
IHSCICONF 2017                                                                                              Special Issue 
Ibn Al-Haitham Journal for Pure and Applied science        https://doi.org/ 10.30526/2017.IHSCICONF.1867        
                                              

 

For more information about the Conference please visit the websites:   
http://www.ihsciconf.org/conf/ 

    www.ihsciconf.org  
                                                                         Mathematics |330 
 

On Contractible J-Saces 

Narjis A. Dawood  

narjisabduljabbar@yahoo.com 
Dept. of Mathematics / College of Education for Pure Science/ Ibn Al –

Haitham- University of Baghdad 
Suaad G. Gasim  

Suaad.gedaan@yahoo.com 

Dept. of Mathematics / College of Education for Pure Science/ Ibn Al –
Haitham- University of Baghdad 

 

 
  
Abstract 
        Jordan  curve  theorem  is  one  of  the  classical  theorems  of  mathematics, it states  the  
following :  If  C  is a graph of  a  simple  closed curve  in  the complex plane the complement  
of  C is the union of  two regions, C being the common  boundary of the two regions. One of 
the region   is bounded and the other is unbounded. We introduced in this paper one of 
Jordan's theorem generalizations. A new type of space is discussed with some properties and 
new examples. This new space called Contractible J-space. 
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1. Introduction 
       Recall the Jordan  curve  theorem which states that,  if  C  is  a  simple closed curve  in  
the  plane  ℝ ,  then  ℝ \C  is  disconnected  and  consists  of  two components  with  C  as  
their  common  boundary,  exactly  one  of  these   components  is  bounded  (see, [1]). 
    Many generalizations of Jordan curve theorem   are discussed by many researchers, for 
example not limited, we recall some of these generalizations. In 1967,  Kopperman,  
Khalimsky  and  Meyer  stated  a  generalization  in ℤ  equipped with the khalimsky  
topology, (see[2]).  In 1991,  kong ,  Kopperman  and  Meyer  introduced  the  following  
result:  If  Γ is  an  n- connected  closed  curve  in  ℤ ,  then  ℤ \𝛤  has  two  and  only  two n 
– connectivity  components  n n 12, n 4,8 . This result is a kind of  generalization  of  
the  classical  Jordan  curve  theorem in  ℝ , (see [3]). In 1999,  E.Micael  introduced  and  
studied  J- spaces   and  strong J- spaces  which  are  considered  to  be  generalizations  of  
properties  of  Jordan  curve  theorem , ( see [4]). 
In 2007, Y.Nanjing  introduced  the  concept  of  LJ- spaces  exploited  the  common  
generalization  of  Lindelöf  spaces  and J- spaces, ( see [5]). In 2007, A.Kornitowicz  worked  
hard  to  mark  crucial  points  in  the  proof  of Jordan  curve  theorem , ( see[6]). In 2008, 
E.Bouassida  introduced  a  new  proof  of  the  Khalimsky's  Jordan  curve  theorem  using  
the  specificity  of  the  Khalimsky's plane   as  an  Alexandroff  topological  space  and  the  
specific  properties  of  connectivity  on  these  spaces, ( see [7]). In this paper we introduced 
another generalization of Jordan curve theorem by using the concept of contractible space. 
Suitability with our work, we assumed all functions  are continuous and all spaces are T , in 
spite of most of our results are useful wanting that presumption. 
 

2. Preliminaries 
 

      In this section, we give some important definitions and properties that we need in our 
work. 
Definition (2.1) [1]: Two continuous maps  f , f : X → Y are said to be homotopic if there is a 
continuous map F: X I → Y (I is the closed interval 0,1 ), such that  F x, 0
f x  and F x, 1 f x . This homotopic denoted by f ≅ f . 
Definition (2.2) [1]: Two spaces X and Y are of the same homotopic type if there exist 
continuous maps f: X → Y and g: X → Y such that gf ≅ I: X → X and fg ≅ I: Y → Y. The maps 
f and g are then called homotopy equivalences, we also say that X and Y are homotopy 
equivalent. 
Definition (2.3) [8]: If Y is a subspace of a topological space X, a retraction from X to Y is a 
continuous mapping r: X → Y  such that r p p, ∀ p ∈ Y. In this case Y is called a retract of 
X. 
Definition (2.4) [8]: A subspace Y of a space X is called a deformation retract if there is a 
continuous retract r: X → Y such that the identity map from X to X homotopic to the map i ∘ r, 
where i is the inclusion of Y in X. 
Definition (2.5) [9]: Let X be a topological space and A the subset of X 0,1  given by X
1 .  By the cone over X, mean the space   X 0,1 /A  and denoted by TX. 

