Construction of Complete (k,n)-arcs in the Projective Plane PG($\mathbf{2 , 1 1)}$ Over Galois Field GF(11), $\mathbf{3} \leq \mathbf{n} \leq \mathbf{1 1}$

A.T. Mahammad
Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

Abstract

The purpose of this work is to construct complete (k, n)-arcs in the projective 2 -space $\operatorname{PG}(2, q)$ over Galois field $\operatorname{GF}(11)$ by adding some points of index zero to complete ($\mathrm{k}, \mathrm{n}-1$)$\operatorname{arcs} 3 \leq \mathrm{n} \leq 11$.

A (k, n)-arcs is a set of k points no $n+1$ of which are collinear. A (k, n)-arcs is complete if it is not contained in a $(k+1, n)$-arcs.

\section*{Introduction}

Mayssa 2004 (4), constructed of complete (k,n)-arcs in PG(2,17) and Sawsan 2001 (6), showed the classification and construction of (k, n)-arcs from (k, m)-arcs in $\operatorname{PG}(2, \mathrm{q}) \mathrm{m}<\mathrm{n}$. And Ban, (8) showed the classification and construction of (k,4)-arc, $k=17,18, \ldots, 34$, in PG(2,11).

This paper is divided into two sections, section one consists of proving basic, theorems and giving some definitions of projective plane, (k,n)-arcs, maximal and complete arcs...ets. Section two consists of the projective plane of order eleven. The construction of complete ($k, 2$)-arcs call it $c_{1}, c_{2}, c_{3}, \ldots, c_{9}$ and the construction of complete (k, n)-arcs from complete $(k, n-1)$-arcs in $P G(2,11)$, where $n=3,4, \ldots, 9,10$ gave the points P_{i} and lines L_{i}.in $P G(2,11)$ are determined in the table $(1,1)$.

Section One

1.1 Definition 'Projective Plane" (1)

A projective plane $\mathrm{PG}(2, \mathrm{q})$ over Galois field $\mathrm{GF}(\mathrm{q})$ is a two-dimensional projective space, which consists of points and lines with incidence relation between them. In PG $(2, q)$ there are $\mathrm{q}^{2}+\mathrm{q}+1$ points, and $\mathrm{q}^{2}+\mathrm{q}+1$ lines, every line contains $1+\mathrm{q}$ points and every point is on $1+q$ lines, all these points in $\operatorname{PG}(2, q)$ have the form of a triple $\left(a_{1}, a_{2}, a_{3}\right)$ where a_{1}, $a_{2}, a_{3} \in \operatorname{GF}(q)$; such that $\left(a_{1}, a_{2}, a_{3}\right) \neq(0,0,0)$. Two points $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ represent the same point if there exists $\lambda \in \mathrm{GF}(\mathrm{q}) \backslash\{0\}$, such that $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)=\lambda\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$.

There exists one point of the form ($1,0,0$). There exists q points of the form ($\mathrm{x}, 1,0$). There exists q^{2} points of the form ($\mathrm{x}, \mathrm{y}, 1$), similarly for the lines.

A point $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ is incident with the line $\mathrm{L}\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right]$ if and only if $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0$, i.e.
A point represented by $\left(x_{1}, x_{2}, x_{3}\right)$ is incident with the line represented by $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$. if
$\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=0 \Rightarrow a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0$.
The projective plane $\operatorname{PG}(2, q)$ satisfying the following axioms:

1. Any two distinct lines intersected in a unique point.
2. Any two distinct points are contained in a unique line.
3. There exists at least four points such that no three of them are collinear.

1.2 Definition (1)

Two lines $\left[a_{1}, a_{2}, a_{3}\right]$ and $\left[b_{1}, b_{2}, b_{3}\right]$ represent the same line if there exists $\lambda \in \operatorname{GF}(q) \backslash\{0\}$, such that $\left[b_{1}, b_{2}, b_{3}\right]=\lambda\left[a_{1}, a_{2}, a_{3}\right]$.

1.3 Definition "Quadric" (1)

A quadric Q in $\mathrm{PG}(\mathrm{n}-1, \mathrm{q})$ is a primal of order two, so Q is a quadric, then $\mathrm{Q}=\mathrm{V}(\mathrm{F})$, where F is a quadric form, that is:

$$
\mathrm{F}=\sum_{\substack{\mathrm{i} \leq \mathrm{j} \\ \mathrm{i}, \mathrm{j}=1}}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}=\mathrm{a}_{11} \mathrm{x}_{1}^{2}+\mathrm{a}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}^{2}
$$

1.4 Definition "Conics"(1)

Let $\mathrm{Q}(2, \mathrm{q})$ be the set of quadrics in $\operatorname{PG}(2, q)$, that is the varieties $\mathrm{V}(\mathrm{F})$, where:
$F=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}$
If $\mathrm{V}(\mathrm{F})$ is non-singular, then quadric is conic.

