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Abstract                                                                                                                                 
 In this work, we employ a new normalization Bernstein basis for solving linear 
Freadholm of fractional integro-differential equations nonhomogeneous of the second type 
(LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the 
(LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are 
given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) 
is very effective and convenient and overcome the difficulty of traditional methods. We 
solve this problem (LFFIDEs) by the assistance of Matlab10.     
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1.Introduction: 
 Integro-differential equations are encountered in various fields of sciences. It plays an 
important role in many branches of linear and non-linear functional analysis and their 
applications are in the theory of science, engineering and social sciences. Many problems 
can be modeled by fractional integro-differential equations from various science and 
engineering applications. Finding the approximate or exact solutions of fractional integro-
differential equations is an important task. Save in a limited number, there is difficulty in 
finding the analytical solutions of fractional integro-differential equations. Therefore, there 
have been attempts to develop new methods for obtaining analytical solutions which 
reasonably approximate the exact solutions.    
 
       However, several numbers of algorithms for solving linear Fredholm of fractional 
integro-differential equation nonhomogeneous of the second type (LFFIDEs) have been 
investigated. Z. Taheri, Sh. Javadi and E. Babolian [1] employed shifted Legendre spectral 
collocation method to solve stochastic integro-differential equations (SFIDEs). [2] 
presented Bernstein polynomials basis for solving (LFFIDEs).  Asma A., Adem Kılıc and 
Bachok M.  [3] employed, homotopy perturbation and the variational iteration to 
approximate integro-differential equation of fractional (arbitrary) order.  Li Huanga, Xian-
Fang Li, Yulin Zhaoa and Xiang-Yang [4] used Taylor series approach for approximately a 
class of. Peter linzt [5] used Nystrom’s method to establish numerical procedure for the 
approximate solution of linear integro-differential equations. 
 
In this wrok, we presented the approximate solution of the (LFFIDEs).   
          

       𝐷 𝑢 𝑥 𝑓 𝑥  𝑘 𝑥, 𝑡 𝑢 𝑡               𝑎 𝑥, 𝑡 𝑏          …(1.a)            
 With the following supplementary conditions:     
                𝑢 0 𝛿       𝑛 1 𝛼 𝑛,    𝑛 ∈ 𝑁                         … (1.b) 
 
where  𝐷 𝑢 𝑥   indicates the 𝛼 the Caputo fractional derivative of 𝑢 𝑥  ; 𝑓(𝑥), 𝐾(𝑥, 𝑡) are 
given functions, 𝑥 and 𝑡 are real variables varying in the interval [a, b], and 𝑢 𝑥   is the 
unknown function to be determined. 
 
2. Basic Definition  
 
Definition1:  A real function f(t), t > 0, is said to be in the space C , μ ∈ R, if there exists 
a real number  p 𝜇,such that f(t) = t h (t); where f t ∈ 0 , ∞ , and it is said to be in 
space  C  if and only if  f  C , n ∈ N.  
Definition2: The Riemann-Liouvill fractional integral operator of order 𝛼 for a function in 

𝐶 , where 𝜇 1, is defined as    𝐽 𝑓 𝑥  
 

 𝑑𝑡,  𝛼 0                               

    𝐽 𝑓 𝑥 𝑓 𝑥 .                                                                                                                                               
 
Definition3: Let 𝑓 ∈ 𝐶  1, 𝑚 ∈ 𝑁 ∪ 0 . Then the Caputo fractional derivatives of f(x) is 
defined as:           
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 𝐷  𝑓 𝑥
𝐽  𝑓  𝑥 , 𝑚 1 𝛼 𝑚, 𝑚 ∈ 𝑁

 ,            𝛼 𝑚                                
                                                                                           

 
Hence, we have following properties                                                                    
 
1. 𝐽  𝐽  𝑓  𝐽  𝑓,   𝛼, 𝑣 0, 𝑓 ∈  𝐶 , 𝜇 0 

2. 𝐽  𝑥    𝑥 , 𝛼 0 , 𝛾 1, 𝑥 0                         

3. 𝐽  𝐷  𝑓 𝑥 𝑓 𝑥 -∑ 𝑓 0
!
 ,𝑥 0, 𝑚 1 𝛼 𝑚                   

4. 𝐽  𝐷  𝑓 𝑥 𝑓 𝑥 , 𝑥 0, 𝑚 1 𝛼 𝑚                   
5. 𝐷 𝐶 0, C is constant                                                

6.𝐷 𝑥
0                             𝛽 ∈ 𝑁 , 𝛼

  𝑥   𝛽 ∈ 𝑁 , 𝛽 𝛼                                where 𝛼  denoted the 

smallest integer greater than or equal to 𝛼 and 𝑁 0,1,2, … .                               
 

