Ibn Al-Haitham J. for Pure & Appl. Sci.

Vol. 28 (1) 2015

Influence of Doping on K₂SO₄ Crystal Properties

Tariq A.Al- Dahair Maryam E.Al-Mahdawy

Dept. of physics/College of Education for Pure Science (Ibn Al-Haitham)/University of Baghdad

Received in:22June 2014Accepted in:15September2014

Abstract

Single crystals of pure and Cu^{+2} , Fe^{+2} doped potassium sulfate were grown from aqueous solutions by the slow evaporation technique at room temperature. with dimension of (11x9 x4)mm³ and (10x 8x 5)mm³ for crystal doping with Cu &Fe respectively. The influence of doping on crystal growth and its structure revealed a change in their lattice parameters(a=7.479 Å ,b=10.079 Å ,c=5.772 Å)for pure and doping (a=9.687 Å, b=14.926 Å ,c= 9.125 Å) & (a=9.638 Å , b= 8.045 Å ,c=3.271 Å) for Cu & Fe respectively. Structure analysis of the grown crystals were obtained by X-Ray powder diffraction measurements. The diffraction patterns were analyzed by the Rietveld refinement method. Rietveld refinement plots for showing the experimental (red circles)calculated (black line) and difference profiles (blue line); green tick marks indicate reflection positions XRD measurements show the crystal system of orthorhombic.

Key words: crystal growth, K_2SO_4 , doping, Cu^{+2} , Fe^{+2} X-ray diffraction, Differential scanning calorimetric (DSC).

المجلد 28 العدد (1) عام 2015

Ibn Al-Haitham J. for Pure & Appl. Sci.

Introduction

The basis of various technology advancement is the crystal growth. The control of the grown crystal during crystallization is very important to the industry. Grown under different conditions and also by different methods like, melt growth, vapor phase growth, solution growth and gel growth are described by [1] and references there in . solution growth aqueous is one of the most efficient and simplest processes which can be employed for crystal growth .In addition The ease in handling and the readiness in its miscibility with the solvents make it an attractive technique for crystal growth. A number of factors such as degree of saturation type of solvent presence of impurities and the change in growth conditions presumably affect significantly the morphology and properties of the crystal [2]. Potassium sulfate crystals are used in the field of analytical chemistry as reagent medicine, manufacture of glass and feed additive .Potassium sulfate (PS) K2SO4belongs at room temperature to the orthorhombic space group D_{2h}^{16} (Pnma) and has four formula units per unit cell, with lattice parameters ,a= 7.476 Å, b= 10.071 Å and c= 5.763 Å [3]. The substance transforms upon heating at T_t \approx 587 °C into a hexagonal structure D_{6h}⁴ =P6₃/mmc with a=5.92 Å and c=8.182 Å where the oxygen positions of the SO4-2 tetrahedra are only partially occupied [4]. The hexagonal high temperature phase of the crystal is known as α -K₂SO₄and the orthorhombic phase as β -K₂SO₄. Analogous phase transformations (PT') from α - to β -type phase are shown for the other K₂SO₄-family crystals (e.g. Na₂SO₄, like K₂CrO₄, and K₂SeO₄) [5, 6]. Another PT of second order at the temperature of 56 K was detected in K₂SO₄crystal. The crystal symmetry of this low temperature phase (γ -K2SO₄) is assumed to be of monoclinic [7]. Recently the addition of Cd⁺² to the nutrient solution during K₂SO₄Crystal [8].Due to useful application of doping it is worthy to work on doping of K₂SO₄. Doping is possible if a suitable host can be found. The cupric ion and ferrate ion can be doped in the K_2SO_4 crystal, but the degree of application of the data to the pure (Cu ;Fe)₂SO₄ system depends very highly on the nature of the host.