1.5 Definition "(k,n)-arcs"

A (k,n)-arc, K in $\operatorname{PG}(2, q)$ is a set of K points such that some line in $\operatorname{PG}(2, q)$ meets K in n points but such that no line meets K in more that n points, where $n \geq 2$.
A line L in $P G(2, q)$ is an i-secant of a (k, n)-arc K if $|L \cap K|=i$.
Let T_{i} denoted the total number of i -secants to K in $\operatorname{PG}(2, q)$.
0 -secant is called an external line, a 1 -secant is called a unisecant, a 2 -secant is called a bisecant.
1.6 Definition "Complete (k,n)-arcs" (1)

A (k, n)-arc in $\operatorname{PG}(2, q)$ is complete if there is no $(k+1, n)$-arc containing it.

1.7 Definition (1)

A point N not in (k,n)-arc K is said to be has index i if there exists exactly i (2-secants) through N .
$\mathrm{C}_{\mathrm{i}}=\left|\mathrm{N}_{\mathrm{i}}\right|=$ the number of points of index i .
1.8 Definition 'Maximal (k,n)-arcs' (2)
$A(k, n)-\operatorname{arc} K$ in $P G(2, q)$ is a maximal arc if $k=(n-1) q+n$.

1.9 Theorem (2)

Let M be a point of $(\mathrm{k}, 2)$-arc A in $\operatorname{PG}(2, \mathrm{q})$, then the number of unisecant through M is u $=\mathrm{q}+2-\mathrm{k}$.

Proof:

There exists exactly $q+1$ lines through a point M in $\mathrm{a}(\mathrm{k}, 2)$-arc A of $\mathrm{PG}(2, q)$, which are the bisecants and the unisecants of the arc. There exists exactly ($k-1$) bisecants of the arc A through M and the other $(k-1)$ points of the arc, since the arc contains exactly k points. The number of unisecants through M is u , then
$\mathrm{u}=\mathrm{q}+1-(\mathrm{k}-1)=\mathrm{q}+1-\mathrm{k}+1=\mathrm{q}+2-\mathrm{k}$.

1.10 Theorem (2)

Let T_{i} be the number of the i-secants of a $(k, n)-\operatorname{arc} A$ in $\operatorname{PG}(2, q)$, then:
(a) $\mathrm{T}_{2}=\mathrm{k}(\mathrm{k}-1) / 2$
(b) $T_{1}=k u, u$ is the number of unisecants of each point of A.
(c) $\mathrm{T}_{0}=\mathrm{q}(\mathrm{q}-1) / 2+\mathrm{u}(\mathrm{u}-1) / 2$.

Proof (a):

$\mathrm{T}_{2}=$ the number of bisecants of the (k, n)-arc A , the (k, n)-arc A contains k points, each two of them determine a bisecant line, so:
$\mathrm{T}_{2}=\binom{\mathrm{k}}{2}=\mathrm{k}!/(\mathrm{k}-2)!\cdot 2!=\mathrm{k}(\mathrm{k}-1) / 2$
IBN AL- HAITHAM J. FOR PURE \& APPL. SCI

Proof (b):

$\mathrm{T}_{1}=$ the number of unisecants to the (k,n)-arc A. By Theorem (1.6) there exists exactly $\mathrm{u}=\mathrm{q}+2-\mathrm{k}$ lines through any point M in (k, n)-arc A, since the number of points on (k, n)-arc is k.
Then there exists $k u=k(q+2-k)$ unisecants of the $(k, n)-\operatorname{arc} A$.

Proof (c):

T_{0} be the number of the external lines to the (k, n)-arc A , then;
$\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{q}^{2}+\mathrm{q}+1$ represents all the lines in $\operatorname{PG}(2, \mathrm{q})$ then,
$\mathrm{T}_{0}=\mathrm{q}^{2}+\mathrm{q}+1-\mathrm{T}_{1}-\mathrm{T}_{2} \quad$ from part (a) and (b)
$\mathrm{T}_{0}=\mathrm{q}^{2}+\mathrm{q}+1-\mathrm{ku}-\mathrm{k}(\mathrm{k}-1) / 2$
Since, $\mathrm{u}=\mathrm{q}+2-\mathrm{k} \Rightarrow \mathrm{k}=\mathrm{q}+2-\mathrm{u}$, then
$\mathrm{T}_{0}=\mathrm{q}^{2}+\mathrm{q}+1-\mathrm{u}(\mathrm{q}+2-\mathrm{u})-(\mathrm{q}+2-\mathrm{u})(\mathrm{q}+1-\mathrm{u}) / 2$
$\mathrm{T}_{0}=\frac{1}{2}\left[2 \mathrm{q}^{2}+2 \mathrm{q}+2-2 \mathrm{u}(\mathrm{q}+2-\mathrm{u})-(\mathrm{q}+2-\mathrm{u})(\mathrm{q}+1-\mathrm{u})\right]$
$\mathrm{T}_{0}=\frac{1}{2}\left[2 \mathrm{q}^{2}+2 \mathrm{q}+2-2 \mathrm{uq}-4 \mathrm{u}+2 \mathrm{u}^{2}-\mathrm{q}^{2}-\mathrm{q}+\mathrm{uq}-2 \mathrm{q}-2+2 \mathrm{u}+\mathrm{uq}+\mathrm{u}-\mathrm{u}^{2}\right]$
$\mathrm{T}_{0}=\frac{1}{2}\left[2 \mathrm{q}^{2}+2 \mathrm{q}-4 \mathrm{u}+2 \mathrm{u}^{2}-\mathrm{q}^{2}-3 \mathrm{q}+3 \mathrm{u}-\mathrm{u}^{2}\right]$
$\mathrm{T}_{0}=\frac{1}{2}\left[\mathrm{q}^{2}-\mathrm{q}+\mathrm{u}^{2}-\mathrm{u}\right]$
$\mathrm{T}_{0}=\mathrm{q}(\mathrm{q}-1) / 2+\mathrm{u}(\mathrm{u}-1) / 2$