 
2.1 The Derivative for Orthonormal Brnstein Polynomials:   
 The Bernstein polynomials of 𝑛th degree are defined on the interval [0,1] as[6]. 

       𝐵 , 𝑥
𝑛
𝑖 𝑥 1 𝑥 ,   

𝑛
𝑖  𝒏!

𝒊! 𝒏 𝒊 !
    𝑓𝑜𝑟 𝑖 0,1,2, … , 𝑛  

              
The representation of the orthonormal Bernstein Polynomials, denoted by 𝒃𝒊,𝒏 𝒙  here, was 
discovered by analyzing the resulting orthonormal polynomials after applying the Gram-
Schmidt process on sets of Bernstein polynomials of degree  𝐵 , 𝑥 . Then the following 
sets of  orthonormal polynomials 𝑏 , 𝑥 , 0 ≤ 𝑖 ≤ 𝑛.  For 𝑛 = 6, the four orthonormal 
Bernstein polynomials are given as: 
 
𝑏 , 𝑥  =  √13 1 𝑥  , 

𝑏 , 𝑥 = √44 [6x 1 𝑥 1 𝑥  ] 

𝑏 , 𝑥 = 11 15𝑥 1 𝑥 6𝑥 1 𝑥 1 𝑥  

𝑏 , 𝑥 = √252 20𝑥 1 𝑥  𝑥 1 𝑥 5𝑥 1 𝑥  

                1 𝑥       

𝑏 , 𝑥 = 
√

15𝑥 1 𝑥 40 𝑥 1 𝑥 𝑥  1 𝑥

                   𝑥 1 𝑥  +  1 𝑥           

𝑏 , 𝑥 = 
√

6𝑥 1 𝑥  𝑥 1 𝑥 60𝑥  1 𝑥

                  30𝑥  1 𝑥 𝑥 1 𝑥 1 𝑥        

𝑏 , 𝑥 =7 𝑥 18𝑥 1 𝑥 75 𝑥 1 𝑥 100𝑥 1                 𝑥

45𝑥 1 𝑥 6𝑥 1 𝑥  1 𝑥      
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3. Analysis of The Petrov-Galerkin Method (PGM):    
In this section we introduce the (PGM) for Eq. (2). For the proof of all results in this 
section, we can use the same manner used in [7], but for Eq. (2). Let X be a Banach space 
with the norm ‖. ‖  and let 𝑋∗ denote its dual space. Assume K : X → X is a compact linear 
operator. We rewrite this eq.(1) in operator from as:    

               𝐷∗ 𝑢  𝐾𝑢 𝑓,                     𝑓 ∈ 𝑋                                          ...(2)  
 
where u ∈ X is the unknown to be determined. The Peterov-Galerkin method (PGM) used 
for the numerical solutions of eq.(2). The Petrov-Galerkin methods (PGM) interpolate 
between the Galerkin method and the collocation method. For this purpose for each 
positive integer n, we assume that 𝑋  ⊂ X , 𝑌 ⊂ 𝑋∗, and Xn, 𝑌  are  finite dimensional 
vector spaces with  dim Xn = dim Yn , then X n , 𝑌  satisfy condition (H) : for each  x ∈ X 
and  y ∈ 𝑋∗, there exists  x n ∈ X n  and y n ∈ Yn  such that∥x n   ̶   x∥→ 0 as  n → ∞. when the 
peterov-Galerkin method(PGM)  for Eq.(2)  is a numerical method for finding 𝑢 ∈ 𝑋 such 
that   
 
〈  𝐷∗ 𝑢    ̶  K un , yn 〉 = 〈 f , yn 〉          for all 𝑦 ∈ 𝑌                   ...(3)                                                                      
 
