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Abstract 

     In this paper, a Monte Carlo Simulation technique is used to compare the performance of 
MLE and the standard Bayes estimators of the reliability function of the one parameter 
exponential distribution. Two types of loss functions are adopted, namely, squared error loss 
function (SELF) and modified square error loss function (MSELF) with informative and non- 
informative prior. The criterion integrated mean square error (IMSE) is employed to assess 
the performance of such estimators. 
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1. Introduction  

   The reliability theory is related with random happening of unwanted events or failure during 
the life of a physical or biological system [1]. Reliability is an essential feature of a system. 
Basic concepts associated with reliability has been known for a number of years, however, it 
has got greatest significance during the past decade as a consequence of the use of highly 
complex systems. In reliability theory, the exponential distribution plays an important role in 
life testing experiments.  Historically, it was the first life time model for which statistical 
procedures were widely developed. Many researchers gave numerous results and generalized 
the exponential distribution as a life time distribution, particularly, in the field of industrial 
life testing. The exponential distribution is desirable because of its simplicity and its own 
features such as lacks memory and self-producing property. The probability density, 
cumulative distribution and reliability functions of one parameter exponential distribution are 
respectively defined as [2]: 
 

𝑓 𝑡, ɵ ɵ𝑒 ɵ ,               𝑡, ɵ 0                                                                                           1  The 
Cumulative distribution function is given by:  
F t pr T t 1 e ɵ                                                                                                             2    
R t 1 F t e ɵ                                                                                                                       3    

2.1. Maximum Likelihood Estimator  

   Let 𝑡 , 𝑡 , … , 𝑡  be the set of n random lifetimes from the one parameter exponential 
distribution then  
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L ɵ; t , t , … , t ɵ e ɵ ∑                                                                                                           4   
    The value of ɵ maximize L, also maximize ln L. Hence, by taking the natural logarithm for 
the likelihood function we get [3]  

lnL ɵ; t , t , t nlnɵ ɵ 𝑡  

   Differentiating the log likelihood function with respect to ɵ and setting the resultant 
derivative equal to zero, yield: 
𝜕 ln 𝐿 ; 𝑡 , 𝑡 , … , 𝑡

𝜕ɵ
𝑛
ɵ

𝑡 0 

Therefore the MLE for ɵ denoted by ɵ  is:    

ɵ
𝑛

∑ 𝑡
𝑛
𝑇

                                                                                                                              5  

Where we suppose that ∑ 𝑡  . 
Hence, the MLE of the reliability function will be  

𝑅 𝑡 𝑒 ɵ                                                                                                                              6  

2.2. Standard Bayes Estimators 

    The researchers employed two types of loss functions, namely, the squared error loss 
function (SELF) and modified squared error loss function (MSELF) . The Bayes estimator of 
the parameter ɵ is the value of ɵ that minimize the risk function R(ɵ, ɵ  where [4]  

𝑅 ɵ, ɵ 𝐸 𝐿 ɵ, ɵ 𝐿 ɵ, ɵ ℎ ɵ׀𝑡 𝑑𝜃                                                                                    
 

ɵ
7  

In the case of squared error loss function, we have:   

𝐿 𝜃, 𝜃 𝜃 𝜃                                                                                                                               8    

  Then, the risk function will be     

R ɵ, ɵ  
 

ɵ
ɵ ɵ h ɵ׀t dɵ 

            ɵ ℎ ɵ׀𝑡 𝑑ɵ 2ɵ ɵℎ ɵ׀𝑡 𝑑ɵ
 

ɵ
 

ɵ ɵ ℎ ɵ׀𝑡 𝑑ɵ
 

ɵ 

𝑅 ɵ, ɵ  ɵ 2ɵ𝐸 ɵ׀𝑡 𝐸 ɵ   𝑡׀

   Differentiating 𝑅 ɵ, ɵ  with respect to ɵ and setting the resultant  derivative equal to zero, 
we get: 