1.11 Theorem (3)

$\mathrm{A}(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{A}$ in $\mathrm{PG}(2, \mathrm{q})$ is complete if and only if $\mathrm{C}_{0}=0$.

Proof: \Rightarrow

Let A be a complete (k,n)-arc in $\operatorname{PG}(2, q)$ and suppose that $C_{0} \neq 0$, then \exists at least one point say N has an index zero and $N \notin A$. Then $A \cup\{N\}$ is an arc in $P G(2, q)$. Hence $A \subseteq A \cup\{N\}$. Which implies that the (k, n)-arc A is incomplete (contradicts the hypothesis).
$\Leftarrow \quad$ suppose that $\mathrm{C}_{0}=0$ for the (k,n)-arc A then there are no points of index zero, for A , so the (k, n)-arc A is a complete.

1.12 Theorem (3)

If a (k, n)-arc A is maximal arc in $\operatorname{PG}(2, q)$, then,
(a) if $\mathrm{n}=\mathrm{q}+1$, then $\mathrm{A}=\mathrm{PG}(2, \mathrm{q})$
(b) if $n=q$, then $A=P G(2, q) \backslash L$, where L is line
(c) if $2 \leq \mathrm{n} \leq \mathrm{q}$, then $\mathrm{n} \mid \mathrm{q}$ and the dual of the complements of (k, n)-arc A forms a $(\mathrm{q}(\mathrm{q}+1-\mathrm{n})$ / $\mathrm{n}, \mathrm{q} / \mathrm{n}$)-arc, also maximal.

Proof (a):

A (k, n)-arc A is a maximal in $P G(2, q)$, then $k=(n-1) q+n$, and if $n=q+1$, then
$\mathrm{k}=((\mathrm{q}+1)-1) \mathrm{q}+(\mathrm{q}+1)=\mathrm{q}^{2}+\mathrm{q}+1$ points
$A=\left(q^{2}+q+1, q+1\right)=P G(2, q)$.

Proof (b):

When $n=q$, since A is a maximal arc, then $A=(n+1) q+n, A=(q-1) q+q=q^{2}$
$|\mathrm{PG}(2, \mathrm{q})|=\mathrm{q}^{2}+\mathrm{q}+1$
$|\mathrm{PG}(2, \mathrm{q}) \backslash \mathrm{L}|=|\mathrm{PG}(2, \mathrm{q})|-|\mathrm{L}|=\mathrm{q}^{2}+\mathrm{q}+1-(\mathrm{q}+1)=\mathrm{q}^{2}=\mathrm{A}$. Then
$A=P G(2, q) \backslash L$.

Proof (c):

When $2 \leq \mathrm{n} \leq \mathrm{q}$, there exists a point M not in A , so the number of 0 -secants through M is q $/ \mathrm{n}$, it follows that n / q. the dual of complement of $(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{A}$ is $\left(\mathrm{T}_{0}, \mathrm{q} / \mathrm{n}\right)$-arc is maximal. Then $(\mathrm{q}(\mathrm{q}+1-\mathrm{n}) / \mathrm{n}, \mathrm{q} / \mathrm{n})$-arc is maximal.

1.13 Lemma (4)

For a (k,n)-arc in $\operatorname{PG}(2, q)$, the following equation hold:

1. $\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{T}_{\mathrm{i}}=\mathrm{q}^{2}+\mathrm{q}+1$
2. $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{iT}_{\mathrm{i}}=\mathrm{k}(\mathrm{q}+1)$
3. $\sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{i}(\mathrm{i}-1) \mathrm{T}_{\mathrm{i}} / 2=\mathrm{k}(\mathrm{k}-1) / 2$
4. $\sum_{i=2}^{n}(i-1) p_{i}=k-1$

Note: T_{i} denote the total number of i-secants to the arc in $\operatorname{PG}(2, q)$.

