i v)$ Since M is a uniform R-module, then M is indecomposable. Let $\varphi \in \operatorname{End}_{R}(M)$ with $\varphi \neq 0$, then $\operatorname{ker} \varphi \leq \leq^{\oplus} M$, as M is Rickart. So, either $\operatorname{ker} \varphi=M$ or $\operatorname{ker} \varphi=0$. If $\operatorname{ker} \varphi=M$ then $\varphi=0$, a contradiction. Hence $\operatorname{ker} \varphi=0$, implies M is quasi-Dedekind.
(iv) $\Rightarrow(i)$ Let $\varphi \in \operatorname{End}_{R}(M)$. If $\varphi=0$, then $\operatorname{ker} \varphi=M \leq^{\oplus} M$. Assume that $\varphi \neq 0$, but M is a quasi-Dedekind module, so $\operatorname{ker} \varphi=0 \leq{ }^{\oplus} M$. Thus M is Rickart.
(ii) \Leftrightarrow (iii) It follows by Proposition 36 .
(ii) \Leftrightarrow (iv) Since M is a uniform module, the result is follow.
(iv) $\Leftrightarrow(v)$ It follows by Theorem 37.
$(v) \Leftrightarrow(v i)$ Since M is uniform has nonzero small submodule, then all its nonzero submodules are s-essential, so the result is obtained.

5. Conclusion

The most important results of the article are:
(1) Let M be a faithful multiplication R-module. If M is a strongly \mathcal{K}-nonsigular R-module, then R is strongly \mathcal{K}-nonsigular. The converse holds, whenever M is finitely generated.
(2) A direct summand of a strongly \mathcal{K}-nonsigular module is strongly \mathcal{K}-nonsigular.
(3) If $M=\bigoplus_{i=1}^{n} M_{i}$. Then M is a strongly \mathcal{K}-nonsigular module if and only if M_{i} is strongly \mathcal{K}-nonsingular relative to M_{j}, for $i, j \in\{1,2, \ldots, n\}$.

References

1. Leonard, W.W. Small modules. Pro. Amer. Math. Soc. 1966, 2, 527-531.
2. Fluery, P. Hollow modules and local endomorphism rings. Pacific J. Math. 1974, 4, 379385.
3. Goodearl, K.R. Ring theory, Nonsingular rings and modules. Marcel Dekker. Newyork and Basel. 1976.
4. Zhou, D.X.; Zhang, X.R. Small-essential submodules and morita duality. Southeast Asian Bulletin of math. 2011, 35, 6, 1051-1062.
5. Roman, C.S. Baer and Quasi-Baer modules. Doctoral Dissertation. The Ohio state Univ. 2004.
6. Rizvi, S.T; Roman, C.S. On \mathcal{K}-nonsigular modules and applications. comm. In Algebra. 2007, 3, 2960-2982.
7. Mijbass, A.S. Quasi-Dedekind modules. Ph.D. Thesis. College of Science. University of Baghdad. Iraq. 1997.
8. Kasch, F. Modules and Rings. Academic press. New York. 1982.
9. Wisbauer, R. Foundations of module and ring theory, reading. Gordon and Breach Science Pub. 1991.
10. Clark, J.; Lomp C.; Vanaja, N.; Wisbauer, R. Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhauser. Basel. 2006.
11. Zelmanowitz, J.M. Representation of rings with faithful polyform modules. comm. In Algebra. 1986, 14, 6, 1141-1169.
12. Branard, B. Multiplication modules. Journal of Algebra. 1981, 3, 170-178.
13. Shihab, B.N. Scalar reflexive modules. Ph.D. Thesis. University of Baghdad. Iraq. 2004.
14. Naoum, A.G. On the ring of Endomorphisms of finitely generated multiplication modules. Periodica Math. Hungarica. 1990, 21, 3, 249-255.
15. Mohamed-Ali, E.A. On Ikeda-Nakayama modules. Ph.D. Thesis. University of Baghdad. Iraq. 2006.
16. Lee, G.; Rizvi, S.T.; Roman, C.S. Rickart modules. Commutative In Algebra. 2010, 4, 4005-4027.
17. Ware, R. Endomorphism rings of projective modules. Trans. Amer. Math. Soc. 1971, 233256.
18. Desale, G.; Nicholson, W.K. Endoprimitive rings. J. Algebra. 1981, 548-560.
19. Hadi, I. M-A and Ghawi, Th.Y. Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules. Ibn AL-Haitham J. For Pure \& Appl. Sci. 2011, 24, 3, 102-113.