Definition (2.6) [10]: A space X is path connected if, for every 𝑎, 𝑏 ∊ X, there exists a path in 
X from 𝑎 to 𝑏. 
Definition (2.7) [10]: A space X is simply connected if it is path connected and π X, x°
e , ∀x° ∈ X, where π X, x°  is the fundamental group of a  space X at the basepoint 𝑥°. 
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Examples (2.8) [11]:  

1. The unite sphere S  in ℝ  is path connected ∀ n 1. 
2. The unite ball  B  in ℝ  is path connected. 
3. Every open ball and every closed ball in ℝ  is path connected. 

Definition (2.9) [12]: A function from X to Y is said to be null- homotopic if it is homotopic 
to some constant function. 
Definition (2.10) [11]: A space X is called contractible space if the identity function  i : X →
X is null- homotopic. 
Examples (2.11): 

1. The Euclidean space ℝ𝒏 is contractible [13]. 
2. A discrete space with more than one point is not contractible [14]. 

In the following we give some results about trivial spaces: 
Remarks (2.12):  

1. Any subspace (with more than one element) of a discrete space is not contractible 
since every subspace of a discrete space is also discrete. 

2. A subset Y of ℝ is contractible if Y is not discrete space (with more than one 
element). 

3. An indiscrete space is a contractible space; this follows from the fact says that any 
function with indiscrete codomain is continuous. 

4. Any subspace of an indiscrete space is contractible since every subspace of an 
indiscrete space is also indiscrete. 

  
Definition (2.13) [15]: A subset Y of ℝ  is said to be convex if for every pair of points in X, 
the line segment connecting the points is also in X. 
Propositions (2.14) [15]: 

1. Every convex subset of ℝ  is contractible. 
2. Any open ball in ℝ  is contractible. 

Theorem (2.15):  

The following conditions  are equivalent  for any space X 

1. X is a contractible space. 
2. X is a homotopy equivalent to a point [16]. 
3. There exists a point  x° ∈ X such that 𝑥°  is a deformation retract of X [17]. 
4. X is a retract of any cone over it [16]. 
5. Every map f: X → Y, for arbitrary Y, is null-homotopic [18]. 
6. Every map f: Y → X, for arbitrary Y, is null-homotopic [18]. 

Proposition (2.16) [10]: Every contractible space is path connected space. 
Proposition (2.17) [10]: Every contractible space is simply connected space. 
Remark (2.18) [19]: The convers of Propositions (14.1) and (15.1) is not true in general. For 
example, S   is path connected for every integer n 1, and simply connected  for every 
integer n 2. Yet these spheres are not contractible. 
Remark (2.19) [1]: The continuous image of a contractible space need not be contractible. 
For example: 
f: a, b → S  is continuous and onto, since S  is a quotient space for a, b  by the relation 
x~y if x a and y b. Note that a, b  is contractible, but  S  is not.  
Theorem (2.20) [20]: If X is a contractible space, then π X, x° e   for all x° ∈ X. 
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Proposition (2.21) [18]: A retract of a contractible space is contractible. 
Proposition (2.22) [10]: If X is a contractible and Y is path connected, then any two 
continuous maps from X onto Y are homotopic (and each is null- homotopic). 
Proposition (2.23) [16]: Two homeomorphic spaces are homotopy equivalent. Thus the 
classification of spaces up to homotopy equivalence is coarser than the homeomorphism 
classification. 
Remarks (2.24) [21]:  

1. Homotopy relation on the collection of all topological spaces is an equivalence 
relation. 

2. Homotopy relation is an equivalence relation on the collection of all maps from  
X to Y.  

Definition (2.25) [22]: A closed continuous function with compact preimages of points is 
called perfect. 
Theorem (2.26) [22]: If a function f: X → Y is a perfect function, then for any compact subset 
F of Y, the preimage f F  is a compact subset of X.  
 