1.14 Theorem (5)

A (k, n)-arc A In $\operatorname{PG}(2, q)$ is maximal if and only if every line in $\operatorname{PG}(2, q)$ is a 0 -secant or n-secant.
Proof: \Rightarrow Suppose that $(k, n)-\operatorname{arc} A$ is maximal arc in $\operatorname{PG}(2, q)$, then the result was proved in the theorem.
\Leftarrow Suppose every line in $\operatorname{PG}(2, \mathrm{q})$ is a 0 -secant or n -secant.
If $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\ldots=\mathrm{T}_{\mathrm{n}-1}=0$, then
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i} \mathrm{T}_{\mathrm{i}}=\mathrm{k}(\mathrm{q}+1) \quad($ by Lemma (1.13), (2))
$\mathrm{T}_{1}+2 \mathrm{~T}_{2}+\ldots+(\mathrm{n}-1) \mathrm{T}_{\mathrm{n}-1}+\mathrm{n} \mathrm{T}_{\mathrm{n}}=\mathrm{k}(\mathrm{q}+1)$
$\mathrm{n} \mathrm{T}_{\mathrm{n}}=\mathrm{k}(\mathrm{q}+1)$
...[1]
$\sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{i}(\mathrm{i}-1) \mathrm{T}_{\mathrm{i}} / 2=\mathrm{k}(\mathrm{k}-1) / 2 \quad$ (Lemma (1.13), (3))
$\mathrm{T}_{2}+3 \mathrm{~T}_{3}+\ldots+\mathrm{n}(\mathrm{n}-1) \mathrm{T}_{\mathrm{n}} / 2=\mathrm{k}(\mathrm{k}-1) / 2$
$\mathrm{n}(\mathrm{n}-1) \mathrm{T}_{\mathrm{n}} / 2=\mathrm{k}(\mathrm{k}-1) / 2$
$\mathrm{n}(\mathrm{n}-1) \mathrm{T}_{\mathrm{n}}=\mathrm{k}(\mathrm{k}-1)$
From equation [1], we get:
$\mathrm{n} \mathrm{T}_{\mathrm{n}} / \mathrm{k}=\mathrm{q}+1$
From equation [2], we get:
$\mathrm{n} \mathrm{T}_{\mathrm{n}} / \mathrm{k}=(\mathrm{k}-1) /(\mathrm{n}-1)$
From equations [3] and [4], we get
$(\mathrm{k}-1) /(\mathrm{n}-1)=\mathrm{q}+1 \Rightarrow(\mathrm{k}-1)=(\mathrm{q}+1)(\mathrm{n}-1) \Rightarrow(\mathrm{k}-1)=(\mathrm{n}-1) \mathrm{q}+(\mathrm{n}-1)$
$\Rightarrow \mathrm{k}=(\mathrm{n}-1) \mathrm{q}+\mathrm{n}$
(k, n)-arc A is maximal arc (by definition 1.5)

Section Two

The projective plane $\operatorname{PG}(2,11)$ contains 133 points, 133 lines, every line contains 12 points and every points is on 12 points. The points and lines of $\mathrm{PG}(2,11)$ are shown in table $(1,1)$.

2.1 The Construction of $(\mathbf{k}, \mathbf{2})$-arc in $\mathbf{P G}(\mathbf{2}, 11)(\mathbf{2})$

Let $A=(1,2,13,25)$ be the set of unit and reference points in $\operatorname{PG}(2,11)$ as in the table $(1,1)$ such that:

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI

VOL. 22 (2) 2009
$1=(1,0,0), 2=(0,1,0), 13=(0,0,1), 25=(1,1,1), \mathrm{A}$ is $(4,2)$-arc, since no three points of A are collinear, the points of A are the vertices of a quadrangle whose sides are the lines.
$\mathrm{L}_{1}=[1,2]=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$\mathrm{L}_{2}=[1,13]=\{1,13,14,15,16,17,18,19,20,21,22,23\}$
$\mathrm{L}_{3}=[1,25]=\{1,24,25,26,27,28,29,30,31,32,33,34\}$
$\mathrm{L}_{4}=[2,13]=\{2,13,24,35,46,57,68,79,90,101,112,123\}$
$\mathrm{L}_{5}=[2,25]=\{2,14,25,36,47,58,69,80,91,102,113,124\}$
$\mathrm{L}_{6}=[13,25]=\{3,13,25,37,49,61,73,85,97,109,121,133\}$
The diagonal points of A are the points $\{3,14,24\}$ where,
 $\mathrm{L}_{1} \cap \mathrm{~L}_{6}=3 ; \mathrm{L}_{2} \cap \mathrm{~L}_{5}=14 ; \mathrm{L}_{3} \cap \mathrm{~L}_{4}=24$.
Which are the intersection of pairs of the opposite sides, then there are 61 points on the sides of the quadrangle, four of them are points of the arc A and three of them are the diagonal points of A , so there are 72 points not on the sides of quadrangle which are the points of index zero for A, these points are: $38,39,40,41,42,43,44,45,48,50,51,52,53,54,55,56,59$, $60,62,63,64,65,66,67,70,71,72,74,75,76,77,78,81,82,83,84,86,87,88,89,92,93$, $94,95,96,98,99,100,103,104,105,106,107,108,110,111,114,115,116,117,118,119$, $120,122,125,126,127,128,129,130,131,132$. Hence A is incomplete (4,2)-arc.

