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Abstract 
         In this study, He's parallel numerical algorithm by neural network is applied to type of 
integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a 
Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of 
the method, some type of Abel’s integral equations is solved as numerical examples. Numerical 
results show that the new method is very efficient problems with high accuracy. 
 

Keywords: Neural network, Abel’s integral equations, Levenberg – Marquardt training algorithm. 
 
1. Introduction  
      
       Abel’s equations are interconnected to a wide-ranging of physecal problems, such as tempera- 
ture transfer [1], nonlinear diffusion [2], the propagation of nonlinear waves [3], and were used in 
the theory of nautron transportation and traffic theory. There is several methods counting numerical 
analysis thus far away to reviewing this type of integration as well as their variations with several 
uses [4–5]. In [6] he also talked about solutions to this type of integration under assured conditions 
by some special ways.  
      Sumner calculated this type from the point of observation of the convolutional convert studied a 
numerical solution for this integration using orthogonal polynomials. Hilbert worked on the problem 
of nonlinear type of energy, explained in locked shaped by expressive a sectional holomorphic 
function by earnings of an integral with energy nucleus, and converted the problem to one of 
resolving a generalized reviewing this type of integration. 
       In [7] used the reverse of several of fractional order. In [8] resolved this integration numerically 
It is based on the process of approximation of partial integrations and derivatives. In [9] the 
researcher used Chebyshev polynomials for solve this integration. In [10] for easy calculations the 
researcher used some conversions such homotopy pertuarbation and Laplace transforms algorithm.  
 
2. Abel’s Integral Equations 
 
    This type of integration studied by Nieal Henreik Abel and Liouveille for its real importance in 
modeling many phenomena in mechanical, electronic, engineering, chemical and basic sciences [11-
13]. Where it emerged for this type of integration two types first and second as follows respectably  
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𝑓 𝑥 𝜆
𝑦 𝑡

𝑥 𝑡
𝑑𝑡                                                                                                               1  

 
And 
 

          𝑦 𝑥 𝑓 𝑥 𝜆 𝑑𝑡                                                                                                   2   

 
   Where 𝜆, 𝛼 𝑎𝑛𝑑 𝑓 𝑥  and the function are given where 0 𝛼 1, 𝑓 𝑐 ∈ 𝑐 0,1 , 0 𝑥, 𝑡
𝑇  and T is constant. 
      We will solve this type of integration of fractional equations by means of neural networks using 
three layers: the input and output layers and the hidden layer contain 7 hidden units and one linear 
output unit, the sigmoid activation function of each unit in hidden layer is tanseg. function by a type 
of training, the Levenberge – Marqaurdt training algoreithm is used to train the network. 
 
3. Description of the Method     
 
    In this part we will describe how our method can be used to discovery the approximate result of  
Equations  (1) and (2)  let 𝛾 𝜒 denotes the result to be calculated,  𝛾 𝜒 , 𝜌 ) refers to the analytical 
solution. In the proposed approach, the FFNN experimental solution is used and the factors 𝜌 
correspond to the weights and bias of the neural architecture. We choose a model for a pilot function 
yt (x) to meet BC requirements. This is attained by lettering it as two sets: 
 
𝛾 𝜒 , 𝜌  𝜙 𝜒 𝜉 𝜒, Ν 𝜒, 𝜌                                                                                                    (3) 

 
   where Ν 𝜒, 𝜌  is a singleoutput FFNN with 𝜌 factors and one input element breast-feeding on the 
𝜒 input vector.  
       The part 𝜙 𝜒  does not contain parameters that can be adjusted and meet the boundary 
conditions. The second term 𝜉 𝜒, Ν 𝜒, 𝜌  is created so that it does not contribute to BC, because 
𝛾 𝜒  satisfies them. This part can be molded using FFNN whose weights and biases must be 
adjusted to address the minimization problem. 

4. Illustration of the Method 

    To explain the method, Let the equations ((1) and (2)), where x ∈ [0, 1] and the BC:  y(0) = Α and 
y(1) = 𝛽,  the approximation of solution can be written as: 

𝛾 𝜒 , 𝜌  Α 𝛽 Α 𝜒 𝜒 𝜒 1 Ν 𝜒, 𝜌                                                                              (4) 

The error calculated to be minimized is given by 
 

  𝐸 𝑝 ∑ 𝑓 𝛾 , 𝛾  , 𝜒 𝑑𝑡  
 
                                                                         (5) 
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where the xi’s are points in [a, b]. 

5. Numerical Examples 

      In this section we will apply the above algorithm to three different examples of the first kind and 
second kind. For each test problem the analytic solution  𝛾 𝜒   was identified in improvement.   So, 
we have tried the accuracy of the solutions obtained through the equation;   
 
     ∆𝑦 𝑥 |𝛾 𝜒 𝛾 𝜒 |"                                                                                                    (6) 

Example 1   

      In the first example we will demonstrate the work of the proposed algorithm on the first type of 
fractional equations for that integration [14]  

∪ 𝑑𝑡  ,    0 1, where the exact solution ∪ 𝑡  
 

 

 

 

 

 

 

Table 1. Analytic and Neural solution of example 1 
The error E(x)  | yt(x) ya(x) | 

w h e r e  yt(x) computed by the 
following training algorithm ( Trainlm) 