2ɵ 2E ɵ׀𝑡 0 
Solving for ɵ implies that   

ɵ E ɵ׀t                                                                                                                                              9  

The Modified square error loss function is defined as [5]:  
L ɵ, ɵ  ɵ ɵ ɵ                                                                                                                           10  
Where r is a positive integer. 
If (MSELF) is adopted, it can be in the same manner show that the Bayes estimator of ɵ is 

ɵ
𝐸 ɵ 𝑡׀

𝐸 ɵ 𝑡׀
                                                                                                                                  11  
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2.3. Posterior Density Based on Jeffrey's prior information  
    Let us assume that ɵ has non informative prior density. Jeffrey's (1961) developed a general 
rule for obtaining the prior distribution of ɵ [6]. He established that the single unknown 
parameter ɵ which is regarded as a random variable follows such a distribution that is 
proportional to the square root of the fisher information on ɵ, that is [5]: 

𝑔 ɵ  𝛼 𝐼 ɵ                                                                                                                                          12  
That is 

 𝑔 ɵ 𝑐 𝐼 ɵ 

     Where c is a constant of proportionality and I(ɵ) represent fisher information defined as 
follows: 

𝐼 ɵ 𝑛𝐸
𝜕 𝑙𝑛𝑓 𝑡, ɵ

𝜕ɵ
 

 If 𝑔 ɵ  denote Jeffrey's prior information then  

𝑔 ɵ 𝑐 𝑛𝐸
𝜕 𝑙𝑛𝑓 𝑡; ɵ

𝜕ɵ
                                                                                                       13  

     For the exponential distribution we have  
𝑙𝑛𝑓 𝑡, ɵ 𝑙𝑛ɵ ɵ𝑡 

;ɵ

ɵ ɵ
 - t  

The second derivative is 
∂ lnf t; ɵ

∂ɵ
1

ɵ
 

Hence,  

𝐸
𝜕 𝑙𝑛𝑓 𝑡; ɵ

𝜕ɵ
1

ɵ
 

   Substituting in equation (13) it follows that   

𝑔 ɵ
𝑐
ɵ

√𝑛   

   From Bayes theorem the posterior density function of ɵ denoted by ℎ ɵ׀𝑡  can be derived 

as [4]: 

ℎ ɵ׀𝑡 , … , 𝑡
ɵ ɵ; ,…,  

ɵ ɵ;  ,…, ɵ
  

ℎ ɵ׀𝑡 , … , 𝑡 ɵ  ɵ

ɵ  ɵ ɵ
     ,T=∑ 𝑡                         

   Hence, the posterior density function for ɵ based on Jeffery's prior information will be: 

ℎ ɵ׀𝑡 , … , 𝑡  
 ɵ  ɵ

Г
                                                                                                           14    

    The posterior density in equation (14) is defined identified as a density of the Gamma 
distribution, that is: 

 ɵ׀𝑡 , 𝑡 , … , 𝑡 ~ Gamma (n, ) with E(ɵ) =  and var(ɵ) =  

    ɵ~Gamma (n , )  

 
 



 

104 
 

Ibn Al-Haitham Jour. for Pure & Appl. Sci.                                                   IHJPAS     
                           https://doi.org/10.30526/32.1.1885                                                                      Vol. 32 (1) 2019 

2.4. Posterior Density Based on Gamma Prior Distribution 

   Assuming that ɵ has informative prior as Gamma distribution which takes the following 
form: 

𝑔 ɵ
𝛽 ɵ 𝑒 ɵ

Г 𝛼
        ; ɵ 0  , 𝛽 0  , 𝛼 0                                                                     15  

Where α,β are the shape parameter and scale parameter  respectively. 
The posterior density function is  

ℎ ɵ׀𝑡
𝑔 ɵ 𝐿 ɵ; 𝑡 , … , 𝑡

𝑔 ɵ 𝐿 ɵ; 𝑡 , … , 𝑡 𝑑ɵ
                                                              

Thus 

ℎ ɵ׀𝑡
𝑃  ɵ 𝑒 ɵ

Г 𝛼 𝑛
                                                                                                            16  

