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Abstract 
       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear 

Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is 

considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) 

to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved 

to show that this is computationally efficient and accurate. 
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Introduction  
     Many fields of science and engineering are described by integro-differential equation of 

fractional order such as, fluid mechanics, vis co-elasticity, diffusion processes, biology and so 

on [1-4]. Several methods to solve VFIDEs have been proposed such as, expansion methods 

and spline method [5], variation iteration method [6], Laplace decomposition method [7] and 

Legender pseudo spectral method [8]. 

In recent years, Elzaki transform (ET) was introduced by Tarig Elzaki (2010) has been used to 

find solutions of a wide class of differential, integral, partial differential and the integro-

differential equations, see [9-12].  

 In this paper, ET and some of its fundamental properties are used to solve LVFIDEs 

with initial value problems: 



t

0

(1)dτ)τ(y)τx,(k)t(g)t(y Dα  

Subject to the initial conditions 
 

Nn,nα1-n,n...,2,1,z,)t(yD zcz-α
  

where  zc  is a specified constant,  α   is a parameter describing the order of the time 

fractional, g  and  k  are known functions, y(t) is the unknown function and  αD  is the 

fractional differential operator of order  α . 

 The present paper has been organized as follows. In section 2, some definitions, 

theorems and properties of the fraction calculus and ET are presented. In section 3, the 

solution steps to solve LVFIDE by using ET are described. Finally, in section 4, some test 

examples are solved. 

 

Preliminaries  
In this section, we present some basic definitions, some theorems and useful properties of the 

fractional calculus and Elzaki transform, as well as we proved some theorems which are used 

in this work. 

 

Definition (1): [1, 13] 
The Riemann–Liouville fractional derivative of order  α  , is defined to be for α  > 0 : 

dt)t(ft)(x
dx

d

α)Γ(n

1
(x)fDD(x)fD

x

0

1α n

n

n
n-αnα





  

or for  α < 0 :  dt)t(ft)(x
)αΓ(

1
(x)fD

x

0

1αα





  

where  n – 1 < α ≤  n   

 

Definition (2): [6, 13, 14] 
The Riemann – Liouville fractional integral operator of order  α  ≥ 0 , of  a function  

1,Cf  μ   is defined as: 

dt)t(ft)(x
)αΓ(

1
(x)fJ(x)fD

x

0

1ααα




  

It has the following properties: 

For  0 γand0β,α   
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1) (x)f(x)fJ
0

                       2) (x)fJ(x)fJJ βαβα   

3) (x)fJJ(x)fJJ αββα        4) 0α,(x)f(x)fJD
αα   

5) γαγα x
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1)γΓ(
xJ 




    6) ...,10,γ,x

1)γαΓ(-

1)γΓ(
xD γα-γα 




   

k
k C(0)fDandnα1nwhere,

1)kαΓ(

xC
(x)f(x)fDJ7) k-α

n

1k

k-α
αα




 


Definition (3): [11, 15] 
Elzaki transform is defined by: 

),(u,

0

t
21

2 dt)t(ufu(u)T])t(f[ e kkE 




  

Where the function f (t) in te set  A defined by: 













 ),[0x1)(tifM)t(f0k,k,M)t(fA
jj

kt

21 e  

 

Definition (4): [15, 12] 
 Defined for  Re(s) > 0 , the Laplace transform (LT) is given by:  

dt)t(f(s)F})t(f{

0

te





s
L  

Some properties of   ET  are given by following theorems: 
 

Theorem (1): [9, 15] 

 Let 












 ),[0x1)(tifM)t(f0k,k,M)t(fA)t(f
jt

j
k

21 e  

with  LT , F(s) then the  ET, T(u) of  f (t) is given by: 

 )
s

1
(Ts(s)Fand)

u

1
(Fu(u)T   

Theorem (2): [9] 
Let  T(u) denote the  ET  of the f(t), the  ET  of the definite integral of f(t), that is 

T(u)u)]t(h[Ethendτ)τ(f)t(h

t

0

   

Theorem (3): [9, 11, 15] 
Let the  ET, F(u) and G(u) of the functions f(t) and g(t) respectively, then the  ET  of the 

convolution of  f and g is: 

G(u)F(u)
u

1
)]t(g)*[(fEbygivenisdτ)τ-t(g)τ(f)t(g)*(f

t

0

   

Theorem (4): [1, 5, 13] 
The  LT  of the Riemann – Liouville is defined as: 

Nn,nα1nandαallfor ,
xd

f(0)d
s(s)Fs(s)F}(t)fD{L

1-n

0k
1-k-α

1-k-α
kααα  



 

Theorem (5):  
If  F(s) and T(u) are  LT  and  ET  of  f(t) respectively, then  
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}(t)fD{L(s)Fwhere)
u