3. Contractible 𝐉- Space 
Definition (3.1): By a contractible J- space we mean the space satisfies  the property which 
provides; for every proper closed  subsets E, F of X with E ∪ F X and  E ∩ F compact, either 
E or F is contractible. 
Remark (3.2): If the closed cover in definition (3.1) is not proper, then every contractible J- 
space must be contractible. 
Remark (3.3): If a topological space X has no proper closed cover, then X is a contractible J- 
space. It follows from this fact that every indiscrete space is a contractible J- space. 
Remark (3.4):A space  X is a contractible J- space if, whenever every subspace of it is 
contractible. 
Example (3.5): The usual space ℝ is a contractible J- space, for if E, F  is a closed cover of 
ℝ with E⋂F compact, then E and F can not be both discrete, thus E or F is contractible ( see 
Remark (2.12), no2). 
Example (3.6): A discrete space with more than two points is not contractible J- space, 
follows from Example (2.11), no2. 
Remark (3.7): A subspace Y of ℝ   is a contractible J- space if it is not discrete space (with 
more than two elements) follows from (Remark (2.12), no2). 
Example (3.8): Let X be a non empty set and A is a proper subset of X . Define a topology on 
X  by  τ X, ∅, A , then X, τ  is a contractible              J- space since X has no proper closed 
cover. 
Remark (3.9): If X is a contractible space, then it is  not contractible                J- space in 
general.  
For instance: Let X be a subspace of Euclidian space ℝ  such that X x, y ∈
ℝ , x 1 y 1 ∪ x, y ∈ ℝ , x 1 y 1 .     Let E, F be two subsets of X 
such that 
E x, y ∈ ℝ , x 1 y 1 ∪ x, y ∈ ℝ , x 1 y 1 ,  
F x, y ∈ ℝ , x 1 y 1 ∪ x, y ∈ ℝ , x 1 y 1  then E and F are 
closed subsets of X with A ∪ B X and E⋂F x, y ∈ ℝ , x 1 y 1 ∪

x, y ∈ ℝ , x 1 y 1  which is compact subset of X, but neither E nor F is 
contractible. Hence X is not contractible J- space, but X is contractible since X is closed ball in  
ℝ . 
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Remark (3.10): A contractible J- space need not be contractible. 
 
For example: The unite circle S  as a subspace of ℝ  is not contractible, but it is contractible 
J- space since every proper subset of  S  is contractible. 
Theorem (3.11): For any space X, these following conditions  are valent: 

1. X is a contractible J- space. 
2. For every proper closed cover E, F  with E ∩ F compact E or F is homotopy 

equivalent to a point. 
3. For every proper closed cover E, F  with E ∩ F compact, there exists x° ∈ E  or x° ∈

F  such that x°  is a deformation retract of E (or of F). 
4. For every proper closed cover E, F  with E ∩ F compact, E or F is a retract of any 

cone over it. 
5. For every proper closed cover E, F  with E ∩ F compact, every map f from E or F  to 

an arbitrary space Y, is null- homotopic. 
6. For every proper closed cover E, F  with E ∩ F compact, every map f from an 

arbitrary space Y to E or F  is null- homotopic. 
Proof: Follows from theorem (2.15) and definition (3.1). 
Proposition (3.12): If X is a contractible J- space, then for every proper closed cover E, F  
with E ∩ F compact, E or F is path connected. 
Proof: Follows from proposition (2.16) and definition (3.1). 
Remark (3.13): If for every proper closed cover E, F  of a space X with E ∩ F compact, 
E or F is path connected, then  X need not be contractible J- space. 
For example: Let us take the example of remark (3.9), as we saw in this example X is not 
contractible J- space, but for every proper closed cover E, F  of X with E ∩ F compact, E or F 
is path connected. 
Proposition (3.14): If X is a contractible J- space, then for every proper closed cover E, F  
with E ∩ F compact, E or F is simply connected. 
Proof: Follows from proposition (2.17) and definition (3.1). 
Remark (3.15): The opposite direction of proposition (3.14) is not true in general. 
For example: Let X be a subspace of ℝ  such that X E ∪ F, where E x, y, z ∈
ℝ , x 1 y z 1  and 
F x, y, z ∈ ℝ , x 3 y z 1 , then E, F  is a closed cover of X with E ∩ F