2.2 The Conics in PG(2,11) Through the Reference and Unit Points (1)

The general equation of the conic is:
$\mathrm{F}=\mathrm{a}_{1} \mathrm{X}_{1}^{2}+\mathrm{a}_{2} \mathrm{X}_{2}^{2}+\mathrm{a}_{3} \mathrm{X}_{3}^{2}+\mathrm{a}_{4} \mathrm{x}_{1} \mathrm{X}_{2}+\mathrm{a}_{5} \mathrm{x}_{1} \mathrm{X}_{3}+\mathrm{a}_{6} \mathrm{X}_{2} \mathrm{x}_{3}=0$
By substituting the points of the arc A in [1], then:
$1=(1,0,0)$ implies that $\mathrm{a}_{1}=0,2=(0,1,0)$, then $\mathrm{a}_{2}=0,13=(0,0,1)$, then $\mathrm{a}_{3}=0, \quad 25=$ $(1,1,1)$, then $a_{4}+a_{5}+a_{6}=0$.
Hence, from equation [1]
$a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0$
If $a_{4}=0$, then $a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0$, and hence $x_{3}\left(a_{5} x_{1}+a_{6} x_{2}\right)=0$, then $x_{3}=0$ or $a_{5} x_{1}+a_{6} x_{2}$ $=0$, which is a pair of lines, then the conic is degenerated, therefore for $a_{4} \neq 0$, similarly $a_{5} \neq 0$ and $\mathrm{a}_{6} \neq 0$.
Dividing equation [2] by a_{4}, one can get:
$x_{1} x_{2}+\frac{a_{5}}{a_{4}} x_{1} x_{3}+\frac{a_{6}}{a_{4}} x_{2} x_{3}=0$, then $x_{1} x_{2}+\alpha x_{1} x_{3}+\beta x_{2} x_{3}=0$
where $\alpha=\frac{\mathrm{a}_{5}}{\mathrm{a}_{4}}, \beta=\frac{\mathrm{a}_{6}}{\mathrm{a}_{4}}$, so that $1+\alpha+\beta=0$ (mod.11)
$\beta=-(1+\alpha)$, then [3] can be written as: $\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1} \mathrm{x}_{3}-(1+\alpha) \mathrm{x}_{2} \mathrm{x}_{3}=0$
where $\alpha \neq 0$ and $\alpha \neq 10$ for if $\alpha=0$ or $\alpha=10$, then degenerated conics, can be obtained thus $\alpha=1,2,3,4,5,6,7,8,9$.

2.3 The Equation and the Points of the Conics of $\operatorname{PG}(2,11)$ Through the Reference and Unit Points (1)

1. If $\alpha=1$, then the equation of the conic C_{1} is $x_{1} x_{2}+x_{1} x_{3}+9 x_{2} x_{3}=0$, the points of C_{1} are: $\{1,2,13,25,40,53,63,77,87,100,104,116\}$, which is a complete $(12,2)$-arc, since there are no points of index zero for C_{1}.
2. If $\alpha=2$, then the equation of the conic C_{2} is $x_{1} x_{2}+2 x_{1} x_{3}+8 x_{2} x_{3}=0$, the points of C_{2} are: $\{1,2,13,25,42,50,59,78,84,96,110,131\}$, which is a complete (12,2)-arc, since there are no points of index zero for C_{2}.
3. If $\alpha=3$, then the equation of the conic C_{3} is $x_{1} x_{2}+3 x_{1} x_{3}+7 x_{2} x_{3}=0$, the points of C_{3} are: $\{1,2,13,25,41,48,64,76,89,95,115,132\}$, which is a complete $(12,2)$-arc, since there are no points of index zero for C_{3}.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI VOL. 22 (2) 2009