It is clear that the Petrov-Galerkin method(PGM) is closely related to a generalized best 
approximation from 𝑋  to x ∈ X with respect to 𝑌 ,. Given x ∈ X, an element 𝑃 𝑥 ∈ 𝑋  is 
called a generalized best approximation from 𝑋 to x with respect to 𝑌   if it satisfies the 
equation   
                    
          〈x ⎯ 𝑃 𝑥, yn〉 = 0   for all 𝑦 ∈ 𝑌                                                ...(4)                                                             
 
Similarly, given 𝑦 ∈ 𝑋∗, an element 𝑝 𝑦 ∈ 𝑌  is called best approxima tion from 𝑌  𝑡𝑜 𝑦 
with respect 𝑌  to 𝑦 if it satisfies the equatio  
          〈𝑥 , 𝑦 𝑝 𝑦〉= 0   for all   𝑥 ∈ 𝑋  .                               
 
Proposition: 
  For each x ∈ X, the generalized best approximation from  𝑋  to x with respect to  𝑌  exists 
uniquely if and only if                                                    Y n ∩ 𝑋   ={0}   ...(5)                                                  
Under this condition, 𝑃  is a projection; i.e.,  𝑃 𝑃    
/ 
Assume that, for each n, there is a linear operator ∏ :  𝑋   ⟶ 𝑌    with ∏ 𝑋  = 𝑌 , and 
satisfying the condition  

(H-1) ‖𝑥 ‖ ≤ C1 〈𝑥  , ∏ 𝑥 〉                for all 𝑥  ∈ 𝑋` , 

(H-2)  ‖∏ 𝑥 ‖  C2 ‖𝑥 ‖                         for all 𝑥  ∈ 𝑋  , 

Where  C1 and C2 are positive constants independent of  n. if a pair of  sequence 𝑋   
and 𝑌  satisfy (H-1) and (H-2), we call { 𝑋  , 𝑌 } a regular pair.       

 For each x ∈ X, let 𝑄 𝑥 be a best approximation from 𝑋  to x, that is, 𝑄 𝑥 ∈ 𝑋   satisfies 
the equation   ‖𝑥 𝑄 𝑥‖ ‖𝑥 𝑥 ‖∈ .                 
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If a regular Pair  𝑋 , 𝑌   satisfies dim Xn = dim Yn and condition (H) , then the 
corresponding  generalized projection  𝑃  satisfies:     

(1) for all  𝑥 ∈ 𝑋, ‖𝑃 𝑥 𝑥‖ → 0  as n→ ∞    

(2) there is a constant 𝐶 0  such that, ‖𝑃 ‖ < C,        n = 1,2,.. 

(3) for some constant 𝐶 0 independent of n, ‖𝑃 𝑥 𝑥‖ 𝐶‖𝑄 𝑥 𝑥‖ where 𝑄 𝑥 is the 
best approximation from X n to x. 

if { 𝑋  , 𝑌 } a regular pair is with a linear operator   ∏ :  𝑋   ⟶ 𝑌    with      ∏ 𝑋  = 𝑌 , then 
eq. (3) may be rewritten                                   

     〈𝐷∗ 𝑢  𝐾𝑢  , ∏ 𝑥 〉 〈𝑓 , ∏ 𝑥 〉        for all 𝑥 ∈ 𝑋              ...(6)                                                            

     using the projection 𝑃  defined earlier, eq.(3) is equivalent to                                                                 

              𝐷∗ 𝑢 𝑃 𝐾𝑢 =𝑃 𝑓                                                                ...(7)                                                            

eq.(7) can also be derived from the fact that 𝑃 x = 0 for an 𝑥 ∈ 𝑋 if and only if 〈𝑥 , 𝑦 〉 = 0 
for all 𝑦 ∈ 𝑌 . This equation indicates that the Petrov-Galerkin method is a projection 
method.                                                  

Now, assume un ∈ X n and 𝑏  is a basis for Xn (trial space) and 𝑏∗  (test space) is a 

basis for Yn. Therefore the (PGM ) on 𝑎, 𝑏   for Eq. (2) is: 
                  〈𝐷∗ 𝑢 𝐾 𝑢 , 𝑏∗〉 〈𝑓, 𝑏∗〉,                i= 1,.. ,n                 ...(8) 
 
