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Abstract 

In the current study, the researchers have been obtained Bayes estimators for the shape and 
scale parameters of Gamma distribution under the precautionary loss function, assuming the 
priors, represented by Gamma and Exponential priors for the shape and scale parameters 
respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been 
used effectively in Bayesian estimation.  

Based on Monte Carlo simulation method, those estimators are compared depending on the 
mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under 
precautionary loss function with Gamma and Exponential priors is better than other estimates in 
all cases.  
Keywords: Gamma distribution; Maximum likelihood estimator; precautionary loss function; 

Exponential prior; Lindley’s approximation. 

 

1. Introduction 

     The gamma distribution is extremely important in reliability analysis and life testing. Hogg and 
et al. (2013), showed that, the gamma distribution is not only a good model for waiting times, but 
one for many nonnegative random variables of the continuous type [1]. 
Also, it is a flexible distribution that commonly offers a good fit to any variable such as in 
environmental, meteorology, climatology and other physical situations [2]. 

The probability density function of the Gamma distribution is defined as follows [3] 

  𝑓 𝑥; α, β
Γ

        ;        x > 0  ,    α > 0   ,   β > 0                                                       (1) 

Where, 

α and β are often called the shape and scale parameters, respectively. The Gamma function is  

   Γ 𝛼 𝑥 𝑒
∞

𝑑𝑥  , for  α 0 

The cumulative distribution function (CDF) is 

  F (𝑥; α, β) = 
Γ

 𝑢  𝑒 𝑑𝑢  
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This function is called incomplete Gamma function. The formula for the cumulative distribution 
can be written as 

  F (𝑥; α, β) = 1 ∑
!

𝑒 ∑
!

𝑒∞    

Therefore, the reliability functions for Γ 𝛼, 𝛽  is [3]:  

   𝑅 𝑥; α, β ∑
!

𝑒   

2. Estimation Methods  

 In this paper, the moment estimators are used as primary estimators for maximum likelihood 
estimators of each of α and β.On the other hand, the maximum likelihood estimators are used as 
initial values for Bayesian estimators. 

 
	2.1. Moment Method                                                                                             

 Suppose that, X be a random variable has a Gamma distribution defined by (1).  
Let x1, x2, . . . , xn be a random sample of size n from X. Defining the first k sample moments 
about origin as 

𝑚′ ∑ 𝑥`  , r = 1, 2, . . . , k. 

The first k population moments about origin are given by 𝜇′ 𝐸 𝑋 . 

Now, equaling these moments, that is 

𝜇 ′ 𝑚′  , r = 1, 2, . . . , k 

The solutions to the above equations denote by  𝜃^, 𝜃^, … , 𝜃^ , yields the moment estimators of    

θ1,θ2, . . . , θk    [4] 

The moment method for estimating the two–parameter Gamma distribution can be derived as  

𝑚
∑

�̅�  

𝑚
∑

  

μ′ E X α

β
   

𝜇′ 𝐸 𝑋 α

β

α

β
  

From  𝑚 𝜇′    ,    𝑚 𝜇′  , we get 

𝛼
̅

∑ ̅
                                                                                                                            (2) 

𝛽
̅

∑ ̅
                                                                                                                            (3) 

 

2.2. Maximum Likelihood Method  

The maximum likelihood method is one of the best methods of obtaining a point estimator of a 
parameter. This technique was proposed by R.A. Fisher (1912), and he developed it in 1920s [5]. 
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This method is the most popular procedure in estimating the parameter   which specifies a 
probability function f(x, 𝜃 , based on the observations 𝑥 , 𝑥 , … , 𝑥  which were independent sample 

from the distribution. The maximum likelihood estimator 
^

  of the parameter   which maximizes the 
likelihood function will be as follows [6] 
      𝐿 𝑥 , 𝑥 , … , 𝑥 ; 𝜃 𝜋 𝑓 𝑥 ; 𝜃   

The likelihood function for two-parameter Gamma distribution is  

   𝐿 𝑥 , 𝑥 , … , 𝑥  ; 𝛼, 𝛽
Г

 𝜋 𝑥 𝑒 ∑                                                               (4) 

Taking the logarithm for (4), yields 

      Ln L nlnГ α nαlnβ 𝛼 1 ∑ 𝑙𝑛𝑥 𝛽 ∑ 𝑥                                

The parameters that maximize the likelihood function are the solution of the equations 

    = 𝑛𝛹 𝛼 𝑛𝑙𝑛𝛽 ∑ 𝑙𝑛𝑥                                                                                         (5)                           

∑ 𝑥                                                                                                                      (6) 