4. If $\alpha=4$, then the equation of the conic C_{4} is $x_{1} x_{2}+4 x_{1} x_{3}+6 x_{2} x_{3}=0$, the points of C_{4} are: $\{1,2,13,25,44,56,65,72,82,108,118,125\}$, which is a complete $(12,2)$-arc, since there are no points of index zero for C_{4}.
5. If $\alpha=5$, then the equation of the conic C_{5} is $x_{1} x_{2}+5 x_{1} x_{3}+5 x_{2} x_{3}=0$, the points of C_{5} are: $\{1,2,13,25,43,51,67,71,99,103,119,127\}$, which is a complete $(12,2)$-arc, since there are no point of index zero for C_{5}.
6. If $\alpha=6$, then the equation of the conic C_{6} is $x_{1} x_{2}+6 x_{1} x_{3}+4 x_{2} x_{3}=0$, the points of C_{6} are: $\{1,2,13,25,45,62,88,98,105,114,126\}$, which is a complete (12,2)-arc, since there are no points of index zero for C_{6}.
7. If $\alpha=7$, then the equation of the conic C_{7} is $x_{1} x_{2}+7 x_{1} x_{3}+3 x_{2} x_{3}=0$, the points of C_{7} are: $\{1,2,13,25,38,55,75,81,94,106,122,129\}$, which is a complete $(12,2)$-arc, since there are no points of index zero for C_{7}.
8. If $\alpha=8$, then the equation of the conic C_{8} is $x_{1} x_{2}+8 x_{1} x_{3}+2 x_{2} x_{3}=0$, the points of C_{8} are: $\{1,2,13,25,39,60,74,86,92,111,120,128\}$, which is a complete (12,2)-arc, since there are no points of index zero for C_{8}.
9. If $\alpha=9$, then the equation of the conic C_{9} is $x_{1} x_{2}+9 x_{1} x_{3}+1 x_{2} x_{3}=0$, the points of C_{9} are: $\{1,2,13,25,54,66,70,83,93,107,117,130\}$, which is a complete (12,2)-arc, since there are no points of index zero for C_{9}.
Thus there are nine complete (12,2)-arcs (conics) in $\mathrm{PG}(2,11)$ through the reference and the unit points. Hence each arc is a maximum arc, since contains (12) points.

2.4 The Construction of Complete (k,n)-arcs in PG(2,11) (2)

1. The construction of complete arcs of degree 3

In 2.3 , we found nine complete $(\mathrm{k}, 2)$-arcs which are $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots, \mathrm{C}_{9}$, so the complete arcs of degree 3 can be constructed from some complete arcs of degree 2 , say $\mathrm{C}_{1}, \mathrm{C}_{1}=\{1,2$, $13,25,40,53,63,77,87,100,104,116\} . \mathrm{C}_{1}$ is not complete ($\mathrm{k}, 3$)-arc, since there exist some points of index zero for C_{1} which are $\{3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20$, $21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47$, $48,49,50,51,52,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74$, $75,76,78,79,80,81,82,83,84,85,86,88,89,90,91,92,93,94,95,96,98,99,101,102$, $103,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123$, $124,125,126,127,128,129,130,131,132,133\}$, one can add to C_{1} seven points of index zero which are: $\{12,14,45,49,57,70,128\}$, then it can be obtained a complete (19,3)-arc, H_{1} $=\{1,2,12,13,14,25,40,45,49,53,57,63,70,77,87,100,104,116,128\}$ since each point not in H_{1} is on at least one 3-secant and H_{1} intersect each line in at most 3 points, thus $\mathrm{C}_{0}=0$, since there are no points of index zero for H_{1}. Similarly one can find complete arcs of degree 3 from $\mathrm{C}_{2}, \mathrm{C}_{3}, \ldots, \mathrm{C}_{9}$, by adding some points of index zero to each one of them, call them: $\mathrm{H}_{2}, \mathrm{H}_{3}, \ldots, \mathrm{H}_{9}$.

2. The construction of complete arcs of degree 4

One will try to construct complete arcs of degree 4 from the complete arcs of degree 3 , taken the complete $(19,3)$-arc: $\mathrm{H}_{1}=\{1,2,12,13,14,25,40,45,49,53,57,63,70,77,87$, $100,104,116,128\}$, since there exist some points of index zero for H_{1} which are $\{3,4,5,6$, $7,8,9,10,11,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36$, $37,38,39,41,42,43,44,46,47,48,50,51,52,54,55,56,57,58,59,60,61,62,64,65,66$, $67,68,69,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,88,89,90,91,92,93,94$,
$95,96,97,98,99,101,102,103,105,106,107,108,109,110,111,112,113,114,115,117$, $118,119,120,121,122,123,124,125,126,127,129,130,131,132,133\}$.
the arc H_{1} is incomplete $(19,4)-\mathrm{arc}$, one can add to H_{1} eight of these points which are: $\{10,23$, $32,38,47,84,90,105\}$, then it can be obtained a complete (27,4)-arc $S_{1}, S_{1}=\{1,2,10,12$, $13,14,23,25,32,38,40,45,47,49,53,57,63,70,77,84,87,90,100,104,105,116,128\}$, S_{1} is a complete (27,4)-arc, since every point not on S_{1} is on at least one 4 -secant, there are no points of index zero for S_{1} intersect each line in at most 4 points. Similarly one can find

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI
VOL. 22 (2) 2009
complete arcs of degree 4 from by adding some points of index zero to $\mathrm{H}_{2}, \mathrm{H}_{3}, \ldots, \mathrm{H}_{9}$ to obtain complete arcs of degree 4 , call them $S_{1}, S_{2}, \ldots, S_{9}$.