2,0,0  which is compact, but neither E nor F is contractible. Hence X is not contractible J- 
space, but E and F are simply connected since both of them are homotopic equivalent to S . 
Remark (3.16): The property of being contractible J- space is not a weak hereditary property, 
and thus not hereditary property. 
For example: The usual space ℝ is a contractible J- space, but the natural numbers ℕ as a 
subspace of ℝ is not contractible J- space since the induced topology of the usual topology 
with respect to ℕ is the discrete topology. 
Proposition (3.17): If A is a subset of a contractible J- space with compact boundary, then 
cl A  or cl X\A  is contractible. 
Proof: Consider the closed cover cl A  , cl X\A  of  X, such that  cl A  ∩ cl X\A  ∂A 
which is compact, it follows by definition of contractible J- space that cl A  or cl X\A  is 
contractible. 
Remark (3.18): If X and Y are two contractible J- spaces, then X Y need not be so. 
For example: Let X 1,2  and τ D the discrete topology, then X is contractible J- 
space since 1 , 2  is the only proper closed cover of X with 1 ⋂ 2 ∅ which is 
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compact and 1  and 2  are contractible. But  X X 1,1 , 1,2 , 2,1 , 2,2 , is not 
contractible J- space since it has more than two elements and by example (3.6). 
 
Definition (3.19): A continuous function f: X → Y  is said to be   contractible  if f A  is a 
contractible subspace of  Y  for each contractible subspace A of  X. 
Remarks (3.20):  

a) The identity function on any topological space is a contractible function. 
b) Any constant function is a contractible function. 
c) Any function defined from any topological space to an indiscrete space is contractible 

function. 
Example (3.21): A function f: ℝ, I → ℝ such that f x x, ∀x ∈ ℝ, is not contractible 
function since ℕ is a contractible subspace of ℝ with the indiscrete topology, but f ℕ ℕ is 
not contractible subset of ℝ with the usual topology. 
Remark (3.22): A continuous function need not be contractible function. 
For example: Let f: a, b → S  such that f x e  , ∀x ∈ a, b  , clear that f is continuous 
onto function, but not contractible function since a, b  is a contractible set while S  is not. 
Remark (3.23): A contractible function is not necessary to be continuous function. 
For example: Let X 1,2,3  , and τ X, ∅, 1 , and let f: X → X such that f 2 f 3
1  and  f 1 2, then f is a contractible function since every subset of X is contractible, and 
thus f A  ⊆  X is contractible for each contractible A ⊆  X. But f is not continuous function 
since 1 ∈ τ while f 1 2,3 ∉ τ.  
Proposition (3.24): The property of being contractible J- space is preserved by the perfect and 
contractible function from X onto Y. 
Proof: Let E, F be closed subset of Y with E ∪ F Y and E ∩ F compact, then f E , f F  
are closed subsets of X since f is continuous, and f E ∩ f F f E ∩ F  which is 
compact since f is perfect,  and f E ∪ f F X, but X is contractible J-space, so 
f E  or f F  is contractible, it follows by definition of contractible function that  
f f E  or f f F  is contractible, but f is surjective, so E or F is contractible. Hence Y is 
contractible J- space. 
Proposition (3.25): Every homeomorphism function is a contractible function. 
Proof: f: X → Y be a homeomorphism function, and let A be a contractible subset of  X, we 
have to show that f A  is contractible subset of Y. Note that   A and f A  are homeomorphic 
spaces, it follows by proposition (2.23) that  A and f A  are homotopy equivalent. Since A is 
contractible,  it follows  by theorem (2.15) and remark (2.24) that f A  contractible. 
Corollary (3.26):  If the topological spaces X and Y are homeomorphic spaces and one of 
them is contractible J- space, then so is the other. 
Proof: Follows from propositions (3.24) and (3.25). 
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