      Observe that, the two equations (5) and (6) are difficult and complicated to solve, then it is 
impossible to find MLE for   and  analytically, we can use the numerical analysis (numerical 

procedure) to obtain and estimate   and   that maximize the likelihood function. One of these 

numerical procedures is Newton-Raphson method and using Hessian matrix, which is the second 
partial derivative of the log-likelihood function. We can construct Hessian matrix as follows [4] 
𝑔 𝛼 𝑛Ψ(α) 𝑛𝑙𝑛𝛽 ∑ 𝑙𝑛𝑥   

𝑔 𝛽 𝑛�̅�  

The partial derivatives of )(1 g  with respect to unknown parameters   and   are 

𝑛𝛹 𝛼   

Where Ψ α  is the derivative of  Ψ α  which is called as tri-gamma 

  

The partial derivatives of )(2 g  with respect to unknown parameters   and   are 

  

  

Hence, 
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J k =
𝑎 𝑎
𝑎 𝑎  

Where, Jk is the Jacobean matrix and Jk must be a non-singular symmetric matrix so, its inverse 
can be found as 
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      The absolute value for the difference between the new value for   and   in new iterative 

value with previous value for   and   in last iterative represent the error term, it's symbol is  , 

which is a very small and assumed value. Then, error term is formulated as  
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                                                                                                      (7) 

Where k  and k  are the initial values for   and   respectively, for which are assumed. 

3. Bayesian Estimation  
          
 3.1. Posterior Density Functions Using Gamma and Exponential Priors 

To estimate α and β parameters for Gamma distribution, we assume that α has a prior π1(ꞏ), 
which follows Gamma (a, b). At this moment we do not assume any specific prior on α. We 
simply assume that the prior on β is π2(ꞏ) and the density function of π2(ꞏ) is Exponential and it is 
independent of π1(ꞏ). 

𝜋 𝛼 Г
     ;        𝑎 0,   𝑏 0, 𝛼 0

 0                                                   0. 𝑤                     
                                                        (8) 

𝜋 𝛽 𝑐 𝑒      ;    𝑐 0, 𝛽 0             
0                                            0. 𝑤                                  

                                                    (9) 

The equations (8) and (9) are prior distribution for   and   respectively. 

The joint p.d.f is given by 

𝐽 𝑥 , 𝑥 , … , 𝑥 ; 𝛼, 𝛽 𝐿 𝑥 , 𝑥 , … , 𝑥 ; 𝛼, 𝛽   𝜋 𝛼  𝜋 𝛽   

                                       
Г

 𝜋 𝑥 𝑒 ∑   
Г

 𝑐 𝑒       

And the marginal p.d.f. of 𝑥 , 𝑥 , … , 𝑥  is given by 

𝑓 𝑥 , 𝑥 , … , 𝑥  𝐿 𝑥 , 𝑥 , … , 𝑥 ; 𝛼, 𝛽 𝜋 𝛼  𝜋 𝛽 dα dβ 

∞∞

 

Hence, the posterior density functions of   and   can be written as follows 
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ℎ 𝛼, 𝛽|𝑥 , 𝑥 , … , 𝑥
𝐿 𝑥 , 𝑥 , … , 𝑥 ; 𝛼, 𝛽  𝜋 𝛼  𝜋 𝛽  

 𝐿 𝑥 , 𝑥 , … , 𝑥 ; 𝛼, 𝛽 𝜋 𝛼  𝜋 𝛽 dαdβ 
∞∞

 
 

                                

                                  = 
Г

 ∑   
Г

       

Г
 ∑   

Г
     

∞∞
  

	

3.2. Bayes Estimator under Precautionary Loss Function
 

    Norstrom (1996) introduced an asymmetric precautionary loss function, which can be defined 
as follows [7] 

   L θ, θ  

Based on precautionary loss function, risk function R θ, θ  can be derived as follows 

R θ, θ E L θ, θ   

                  L θ, θ  h θ x dθ
∞

 

𝑅 𝜃, 𝜃
𝜃 𝜃

𝜃

∞

h θ x dθ                                              

                 𝜃 𝜃  h θ x dθ 2𝜃h θ x dθ
∞

𝜃
∞∞

h θ x dθ 

𝑅 𝜃, 𝜃 E θ x 𝜃 2E θ x 𝜃                                                                  

Taking the partial derivative for R θ, θ  with respect to θ and setting it equal to zero, gives 

𝜃 E θ x     

Hence, Bayes estimator relative to precautionary loss function, denoted by 𝜃  is given by 

𝜃 E θ x                                                                                                                               (10) 