Out of suggested FFNN yt(x) 
for  LM training algorithm 

Analytic solution 
input 

 Trainlmya(x) x 
0.000000000000000.000000000000000.00000000000000 0.0 
0.000000022894650.1111111340057650.11111111111111 0.1 
0.000763781650320.222986003872540.22222222222222 0.2 
0.000000000654060.333333333987390.33333333333333 0.3 
0.000000120031940.444444564476380.44444444444444 0.4 
0.000000002082650.555555553472910.55555555555556 0.5 
0.000000000182700.666666666849370.66666666666667 0.6 
0.000004347869570.777773429908210.77777777777778 0.7 
0.000000003546000.888888885342890.88888888888889 0.8 
0.0000000000000011.00000000000000 0.9 

-0.010111456888841.121222567999951.11111111111111 1.0 
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Table 2. The performance of the train with epoch and time 

 

Table 3. Initial weight and bias of the network for different training algorithm 

 

 

Figure 1. Exact and Approximate solution of example1 using: Modify Trainlm & Trainlm Algorithms 

Example 2  

       In this example we will demonstrate the work of the offered algorithm on the first type of 
fractional equations for that integration [15] 

∪
/ 𝑑𝑡 35 24  0 1, where the exact solution is: ∪ 𝑡  

 

 

MSE Time Epoch Performance of train Train Function 

9.34772E‐06 0:00:02 50 2.39-31 Trainlm 

Weights and bias for trainlm 
Net.B{1}Net.LW{2,1}Net.IU{1,1}Net.IW{1,1} 

0.48760.12390.98760.2436 
0.25420.63980.98430.4563 
0.19840.27600.09870.6534 
0.12950.08340.23410.4237 
0.59340.23140.75230.3122 
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Table 4. Analytic and Neural solution of example 2 

 

Table 5. The performance of the train with epoch and time 

MSE Time Epoch Performance of train Train Function 

9.72845E-08 0:00:10 300 2.38-31 Trainlm 
 

Table 6. Initial weight and bias of the network for different training algorithm 

 

 

 

 

 

 

 

The error E(x)  | yt(x) ya(x) | 
w h e r e  yt(x) computed by the 
following training algorithm( 

Trainlm) 

Out of suggested FFNN 
yt(x) for  LM training 

algorithm 

Analytic solution input 

 Trainlmya(x) x 
0.0000000000000000.000000000000000.0 
0.000004654342980.099004654342980.099000000000000.1 
0.000045366572450.192045366572450.192000000000000.2 
0.000065872297870.273065872297870.273000000000000.3 
0.000999435226040.335000564773960.336000000000000.4 
0.000000564773420.375000564773420.375000000000000.5 
0.000000354288780.384000354288780.384000000000000.6 
0.000006755341980.357006755341980.357000000000000.7 
0.000254463901340.287745536098660.288000000000000.8 
0.000006453372430.171006453372430.171000000000000.9 
0.0000000000000000.000000000000001.0 

Weights and bias for trainlm 
Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 
0.12330.93650.09750.6574 
0.75640.92840.43520.9786 
0.87350.55420.75640.4352 
0.92850.86350.97860.9807 
0.56370.66570.98430.5543 
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Figure 2. Exact & Approximate solution of example1 by using: Modify Trainlm & Trainlm Algorithms 

Example 3  

        In the third example we will demonstrate the proposed technique on the second type of 
fractional equations for that integration [16] 

𝒖 𝟐 𝟏𝟔

𝟏𝟓

𝟓
𝟐

∪ 𝒕

𝒕
𝟏
𝟐

𝒅𝒕   
𝒙

𝟎 0 1, where the exact solution is ∪ 𝑡  

Table 7. Analytic and Neural solution of example 3 

 

 

 

 

The error E(x)  | yt(x) ya(x) | 
w h e r e  yt(x) computed by the 

following training algorithm 
(Trainlm) 

Out of suggested FFNN 
yt(x) for  LM training 

algorithm 

Analytic solution 

input 
 Trainlmya(x) x 

0.000000000000000.000000000000000.000000000000000.0 
0.000004356208660.010004356208660.010000000000000.1 
0.000000653231460.040000653231460.040000000000000.2 
0.000000534274650.090000534274650.090000000000000.3 
0.000000635277630.160000635277630.160000000000000.4 
0.000000006242420.250000006242420.250000000000000.5 
0.000003425534270.360003425534270.360000000000000.6 
0.000342776134500.49034277613450.490000000000000.7 
0.001436628759300.64143662875930.640000000000000.8 
0.000342876143380.810342876143380.810000000000000.9 
0.0000000000000011.000000000000001.0 
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Table 8. The performance of the train with epoch and time 

MSE Time Epoch Performance of train Train Function 

2.08999E-07 0:00:11 700 3.38-31 Trainlm 

 

Table 9. Initial weight and bias of the network for different training algorithm 

 

 
Figure 3. Exact & Approximate solution of example1 using: Modify Trainlm & Trainlm Algorithms 

6. Conclusions 
     In this paper, a new procedure was used to solve a special type of fractional integrals using 
parallel processors and a high-level training algorithm. Then applied in three examples of different 
types were the results compared with analytical solutions for these integrals. The results show the 
accuracy of suggested method is very high and the speed of convergence is ideal. 
 
 
 
 
 
 
 

Weights and bias for trainlm 
Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 
0.92750.95730.64770.7645 
0.95390.36240.62980.8735 
0.23650.87290.64290.1249 
0.11260.75630.23140.9823 
0.74030.83650.34250.8669 
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