Experimental details

Crystal growth

Pure crystal of K_2SO_4 was grown using aqueous solution by slow evaporation technique (at room temperature) .Saturated solution was prepared from synthesized K_2SO_4 salt ,with 2 Molar using a double distilled water as solvent . This solution was continuously stirred for about (6)hour with magnetic stirrer with rate of 250 rpm at room temperature. Finally thus solution is heated at 70 C° in order to obtain a complete dissolved of the materials.

The growth process was performed in a multi-jar crystallizer to ensure identical growth conditions. In a period of 60 days, we were able to grow colorless, transparent K_2SO_4 single crystals which is shown in Figure(1a).

Dopant crystal of K₂SO₄:Cu and K₂SO₄:Fe crystals were grown by slow evaporation technique, from 2M solutions containing 5 wt% of CuSO₄.5H₂O and FeSO₄.7H₂O respectively. The growth rate crystals was much higher than of pure K₂SO₄ (i.e)the growth period is about ~20 days , we get the grown crystal for K₂SO₄:Cu and K₂SO₄:Fe are shown in Figs. 1b, 1c respectively.

Re- crystallization is carried in order to improve the grown crystal and step-up refinement its . Some crystals are picked from the growth apparatus and dissolve in double distilled water. This solution is treated in the same procedure as that mentioned above. We get crystal for K₂SO₄:Cuandfor K₂SO₄:Fe . Ibn Al-Haitham J. for Pure & Appl. Sci.

Instrument

X-ray Diffract meter

The X-ray diffraction was recorded using SHIMADZU model Japan (6000) diffractmeter with Cu-K_{α} radiation of wavelength (λ = 1.54056 Å).The filament current and operating voltage were kept at 30mA and 40KV respectively.

Thermal Analysis

Differential scanning calorimetric technique (DSC) were carried out using LINSEIS model Germen(STA PT-1000). Sample of (25 mg) is used with reference of AL_2O_3 crucibles .Heating and cooling runs with rate of 5°C /min during recorded of the chart.

Results and Discussion

The grown crystal

We were able to grow colorless, transparent K_2SO_4 single crystals with dimensions of(10x4x2)mm³ is shown in Figure(2a), and the grown crystal of dimensions (11x9x4)mm³ for K₂SO₄:Cu & (10x 8x5)mm³ for K₂SO₄:Fe are shown in Figs. 2b, 2c respectively.

XRD Diffraction studies

The structure of the grown crystal was studied by powder X-ray diffraction method . The recorded diffraction pattern of pure K₂SO₄ and doping crystals by Cu &Fe respectively, are shown in the figure(3a ,3b and 3c). From the XRD pattern, the lattice parameter value of potassium sulfate crystal was found to be (a=7.4796 Å, b=10.0793 Å, c=5.7721 Å, α =90, β =90°, γ =90°) . This indicates that potassium sulfate crystallizes in orthorhombic system. The diffraction planes are indexed with the help of the computer program, with the Rietveldt refinement using FULLPROF as shown in Fig. 3a. The lattice parameters from powder XRD of the grown crystal and also unit cell dimension of pure K₂SO₄. The results are in agreement with reported values [3] .comparison of lattice parameters is shown in table -1-

Differential scanning calorimetric (DSC) analyzes

A heating rate of 5°C /min was recorded for the grown pure samples(K₂SO₄) in the same chart as shown in Fig. 4.The weight of the sample taken for investigation was 22.2 mg .Which shows an endothermic peak around 300C° (onset point 298 C° with reaction point -8.070 μ V at 298.4C° and offset 301.2 C° with peak maximum -16.497 μ V at 300.5 C° and area -12.14 μ V S/mg) which gives a strong support to the newly detected phase transition. As the heating is continuous ,another an endothermic peak around582 C° (onset 578.6 C° with reaction point -1.759 μ V at 580.9 C° and offset 584.3 C° with peak maximum -3.452 μ V at 582.6 C° and area -9.73 μ V S/mg) and when were cooling there is an exothermic peak around at≈581 C° (onset point 580.9 C° with reaction point 2.531 μ V at 580.3 C° and offset 572.6 C° with peak maximum 5.088 μ V at 577.7 C° and area 10.73 μ V S/mg. This refers to crystallization at this region and detected a phase transition. This phase transition of the orthorhombic phase as of the crystal is known as β -K₂SO₄ at room temperature [4].