In general, 

𝐸 u 𝛼, 𝛽 u 𝛼, 𝛽

∞∞

h 𝛼, 𝛽|x , … x  𝑑𝛼𝑑𝛽 

Where u(α,β) be any function for α and β. Therefore, 

𝐸 u 𝛼, 𝛽
,

∞∞
, ,…, ; ,     

, ,…, ; ,    
∞∞

 
   

i) Bayesian Estimation for the Shape Parameter α under Precautionary Loss Function 

To obtain Bayesian estimation for α, assume that, 

𝑢 𝛼, 𝛽 𝛼   



 

192 
 

    Ibn Al-Haitham Jour.for Pure&Appl.Sci.                                                    IHJPAS            
                     https://doi.org/10.30526/32.1.1914                                                                       Vol. 32 (1) 2019 

Therefore, 𝐸 𝛼 𝑥
∞∞

 , ,…, ; ,  α β

 , ,…, ; ,   α β
∞∞

 
    

Notice that, it is difficult to find the solution of the ratio of two integrals. Therefore, Lindley's 

approximate will be used to get 𝐸 𝛼 𝑥  as follows 

    𝑢 𝛼, 𝛽 𝛼  

 u α,β  2𝛼 , u , 2 ,  u α,β 0  ,  u ,
  = 0                                                   

𝜋 𝛼, 𝛽  
Г

  𝑐𝑒      

𝑝 𝑙𝑛𝜋 𝛼, 𝛽 𝑎 1 𝑙𝑛𝛼 𝑎𝑙𝑛𝑏 𝑏𝛼 𝑙𝑛Г 𝛼 𝑙𝑛𝑐 𝑐𝛽 

𝑝 𝑏  , 𝑝 𝑐 

Recall that,  

Ln L (x1,…,xn ; α,β) = nα ln β-n ln Г(α)-β ∑ x α 1 ∑ ln x   

L12 = 
,  

β
 

𝑙 , 0   

𝑙 ,
 =   

𝑙
,

 n Ψ" α   

σ     
Ψ′ α

              ,        𝜎                                                                                               

𝐸 𝛼 𝛼 u 𝜎 𝑝 u 𝜎 𝑙 u 𝜎 𝑙 u 𝜎 𝜎                                                                    

             𝛼 2
Ψ′ 𝑏 2𝛼

Ψ′ n Ψ" 𝛼
Ψ′

 
Ψ′     

            𝛼
Ψ′ 𝑏  Ψ"

Ψ′
                                                                                  (11)  

 Now, Substituting (11) into (10) yields, 

𝛼 𝛼
Ψ′ 𝑏

 Ψ"

Ψ′
                                                                                                           

ii) Bayesian Estimation for the Scale Parameter β under Precautionary Loss Function 

Assume that,  

u α, β β  then,                              
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   u α,β  0    , u ,
 = 0     ,     u α,β 2𝛽      ,  u , 2     

 Thus, 𝐸 𝛽 𝛽 u 𝜎 𝑝 u 𝜎 𝑙 u 𝜎                               

                      𝛽 𝑐   

                         𝛽                                                                                                    (12)                       

After Substituting (12) into (10) yields, 

 

𝛽 𝛽                                                                                                                       

Where 𝛼 , 𝛽  are the maximum likelihood estimators for α, β respectively. 

4. Simulation Study 

  In this section, Monte – Carlo simulation is employed to compare the performance of three 
estimates (moment, Maximum likelihood and Bayes Estimators under precautionary loss function) 
for unknown shape and scale parameters based on the mean squared errors (MSE’s) as follows 

MSE(𝜃  = 
∑

 

Where, I is the number of replications. 
We generated I = 3000 samples of size n = 20, 30, 50, and 100 to represent small, moderate and 
large sample sizes from Gamma distribution with α = 2, 3 and β = 0.5, 1. The values of α's prior 
parameters are chosen as a = 3, b = 3 and for β's prior parameter, c = 4.  

5. Discussion and Conclusion 

 The expected values and (MSE's) for estimating α and β are tabulated in Tables (1-8).  
The results of the Tables can be summarized by the following points 

1. The performance of Bayes estimates under precautionary loss function for two parameters α 
and β are the best, since they give smallest mean square error, as indicated for all 
combinations of initial values of parameters. Followed by maximum-likelihood estimates, 
for all cases                                                                      

2. It is clear that, the result for α (expected values and MSE's) at β = 0.5 are the same as the 
corresponding result when β = 1, the reason can be clarified easily, as follows 

According to moment method we have 

𝛼
̅

∑ ̅
       

     =  ∑ 𝑥                                                                                                                                 (13)                      