Where P β T  
It can easily be noted that   

(ɵ׀𝑡 ~𝐺𝑎𝑚𝑚𝑎 𝛼 𝑛,  with E(ɵ) =     ,Var(ɵ) = ( )  

 
2.5. Bayes Estimator When (SELF) is Adopted  
   a: The case of Jeffrey's prior information.  
From equation (9) we found that:  

ɵ E ɵ׀t ɵℎ ɵ׀𝑡 𝑑𝜃   
 

  

ɵ
n
T

                                                                                                                                                17  

    Similarly, the Bayes estimator of the reliability function can be obtained: 
as follows: 

R t E R t t׀ R t h ɵ׀t dθ   
 

 

R t
T

T t
                                                                                                                              18  

   b: The case of Gamma prior distribution. 
 In this case we have  

ɵ E ɵ׀t ɵh ɵ׀t dθ                                                                                     19
 

  

The estimator of the reliability function can be obtained as: 

𝑅 𝑡 E R t t׀ 𝑅 𝑡 ℎ ɵ׀𝑡 𝑑𝜃  
𝑃

𝑃 𝑡
                                                  20

 

 

 
2.6. Bayes Estimator When (MSELF) is Adopted  
   a: The case of Jeffrey's prior information  
From equation (11) we have:  

ɵ
𝐸 ɵ 𝑡׀

𝐸 ɵ 𝑡׀
                                                                                         

    The 𝑟  moment of ɵ׀𝑡 can be evaluated as follows: 
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E(ɵ 𝑡׀ ɵ ℎ ɵ׀𝑡 𝑑ɵ 

Hence,  

E(ɵ 𝑡׀ Г

Г
                                                                                                                                   21  

    Let us assume that r=1,3 and ɵ , ɵ  represent the estimator of the parameter ɵ 

corresponding to r=1,3 respectively then by applying the formulas in (11) and (21) we get  

ɵ
ɵ ׀

ɵ ׀

Г
Г
Г
Г  

                                                                                                          22   

ɵ
ɵ ׀

ɵ ׀

Г
Г
Г
Г

                                                                                                          23   

     Similarly, the Bayes estimators of the reliability function can be obtained as follows 

𝑅 𝑡
׀

׀
  

𝑅 𝑡
𝐸 𝑅 𝑡 𝑡׀ 

𝐸 𝑅 𝑡 𝑡׀ 
 

    Now, we have to determine each of E[( 𝑅 𝑡 𝑡׀ ,E[ 𝑅 𝑡 𝑡׀  and E 𝑅 𝑡 𝑡׀   

𝐸 𝑅 𝑡 𝑡׀
𝑇

𝑇 𝑡
 

E 𝑅 𝑡 𝑡׀ 𝑅 𝑡 ℎ ɵ׀𝑡 𝑑ɵ 

                    =  

    By the same way we find that, 

E(𝑅 𝑡 𝑡׀  

E 𝑅 𝑡   

  Hence, 

𝑅 𝑡

𝑇
𝑇 2𝑡

𝑇
𝑇 𝑡

𝑇 𝑡
𝑇 2𝑡

                                                                                                24  

 𝑅 𝑡                                                                                                            25  

b: The case of Gamma prior distribution 
   From equation (11) we have:  

ɵ
𝐸 ɵ 𝑡׀

𝐸 ɵ 𝑡׀
                                                                                         

    The 𝑟  moment of ɵ׀𝑡 can be evaluated as follows: 

𝐸 ɵ 𝑡׀ ɵ ℎ  ɵ׀𝑡 𝑑ɵ 

𝐸 ɵ 𝑡׀
Г 𝛼 𝑛 𝑟
Г 𝛼 𝑛 𝑃

                                                                                                                   26  

   Let us assume that r=1,3 and ɵ , ɵ  represent the estimator of the parameter ɵ 
corresponding to r=1,3 respectively then by applying the formulas in (11) and (26) we get:  
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ɵ
𝐸 ɵ 𝑡׀