B-Doping with Cu ions

A heating rate of 5°C /min was recorded for the grown samples(5wt.%Cu.K₂SO₄) in the same chart as shown in Fig. 4b.The weight of the sample taken for investigation was18.94 mg .Which shows an endothermic peak around 300C° (onset point 298 C° with reaction point -10.183 μ V at 298.4C° and offset 301.6 C° with peak maximum -18.563 μ V at 300.8 C° and area -16.06 μ V S/mg) which gives a strong support to the newly detected phase transition. As the heating is continuous, another endothermic peak around 585 C° (onset 577.8 C° with reaction point -4.170 μ V at 580.5 C° and offset 584.3 C° with peak maximum -5.122

المجلد 28 العدد (1) عام 2015

Ibn Al-Haitham J. for Pure & Appl. Sci.

 μ V at 582.3 C° and area -9.98 μ V S/mg) and when were cooling there is an exothermic peak around at \approx 581 C° (onset point 581.2 C° with reaction point -1.775 μ V at 580. C° and offset 570.4 C° with peak maximum -0.5711 μ V at 577.8 C° and area 11.91 μ V S/mg. This refers to crystallization at this region.

C- Doping with Fe ions

A heating rate of 5°C /min was recorded for the grown samples(5wt.% Fe.K₂SO₄) in the same chart as shown in Fig. 4c.The weight of the sample taken for investigation was 20.63mg .which shows an endothermic peak around 300C° (onset point 298 C° with reaction point -12.347 μ V at 298.4C° and offset 301.5 C° with peak maximum -20.796 μ V at 300.7C° and area -13.93 μ V S/mg) which gives a strong support to the newly detected phase transition. As the heating is continuous, another an endothermic peak around582 C° (onset 577.9 C° with reaction point -6.887 μ V at 580.8 C° and offset 583.7 C° with peak maximum -7.666 μ V at 581.9 C° and area -10.26 μ V S/mg) and when were cooling there is an exothermic peak around at≈581 C° (onset point 581.2 C° with reaction point -3.621 μ V at 580.2 C° and offset 571.0 C° with peak maximum -2.099 μ V at 577.9 C° and area 12.04 μ V S/mg. This refers to crystallization at this region.

Conclusion

Colorless and transparent crystals of pure potassium sulfate were grown using water as the solvent at ambient temperature. The slow evaporation at room temperature of the solvent yielded good quality crystals. Single crystal of K₂SO₄was transparent colorless. Orthorhombic structure and unit cell parameter values match very well with the reported XRD standard data values. at room temperature K₂SO₄ pure and doping crystals having Orthorhombic structure and transition into hexagonal structure at high temperature ≈ 583 C°. It is supported by DSC study.

References

- 1.Suresh Keda Bachhav, Padmakar Arjun Savale and Suresh Trimbak Pawar ,(2010), Growth and study of BaTr single crystals by Gel Technique ,Pelagia Research Library ,1 (1) :26-33 Jalgaon (MS) India.
- 2. Thenmozhi, R. and Claude, A. (2012), Rapid crystal growth of benzophenone by low temperature Solution Growth and its Characterization, Scholars Research Library, , 4,(2) 898-905), ISSN 0975-508X CODEN (USA).
- 3. McGinnety, J.A. (1972), ActaCrystallogr. B 28, 2845 (basis for PDF 01-070-1488)
- 4. Dammak, M. H., Khemakhem ; Zouari N. ; Mhiri T. and Kolsi A. W. , (2000), Electrical properties of ferroelectric addition compound K₂SeO₄.Te(OH)₆ , Solid State Ion. 127, 125.
- 5. Guillot Gauthier ,S. ; Peuzin, J. C. ; Olivier, M. and Rolland, G. (1984), Ferroelectrics 52, 293.
- 6. Khemakhem, H. (1999), Dielectric and Raman investigations on M-2(SO₄).Te(OH)₆ (M= K, Rb and Cs), Ferroelectrics 234, 47.