4. Application of (PGM) for solving (LFFIDEs) Via Normalization      
Bernstein Basis: 
In this section, the Petrov-Galerkian method (PGM) with aid of  normalization Bernstein 
polynomials of  six degree are interval [0, 1], is  applied to study the approximation 
solution of the linear  Fredholm  fractional integro-differential eq(1) as  the form: 
 

        𝐷∗
 𝑢 𝑥 𝑓 𝑥 𝑘 𝑥, 𝑡 𝑢 𝑡 𝑑𝑡,              𝑢 0 𝛽, 𝑥 ∈ 𝑎, 𝑏                    

 Our approach being by taking the fractional integration to both sides of eq. (1) we get  

       𝑢 𝑥 𝑢 0 𝐼 𝑓 𝑥 𝐼 𝑘 𝑥, 𝑡 𝑢 𝑡 𝑑𝑡                           ...(9) 

To approximate solution of eq.(1),we use the normalization polynomial basis on 𝑎, 𝑏  as: 

           𝑢 𝑥 ∑ 𝑎 𝑏 , 𝑥                                                              ...(10) 

Where ( 𝑎 , 𝑖 0,1, … . . , 𝑛  are unknown constants to be determined substituting eq.(10) in 
to eq.(9),we get  

  ∑ 𝑎 𝑏 , 𝑥 𝑢 0 𝐼  𝑓 𝑥 𝐼 𝑘 𝑥, 𝑡 ∑ 𝑎 𝑏 , 𝑡 𝑑𝑡  ...(11)                                                      

Hence 
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       ∑ 𝑎 𝑏 , 𝑥 𝐼 𝑘 𝑥, 𝑡 ∑ 𝑎 𝑏 , 𝑡 𝑑𝑡 𝑢 0 𝐼  𝑓 𝑥            ...(12)   

In the next step, apply Petrov-Galerkin method (PGM) for eq.(1) is a numerical method   
for finding    𝑢 𝑥 ∑ 𝑎 𝑏 , 𝑥  ∊ X n, such  that 𝒂𝒊 is unknown and must be determined  
from eq.(12). 

 From eq.(8) it is clear that the eq.(12) can be written as :  

<∑ a b , x I k x, t ∑ a b , t dt , b ,
∗ >=< u 0 I  f x  , b ,

∗ >                                

                                                                                                                    ...(13) 
Thus  
 

   ∑ a  b ,  x I k x, t ∑ a b ,  t dt b ,
∗ u 0 I  f x dx b ,

∗       

                                                                                                                               …(14) 
Then, Eq.(14) is equivalent to linear system can be formed as follows :                                                             
 

  
L x, 𝑎 ∑ 𝑎 𝑏 , 𝑥 𝐼  𝑘 𝑥, 𝑡 ∑ 𝑎 𝑏 ,  𝑡 𝑑𝑡    

𝑚 𝑢 0 𝐼 𝑓 𝑥 𝑏 ,
∗  

              … 15  

 
we can represent the system eq.(15) as a matrix form:                 
 
                       LA=M                                                                                            ...(16)          
where                                      

 𝐿
𝐿 𝑥, 𝑎 𝑏 ,

∗ 𝑑𝑡 ⋯ 𝐿 𝑥, 𝑎 𝑏 ,
∗ 𝑑𝑡

⋮ ⋱ ⋮
𝐿 𝑥, 𝑎 𝑏 ,

∗ 𝑑𝑡 ⋯ 𝐿 𝑥, 𝑎 𝑏 ,
∗ 𝑑𝑡

,   𝐴

𝑎
𝑎
⋮

𝑎

, 

 𝑀

𝑚
𝑚

⋮
𝑚

         

 
Then we are solving the system to calculate the value  𝑎        
 
5. Numerical Examples:  
 
Example 1: Consider the following linear Fredholm fractional integro-differential equation: 