E ɵ׀t

𝛼 𝑛 𝛼 𝑛 1
𝑃

𝛼 𝑛
𝑃

𝛼 𝑛 1
𝑃

                                                 27  

ɵ
𝐸 ɵ 𝑡׀

𝐸 ɵ 𝑡׀

𝛼 𝑛 𝛼 𝑛 1 𝛼 𝑛 2 𝛼 𝑛 3
𝑃

𝛼 𝑛 𝛼 𝑛 1 𝛼 𝑛 2
𝑃

 

          =                                                                                                                                   28  

Similarly, the Bayes estimators of the reliability function can be obtained as follows 

𝑅 𝑡
׀

׀
  

𝑅 𝑡
𝐸 𝑅 𝑡 𝑡׀ 

𝐸 𝑅 𝑡 𝑡׀ 
 

Now, we have to determine each of E[( 𝑅 𝑡 𝑡׀ , E[ 𝑅 𝑡 𝑡׀  and E 𝑅 𝑡 𝑡׀   

E(R(t)׀𝑡 𝑅 𝑡 ℎ ɵ׀𝑡 𝑑ɵ 

               =                                                                                        

 𝐸 𝑅 𝑡 𝑡׀  is obtained as follows 

E 𝑅 𝑡 𝑡׀ 𝑅 𝑡 ℎ ɵ׀𝑡 𝑑ɵ 

                    =                                                                                  

Similarly, we find that 

E 𝑅 𝑡 𝑡׀
𝑃

𝑃 3𝑡
    

E 𝑅 𝑡 𝑡׀
𝑃

𝑃 4𝑡
    

Hence, 

𝑅 𝑡
׀

׀
                                                                    29  

𝑅 𝑡
׀ 

׀ 
                                                                   30  

3. Simulation Study 

   The simulation study was conducted in order to compare the performance of the maximum 
likelihood estimator (MLE) and Bayesian estimators of the reliability function R(t)of one 
parameter exponential distribution. 
We adopted the integrated mean squared error (IMSE) as a criterion of comparison where  

𝐼𝑀𝑆𝐸 𝑅 𝑡𝑖
1
𝐿

1
𝑛

𝑅 𝑡 𝑅 𝑡               

                          
1
𝑛

𝑀𝑆𝐸 𝑅 𝑡   
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    Where 𝑛 is the random limits of 𝑡 , using t=(0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8,0.9,1).  

L is the number of replications which we assumed that L=1000 in our study, 𝑅(𝑡 ) is the 
estimator of R(t) at the 𝐿 replication. 
    The Bayesian estimators of R(t) are derived with respect to two loss function which are the 
Square error loss function (SELF) and Modified squared error loss function (MSELF), 
moreover, the informative and non-informative prior were postulated. The sample sizes 
n=10,50, 100 and 200 were chosen to represent small, moderate, large and very large sample 
sizes from the one parameter exponential distribution. The postulated values of the unique 
parameter ɵ were ɵ=0.5,1.5 and the values of the parameters for Gamma prior were α=0.3,1 
and β=1.2,3. 
    The values assumed for the loss parameter of modified loss function were r=1,3. The 
results are presented in Tables (1-4). 
 