     Note that,  𝑥 , 𝑥 , … , 𝑥    is a random sample from a Gamma distribution defined by (1), where 
each observation say 𝑥  is generated independently and identically by the following equation 
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𝑥 ∑  log 𝑢     ,    i = 1, 2, …, n                                                                                   (14) 

    Where, 𝑢  is a random number followed uniform distribution with (0,1), i.e., 𝑢  ~  𝑈 0, 1  

After substituting (14) into (13) yields,                

𝛼
𝛽
𝑛

1
𝛽

 log 𝑢  

    Therefore, 𝛽 will be canceled from moment estimation for 𝛼. Recall that, the moment is the 
initial value for MLE. Also Bayesian estimator are depending on MLE , So the result for expected 
values and MSE for 𝛼 are the same as the corresponding value of 𝛼  for different values of 𝛽.      

3. It is observed that, MSE's of all estimators of shape parameter is increasing with the increase 
of the value of the shape parameter. Also, MSE values for all estimates are increasing with 
the increase of the scale parameter value in all cases. 

Table 1. The expected values for different estimators for unknown shape 
parameter α of Gamma distribution when α = 2 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 2.486393 2.486393 2.33479 2.334791 2.14737 2.147371 

30 2.298321 2.298321 2.194657 2.194658 2.085778 2.085778 

50 2.183145 2.183145 2.118412 2.118412 2.058392 2.058392 

100 2.090724 2.090724 2.055311 2.055311 2.027358 2.027357 

 

Table 2. The expected values for different estimators for unknown shape 
parameter α of Gamma distribution when α = 3 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 3.600494 3.600494 3.447432 3.447433 3.091556 3.091556 

30 3.405721 3.405721 3.299321 3.299319 3.082031 3.08203 

50 3.255532 3.405721 3.18809 3.299319 3.066335 3.08203 

100 3.126059 3.126059 3.089527 3.089528 3.032201 3.032202 

 

Table 3. The MSE values for different estimators for unknown shape 
parameter α of Gamma distribution when α = 2 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 1.13161 1.13161 0.80765 0.80765 0.52387 0.52387 

30 0.58915 0.58915 0.38833 0.38833 0.29354 0.29354 

50 0.29714 0.29714 0.18510 0.18510 0.15579 0.15579 

100 0.13609 0.13609 0.08313 0.08313 0.07647 0.07647 
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Table 4. The MSE values for different estimators for unknown shape 
parameter α of Gamma distribution when α = 3 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 2.06203 2.06203 1.62539 1.62540 1.02131 1.02132 

30 1.11338 1.11338 0.84883 0.84883 0.62012 0.62012 

50 0.61598 1.11338 0.44923 0.84883 0.37063 0.62012 

100 0.25924 0.25924 0.18543 0.18543 0.16827 0.16827 

 

Table 5. The expected values for different estimators for unknown scale 
parameter β of Gamma distribution when β = 0.5 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 0.63802 0.61058 0.59870 0.58464 0.58620 0.57713 

30 0.58456 0.57368 0.55831 0.55562 0.55171 0.55141 

50 0.55128 0.54540 0.53514 0.53420 0.53178 0.53201 

100 0.52472 0.52256 0.51588 0.51658 0.51444 0.51562 

 

Table 6. The expected values for different estimators for unknown scale 
parameter β of Gamma distribution when β = 1 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 1.27605 1.22115 1.19739 1.16928 1.10595 1.11258 

30 1.16913 1.14735 1.11661 1.11124 1.06368 1.07708 

50 1.10256 1.14735 1.07027 1.11124 1.04133 1.07708 

100 1.04945 1.04511 1.03176 1.03317 1.01838 1.02428 

 

Table 7. The MSE values for different estimators for unknown scale 
parameter β of Gamma distribution when β = 0.5 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 0.09335 0.06904 0.06875 0.05533 0.05957 0.05055 

30 0.04509 0.03596 0.03113 0.02778 0.02835 0.02615 

50 0.02224 0.01936 0.01490 0.01465 0.01408 0.01412 

100 0.01023 0.00824 0.00681 0.00627 0.00662 0.00615 
 

Table 8. The MSE values for different estimators for unknown scale 
parameter β of Gamma distribution when β = 1 

Method 
n 

𝛼  𝛼  𝛼  

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 0.37339 0.27617 0.27500 0.22131 0.18993 0.17587 

30 0.18037 0.14383 0.12452 0.11114 0.09764 0.09486 

50 0.08896 0.14383 0.05961 0.11114 0.05129 0.09490 

100 0.04091 0.03295 0.02723 0.02508 0.02535 0.02386 
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