1
(Fu(u)T}(t)fD{ ααααα E  

Proof:- 
 From definition(3) we have: 

dt])t(uf[Du(u)T])t(fD[E

0

tααα e2





  

Now, let  w = ut  then we get: 

)
u

1
(Fudw])(wf[Du(u)T α

0

uwαα e  


  

 

Theorem (6):  
  

The  ET  of the Riemann – Liouville fractional derivative is defined: 






1-n

0k
1-k-α

1-k-α
k-1

α
αα

xd

f(0)d
u

u

(u)T
(u)T}(t)fD{E  

Proof:- 
 At first from the above theorem we have: 

)
u

1
(Fu(u)T])t(fD[E ααα   

And using theorem (4) with 
u

1
s    we obtain: 


















1-n

0k
1-k-α

1-k-α
kαα

xd

f(0)d
)

u

1
()

u

1
F()

u

1
(u(u)T  

Then by theorem (1), we get: 






1-n

0k
1-k-α

1-k-α
k-1

α

α

xd

f(0)d
u

u

(u)T
(u)T   

 

Theorem (7): 
  

Let  T(u)  be  ET  of the  f(x), then  ET  for  f(x) = )x(erfxe  is given by:      

u-1

uu
T(u)

2

  

Proof:- 
 The proof of this equation is easy, by using table of  LT, [16] and theorem (1) as 

follows:    
1)(ss

1
)x(erfeL x


           

u1

uu

1)
u

1
(

u

1

1
u)

u

1
F(u(u)T

2

 and






  

 

  Applications to (LVFIDE) 
 Recall equation (1), the  LVFIDE  with initial value problems:  
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t

0

α dτ)τ(y)τx,(k)t(g)t(y D  

Subject to the initial conditions 
 

Nn,nα1-n,n...,2,1,z,)t(yD zc
z-α

  

 

The first step, we apply  ET  on both sides we have: 
 

   















t

0

α dτ)τ(y)τx,(k)t(g)t(y D EEE  

 

Can easily be transformed into its  ET  using theorem (6), equivalent to: 
 











t

0
α

dτ)τ(y)τx,(k)u(GC
u

(u)T
E  

 

where  




1-n

0k
1-k-α

1-k-α
k-1

xd

y(0)d
uC   , T(u) and G(u) are  ET  for y(t) and g(t) respectively. 

The general Elzaki solution is: 

)2(dτ)τ(y)τx,(ku)u(GuCu(u)T

t

0

ααα








 E  

 

The second step is to find  ET of integral in above equation which depends on the type 

function )τx,(k (kernel of the integral equation) as follows: 

A. If the kernel is constant that is, )τ,x(k = R , then by using theorem (2)  we have:   

(3)T(u)uRdτ)τ(yR

t

0









E  

 

where  T(u) is the   ET  of y(t). 
 
 

B. If the kernel is deference that is, )τx(k)τ,x(k  , by theorem (3) we get:  

(4)T(u)*K(u)
u

1
dτ)τ(y)τx(k

t

0

 







E  

 

where  K(u) and T(u)  are  ET  of the functions  k  and  y  respectively. 
 
 

C. If the kernel is any function, we represent the solution as an infinite series, that is:   








0i

(t)yy(t) i
 

The  ET  of the integral is become: 
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)5(dτ)τ(y)τx,(kdτ)τ(y)τx,(k

t

0 0i
i

t

0








 














 EE  

 

The third step, we substitute either eq.(3) or eq.(4) or eq.(5) into eq.(2), we will get: either, 

T(u)uR)u(uu(u)T 1ααα GC    

 

Then the general Elzaki solution: 

)6(
uR1

))u(G(Cu
(u)T

1α

α




  

or  

T(u)*K(u)u))u(G(Cu(u)T 1-αα   

Then  

)7(
K(u)u1

))u(G(Cu
(u)T

1-α

α




  

or  









 






















 t

0 0i
i

αα

0i
i dτ)τ(y)τx,(ku))u(G(Cu(t)y EE  

 

Matching both sides of this equation yields the following iterative relations: 
 

  )8())u(G(Cu(t)y α
0 E  

  









t

0

α dτ)τ(y)τx,(ku(t)y 01 EE  

  









t

0

α dτ)τ(y)τx,(ku(t)y 12 EE  

In general,  

  )9(...1,0,i,dτ)τ(y)τx,(ku(t)y

t

0
i

α
1i  








 EE  

 

The fourth step, we apply inverse  ET  of  either eq.(6) or eq.(7) or (eq.(8) and eq.(9)) give the 

general solution for (LVFIDE): 

either        )10(
uR1

))u(G(Cu
T(t)y

1α

α
1






















  

or             )11(
K(u)u1

))u(G(Cu
T(t)y

1-α

α
1


















   

or              )12(P(t)))u(G(Cu(t)y α1
0  E    
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with      )13(...1,0,i,dτ)τ(y)τx,(ku(t)y

t

0

α
i

1
1i 




























 


 EE  

The function  P(t)  defined in eq.(12) can be decomposed into two parts: 

 

        P(t)  =  P1(t)  +  P2(t) 

So, the modified recursion relation is obtained  

)14(

...2,1,i,dτ)τ(y)τx,(ku(t)y

dτ)τ(y)τx,(ku(t)P(t)y

(t)P(t)y

t

0

α

t

0

α

i

1
1i

0

1
21

10

























































































EE

EE
 

  

The solution depends on the choice of  P1(t)  and  P2(t). We will show how to suitably choose  

P1(t)  and  P2(t) as well as testing the method by some examples in the next section. 