Table 1. (IMSE) values of the reliability function estimators by using Jeffrey's prior information at ɵ=0.5 

                200               100                 50                      10        
       

            n         
Estimator  

0.002636 0.0040830.0047130.000574 MLE 
0.002632 0.0040600.0046350.000526 JSqu 
0.002624 0.0040140.0044780.000450 JMSq1    r=1 
0.002608 0.0039180.0041710.000370 JMSq2    r=3 

  

Table 2. (IMSE) values of the reliability function estimators by using Jeffrey's prior information at ɵ=1.5 

                    200                      100                        50                        10           n  
Estimator      

0.001262 0.0023160.0034440.001008 MLE 
0.001261 0.0023090.0033960.000911 JSqu 
0.001260 0.0022930.0032930.000865 JMSq1     r=1 
0.001257 0.0022580.0030720.001262 JMSq2     r=3 

 

Table 3. (IMSE) of the reliability function estimators by using Gamma prior information at ɵ=0.5 

             200              100                50               10                                n       
Estimator  

0.002619 0.0039380.0042770.000404β=1.2 =0.3α              
GSqu 0.002653 0.0037480.0038990.000335β=3 

0.002605 0.0039280.0043950.000508β=1.2 α=1 
0.002563 0.0037640.0039450.000353β=3 
0.002611 0.0038900.0041300.000359β=1.2 α=0.3     GMSq1    

r=1 0.002544 0.0037000.0037610.000324β=3 
0.002597 0.0038910.0042470.000427β=1.2 α=1 
0.002555 0.0037160.0038080.000322β=3 
0.002595 0.0037930.0038460.000322β=1.2 α=0.3    GMSq2    

r=3 0.002526 0.0036020.0034950.000339β=3 
0.002580 0.0037850.0039590.000329β=1.2 α=1 
0.002537 0.0036190.0035440.000300β=3 
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Table 4. (IMSE) of the reliability function estimators by using Gamma prior information at ɵ=1.5 

             200              100                50               10                                n      
 Estimator  

0.001250 0.002212 0.003020 0.000856 β=1.2 =0.3α        GSqu   

0.001225 0.002057 0.002459 0.001549 β=3 

0.001250 0.002214 0.003035 0.000713 β=1.2 α=1 

0.001227 0.002045 0.002501 0.001096 β=3 

0.001248 0.002193 0.002913 0.001071 β=1.2 α=0.3     GMSq1    
r=1 

0.001223 0.002035 0.002352 0.001978 β=3 

0.001249 0.002195 0.002930 0.000816 β=1.2 α=1 

0.001225 0.002023 0.002394 0.001451 β=3 

0.001244 0.002152 0.002688 0.001798 β=1.2 α=0.3     GMSq2    
r=3 

0.001217 0.001988 0.002135 0.002966 β=3 

0.001245 0.002155 0.002709 0.001353 β=1.2 α=1 

0.001219 0.001975 0.002179 0.002319 β=3 

 

4. Simulation Results and Conclusions 

    From our simulation study, the following results are clear   
 From table 1: when ɵ=0.5 the Bayes estimator under modified squared error loss 

function when r=3 with Jeffrey's prior is the best comparing to other estimators for all 
sample sizes. 

 From table 2: when ɵ=1.5 the Bayes estimator under modified squared error loss 
function when r=3 with Jeffrey's prior is the best comparing to other estimators for 
sample sizes (50,100,200) and in sample size (10) the best is modified squared error 
loss function when r=1. 

 From table 3: when ɵ=0.5 for (n=10) the best is Bayes estimator under modified 
squared error loss function when r=3 with Gamma prior (α=1, β=3) and for 
(n=50,100,200) the Bayes estimator under modified squared error loss function when 
r=3 with Gamma prior (α=0.3, β=3) is the best. 

 From table 4: when ɵ=1.5 for (n=10) the Bayes estimator under square error loss 
function with Gamma prior (α=1, β=1.2) is the best, and for (n=50,200) the Bayes 
estimator under modified squared error loss function when r=3 with Gamma prior 
(α=0.3, β=3) is the best and for (n=100) the Bayes estimator under modified squared 
error loss function when r=3 with Gamma prior (α=1, β=3) is the best. 

 According to the simulation results we conclude that the Bayes estimator under 
modified squared error loss function with r=3 is superior to the performance of other 
estimators in almost cases that are studied in this paper, where the integrated mean 
squared error (IMSE) is employed as a criterion to assess the performance of such 
estimators. 
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