7. Andriyevsky, B. ; Romanyuk, M. and Stadnyk ,V. (2009) , Simulation of elastic-andoptical properties of K_2SO_4 crystals , Journal of Physics and Chemistry of Solids , 70(7) 1109-1112.

8.Bin Anooz, S. ; Klimm ,D. ; M. Schmidbauer and Bertram, R. (2008) , Effect of Cd2+ on the Growth and Thermal Properties of K_2SO_4 crystal , Journal of Physics and Chemistry of Solids 69 , 2356-2359 .

Ibn Al-Haitham J. for Pure & Appl. Sci.

parameters PDF 01-070-1488 **Present work** Reported data [3] K_2SO_4 K₂SO₄:Cu K₂SO₄:Fe a (Å) 7.479 9.687 9.638 7.476 b(Å) 10.071 10.079 14.926 8.045 c (Å) 5.763 5.772 9.125 3.271 α (°) 90 90 90 90 β (°) 90 90 90 90 γ (°) 90 90 90 90 V(mm³) 433 435 1319.3 253.6

Table No.(1)Reported the lattice parameter of pure and dopant

Figure No. (1a): pure crystal of K₂SO₄

Figure No. (1b): Photograph of K₂SO₄:Cu

16 | Physics

Figure No. (1c): Photograph of K₂SO₄:Fe

Figure No. (2a): Re-crystallization of crystal pure K₂SO₄

Figure No.(2b): Re-crystallization of crystal K₂SO₄:Cu

(2c): Re-crystallization of crystal K₂SO₄:Fe

Figure No.(3a): Refinement the X-ray diffraction pattern from crushed single crystal of K2SO4

Figure No. (3c): XRD pattern of pure K₂SO₄ 5wt.% .Fe.K₂SO₄ crystal

Figure No. (4a) DSC curve for pure crystal of K₂SO₄

Figure No. (4b): DSC curve for crystal doping 5wt.%Cu. K₂SO₄

Figure No. (4c): DSC curve for crystal doping 5wt.%Fe. K₂SO₄

اثر التطعيم في خصائص بلورة كبريتات البوتاسيوم K₂SO₄

(HIPAS

طارق عبد الرضا الظاهر مريم عيسى المهداوي

قسم الفيزياء/كلية التربية للعلوم الصرفة (ابن الهيثم) /جامعة بغداد

استلم في :22 حزيران 2014 قبل في:15 ايلول 2014

الخلاصة

نماء بلورات أحادية لكبريتات البوتاسيوم النقية والمشوبة ب ²+Cu⁺² و ²+Fe من المحلول المائي بوساطة تقنية التبخر البطيء في درجة حرارة الغرفة. وبأبعاد (11x9x 4) mm³ (10x 8x 5) mm³ (11x9x 4) البلورات المشوبة ب Cu& Padى التوالي ودراسة اثر التطعيم في النماء البلوري والخصائص التركيبية فذ تغيرت أبعاد خلية الوحدة لكبريتات البوتاسيوم المطعمة بالنحاس والحديد. (A 25.772 Å, c=5.772 Å, النقية والمشوبة , (a=9.687 Å, c=5.772 Å) النقية والمشوبة ب b=14.926 Å, c=9.687 Å) (a=9.687 Å, b=10.079 Å, c=5.772 Å) النقية والمشوبة , c=3.271 Å) والمورات وساطة مقياس حيود الأشعة السينية للمسحوق و استخدام تصفية ريتغيلد. أظهرت قياسات XRDإن التركيب البلوري البلورات البلورات هو معيني متعامد المحاور (orthorhombic).

الكلمات المفتاحية : نماء بلورات كبريتات البوتاسيوم التطعيم , Cu⁺², Fe⁺² , حيود الأشعة السينية, تصفية ريتفيلد .