 

Test Examples  
In this section, we present some test examples to show the effectiveness of the  ET method for 

solving LVFIDE's. 

Example (1): 
Consider the following linear LVFIDE [5] 



x

0

dt)t(y1)xerf(
xπ

1
)x(y D x0.5 eex  

with  0)0(yD 1
0.5- c    

 

since  1nthen,nα1-nand0.5α   
 

Applying (ET) of the above equation and since  k(x, t) = 1, then by using eq.(10) we have the 

solution: 

)15(
u1

))u(G(Cu
T(x)y

1.5

0.5
1


















   

where   0)0(yDuC
0.5-

  

and   







 1)xerf(

xπ

1
G(u) xx eeE  

 

from appendix given in [11] ( ET of some functions) and theorem (7) we have: 
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u1

uuu
u

u1

u

u1

uu
uuG(u)

3
2

22










   

Substituting in eq.(15), we obtain: 

 



































 

u1

u
T

)uu(1u)(1

uuu
T(x)y

2
1

32
1  

 

Again from appendix given in [11], we get the exact solution:  y(x) = e
 x
  . 

 

Example (2): 
Let us consider the following LVFIDE with difference kernel  

)16(dt)t(y
tx

)x(g)x(y D
x

0

e56



  

where   x66x6x3xx
5)14Γ(

6
g(x) e2359

  

with initial conditions:    0)0(yDand0)0(yD 2
54

1
51 cc 

  

 

Take the (ET) of eq.(16) and since k(x, t) is difference kernel, so by eq.(11) yields: 

 

)17(
K(u)u1

))u(G(Cu
T(x)y

51

56
1


















   

 

where   C = u c1  +  c2  = 0   . 

 





































u1

uuu
6

u1

u
uuuuu6g(x)G(u)

6524519

2
2345519

E

 

and    
u1

u
K(u)

2
xe


 E  

 

Now, eq.(17) can be written in the form: 
 

 51

511

53665
1 u6T

)
u1

u
(1u)(1

uuu
T6(x)y  

























  

 

Upon inverting, we get the exact solution:  y(x) = x
3
  . 

Example (3): 
  

Consider the following LVFIDE   
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t

0

dτ)τ(yτ)(t
15

65 220.5 tt)t(y D  

with initial conditions:  πc1    . 
 

Applying the  ET  to both sides of above equation as well as using eq.(12) and eq.(13) give: 





   ))u(G(Cu(t)y 0.51

0 E    

...1,0,i,

t

0

dτ)τ(y)τt((t)y i

20.51
1i u 































 


 EE  

where     πucu)0(yDuC
1

0.5-
   

292 u
2)7Γ(

ttG(u)
15

65

15

65
and











 E  

(t)P(t)PP(t)

t

1

u
15

2)7Γ(65
uπE

21

5231
0

3t
45

2)7Γ(28

(t)yThen





 








 

So we have the following relations: 

)18(u

t

1

t

0

dτ)τ(y)τt(t
45

2)7Γ(82
(t)y

(t)y

0

20.51
1

0

3




































 EE

 

and  

...2,1,i,

t

0

dτ)τ(y)τt((t)y i

20.51
1i u 































 


 EE  

 

Now, we find the  ET  of integral in eq.(18) we have: 

2922
u

65
tt

15

2)7Γ(

15

56
t

0

dτ
τ

1
)τt( 








 















 EE Then  








 51
1 u

15

2)7Γ(65
t

2)7Γ(28
(t)y 3

45
E  

That is 

...2,1,i0and0 (t)y(t)y 1i1      
 

Therefore, the solution is obtained to be and its exact solution: 

t

1
(t)yy(t)

0i

i  




  . 
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Conclusions  
   The properties of the Elzaki transform are used to solve and to get the general solution of 

linear Volterra fractional integro-differentioal equations. The fractional derivative is 

considered in the Riemman-Liouville sense. The results of illustrate examples as well as the 

simplicity of the algorithm and obtained exact solution show efficiency and accuracy of the 

method also show that it is a special case of the analysis methods. Finally, the proposed 

approach is very powerful to find analytical solution of linear problems in fractional calculus 

field. 
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