    𝐷   𝑢 𝑥 3𝑥 𝑢 𝑡 𝑑𝑡   , u(0)= 0,  0 𝛼 1     

Where the exact solution u(x) = 𝑥  
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Table (1): Represents a comparison between the exact solution and approximate solution 
with different value 𝛼 1,0.5,0.25 

x Exact solution    Approximate solution 
 
     𝛼 1                     𝛼 0.5               𝛼 0.25 

0 0 0 0.000606 0.002462 
0.1 0.001 0.001 0.015119 0.052247 
0.2 0.008 0.008 0.05891 0.15574 
0.3 0.027 0.027 0.13789 0.31079 
0.4 0.064 0.064 0.25797 0.52016 
0.5 0.125 0.125 0.42506 0.78662 
0.6 0.216 0.216 0.64507 1.1129 
0.7 0.343 0.343 0.9239 1.5018 
0.8 0.512 0.512 1.2675 1.9562 
0.9 0.729 0.729 1.6817 2.4786 
1 1.0 1.0 2.1725 3.072 
 

 
Figure (1): Comparison between the approximate solution and exact solution 

 
Example 2: Consider the following linear Fredholm fractional integro-differential equation: 

    𝐷   𝑦 𝑥 𝑥𝑒 𝑒 𝑥 𝑥𝑦 𝑡 𝑑𝑡   ,  y(0)=0,  0 𝛼 1                             The 
exact solution y(x)=𝑥𝑒  
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Table (2): Represents a comparison between the exact solution and approximate solution 
with different value 𝛼 0.25,0.5,1 

x Exact solution    Approximate solution 
 
     𝛼 1                     𝛼 0.5               𝛼 0.25 

0 0 0 0.14474 0.41705 
0.1 0.11052 0.11044 0.43381 0.82922 
0.2 0.24428 0.24397 0.73141 1.2522 
0.3 0.40496 0.40424 1.0526 1.7024 
0.4 0.59673 0.59537 1.4123 2.1962 
0.5 0.82436 0.82151 1.8256 2.7500 
0.6 1.0933 1.0868 2.3075 3.3801 
0.7 1.4096 1.3953 2.8731 4.1030 
0.8 1.7804 1.7512 3.5372 4.935 
0.9 2.2136 2.1586 4.3151 5.8926 
1 2.7183 2.6217 5.2216 6.9920 

 
Figure (2): Comparison between the approximate solution and exact solution 

Example  3:consider  the following linear fredholm fractional integro-differential equation:  

𝐷   𝑦 𝑥 cos 𝑥 cos 1 1  𝑦 𝑡 𝑑𝑡   ,  y(0)=0,  0 𝛼 1    .The exact solution 
y(x)=sin 𝑥 
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Table(3): Represents a comparison between the exact solution and approximate solution 
with different value 𝛼 1,0.5,0.25 

x Exact solution    Approximate solution 
 
     𝛼 1                     𝛼 0.5               𝛼 0.25 

0 0 0 0.56048 -4.5716 
0.1 0.0998 0.0997 1.2655 -6.3967 
0.2 0.19867 0.1984 1.7856 -7.6149 
0.3 0.29552 0.29512 2.1787 -8.4416 
0.4 0.38942 0.38889 2.5027 -9.0926 
0.5 0.47943 0.47873 2.8152 -9.7833 
0.6 0.56464 0.56369 3.1743 -10.729 
0.7 0.64422 0.64279 3.6376 -12.146 
0.8 0.71736 0.71507 4.263 -14.250 
0.9 0.78333 0.77956 5.1083 -17.255 
1 0.84147 0.8353 6.2313 -21.379 

 

 
         Figure (3): Comparison between the approximate solution and exact solution 
 
                                                                
6.Conclusions: 
      Integro-differential equations are usually difficult. It required to obtain the approximate 
solution. In this paper, Petrov-Galerkin method(PGM) has been successfully applied to find 
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the approximate solution of linear fractional Volterra integro-differential equation of the 
second type (LFFIDEs) via the normalization Bernstein basis. This method is very powerful 
and efficient in finding analytical as well as numerical solutions for wide classes of linear 
fractional Frdholm integro-differential equation of the second type (LFFIDEs), for the 
special case α = 1is shown in Figure 1, Figure 2 and Figure3. It can be seen from these 
figures that the solution obtained by the present method is identical with the exact solution. 
In our paper, we use the Matlab language to calculate the Petrov-Galerkin method via 
normalization Bernstein basis.       
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