3. The construction of complete arcs of degree 5

In the same method in 1 and 2 , one can construct complete arcs of degree 5 by adding some points of index zero to complete arcs of degree 4 , for example by taking S_{1}, and the points of index zero for $S_{1}:\{3,4,5,6,7,8,9,11,15,16,17,18,19,20,21,22,24,26,27$, $28,29,30,31,33,34,35,36,37,39,41,42,43,44,46,48,50,51,52,54,55,56,58,59,60$, $61,62,64,65,66,67,68,69,71,72,73,74,75,76,78,79,80,81,82,83,85,86,88,89,91$, $92,93,94,95,96,97,98,99,101,102,103,106,107,108,109,110,111,112,113,114,115$, $117,118,119,120,121,122,123,124,125,126,127,129,130,131,132,133\}$, by adding to S_{1} nine of these points which are: $\{8,22,27,43,56,62,74,85,112\}$, so one can get a complete arc of degree 5 call $\mathrm{M}_{1}, \mathrm{M}_{1}=\{1,2,8,10,12,13,14,22,23,25,27,32,38,40,43$, $45,47,49,53,56,57,62,63,70,74,77,84,85,87,90,100,104,105,112,116,128\}, \mathrm{M}_{1}$ is complete (36,5)- arc, since there are no point of index zero; i.e. $\mathrm{C}_{0}=0$, so every points not in M_{1} is on at least one 5 -secant, and M_{1} intersects each line in at most 5 points, Similarly one can find complete arcs of degree 5 by adding some point of index zero to : $S_{2}, S_{3}, \ldots, S_{9}$, to obtain complete arcs of degree 5 , call them, $\mathrm{M}_{1}, \mathrm{M}_{3}, \ldots, \mathrm{M}_{9}$.

4. The construction of complete arcs of degree 6

Complete arcs of degree 6 can be obtained from the complete arcs of degree 5 by adding some points of index zero, for example, one takes the (36,6)-arc, The points of index zero for M_{1} are: $\{3,4,5,6,7,9,11,15,16,17,18,19,20,21,24,26,28,29,30,31,33,34,35,36,37$, $39,41,42,44,46,48,50,51,52,54,55,58,59,60,61,64,65,66,67,68,69,71,72,73,75$, $76,78,79,80,81,82,83,86,88,89,91,92,93,94,95,96,97,98,99,101,102,103,106$, $107,108,109,110,111,113,114,115,117,118,119,120,121,122,123,124,125,126,127$, $129,130,131,132,133\}$, and $\mathrm{M}_{1}=\{1,2,8,10,12,13,14,22,23,25,27,32,38,40,43,45$, $47,49,53,56,57,62,63,70,74,77,84,85,87,90,100,104,105,112,116,128$ \}, by adding to M_{1} eleven of these points which are $\{6,30,54,67,69,75,79,92,93,107,120\}$, so we have $\mathrm{N}_{1}=\{1,2,6,8,10,12,13,14,22,23,25,27,30,32,38,40,43,45,47,49,53,54,56$, $57,62,63,67,69,70,74,75,77,79,84,85,87,90,92,93,100,104,105,107,112,116,120$, $128\}$, then N_{1} is complete $(47,6)$-arc, since There are no points of index zero for N_{1}. Similarly one can construct complete arcs of degree 6 by adding some points of index zero to $\mathrm{M}_{2}, \mathrm{M}_{3}$, \ldots, M_{9}, then complete of degree 6 can be obtained,and call them $\mathrm{N}_{2}, \mathrm{~N}_{3}, \ldots, \mathrm{~N}_{9}$.

5. The construction of complete arcs of degree 7

Complete arcs of degree 7 can be constructed from the complete arcs of degree 6 , one can take the $(47,6)$-arc, N_{1} is complete arc of degree 7 , since there exist some points of index zero which are: $\{3,4,5,7,9,11,15,16,17,18,19,20,21,24,26,28,29,31,33,34,35,36$, $37,39,41,42,44,46,48,50,51,52,55,58,59,60,61,64,65,66,68,71,72,73,76,78,80$, $81,82,83,86,88,89,91,94,95,96,97,98,99,101,102,103,106,108,109,110,111,113$, $114,115,117,118,119,121,122,123,124,125,126,127,129,130,131,132,133\}$. By adding to N_{1} eleven of these points which are: $\{5,21,51,58,61,64,82,83,111,117,121\}$, then $\mathrm{K}_{1}=\{1,2,5,6,8,10,12,13,14,21,22,23,25,27,30,32,38,40,43,45,47,49,51,53$, $54,56,57,58,61,62,63,64,67,69,70,74,75,77,79,82,83,84,85,87,90,92,93,100$,
$104,105,107,111,112,116,117,120,121,128\}$ is a complete $(58,7)$-arc, since there are no points of index zero, thus every point not in K_{1} is on at least one 7 -secant and K_{1} intersects each line in at most 7 points. Similarly, constructed arcs of degree 7can be contructed from $\mathrm{N}_{2}, \mathrm{~N}_{3}, \ldots, \mathrm{~N}_{9}$, call them $\mathrm{K}_{2}, \mathrm{~K}_{3}, \ldots, \mathrm{~K}_{9}$.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI

VOL. 22 (2) 2009

6. The construction of complete arcs of degree 8

Complete arcs of degree 8 can be constructed from the complete arcs of degree 7 , one can take the $(58,7)$-arc, k_{1} is complete $(58,7)$-arc, since there exist some points of index zero which are: $\{3,4,5,7,9,11,15,16,17,18,19,20,24,26,28,29,31,33,34,35,36,37,39$, $41,42,44,46,48,50,52,55,59,60,61,64,65,66,68,71,72,73,76,78,80,81,86,88,89$, $91,92,94,95,96,97,98,99,101,102,103,106,108,109,110,113,114,115,118,119,122$, $123,124,125,126,127,129,130,131,132,133\}$. By adding to k_{1} thirteen of these points which are: $\{3,16,24,26,28,35,37,41,48,59,78,98,125\}$, to obtain a complete (71,8)-arc L_{1} and $\mathrm{L}_{1}=\{1,2,3,5,6,8,10,12,13,14,16,21,22,23,24,25,26,27,28,30,32,35,37$, $38,40,41,43,45,46,47,49,51,53,54,56,57,58,59,61,62,63,64,67,69,70,74,75,77$, $79,82,83,84,85,87,90,92,93,98,100,104,105,107,111,112,116,117,120,121,125$, $128\}$ is a complete $(71,8)$-arc, since there are no points of index zero, thus every point on L_{1} is on at least one 8 -secant and L_{1} intersects any line in at most 8 points. Similarly arcs of degree 8 can be constructed from $\mathrm{K}_{2}, \mathrm{~K}_{3}, \ldots, \mathrm{~K}_{9}$, call them $\mathrm{L}_{2}, \mathrm{~L}_{3}, \ldots, \mathrm{~L}_{9}$.

7. The construction of complete arcs of degree 9

Complete arcs of degree 9 can be constructed from the complete arcs of degree 8, the complete (71,8)-arc L_{1} is taken, L_{1} is in complete (71,9)-arc, the points of index zero of L_{1} are: $\{4,7,9,11,15,17,18,19,20,29,34,36,39,42,44,46,50,52,55,60,65,66,68,71,72$, $73,76,80,81,86,88,89,91,94,95,96,97,99,101,102,103,106,108,109,110,113,114$, $115,118,119,122,123,124,126,127,129,130,131,132,133\}$. By adding to L_{1} twelve of these points which are: $\{4,15,29,36,44,52,65,71,80,88,119,133\}$, then a complete (83,9)-arc call it O_{1} is obtained (83,9)-arc and $\mathrm{O}_{1}=\{1,2,3,4,5,6,8,10,12,13,14,15,16$, $21,22,23,24,25,26,27,28,29,30,32,35,36,37,38,40,41,43,44,45,47,48,49,51,52$, $53,54,56,57,58,59,61,62,63,64,65,67,69,70,74,75,77,78,79,80,82,83,84,85,87$, $88,90,92,93,98,100,104,105,107,111,112,116,117,119,120,121,125,128,133\}$ is a complete (83,9)-arc, since there are no points of index zero, thus every point on O_{1} is on at least one 9 -secant and O_{1} intersects any line in at most 9 points. In the same way complete arcs of degree 9 can be obtained from arcs of degree $8, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \ldots, \mathrm{~L}_{9}$, call them $\mathrm{O}_{2}, \mathrm{O}_{3}, \ldots$, O_{9}.

8. The construction of complete arcs of degree 10

Complete arcs of degree 10 can be constructed from the complete arcs of degree 9 as the following:
The complete arc of degree $9, \mathrm{O}_{1}$ is complete $(83,10)$-arc, since there exist some points of index zero for O_{1} which are: $\{7,9,11,17,18,19,20,31,33,34,39,42,44,46,50,55,60,66$, $68,72,73,76,81,86,89,91,94,95,96,97,99,101,102,103,106,108,109,110,113,114$, $115,118,122,123,124,126,127,129,130,131,132\}$. Twelve of these points are added to O_{1} which are: $\{9,17,31,42,46,73,86,95,96,99,103,113\}$, then a complete $(95,10)$-arc call it B_{1}, is obtained $\mathrm{B}_{1}=\{1,2,3,4,5,6,8,9,10,12,13,14,15,16,17,21,22,23,24,25,26$, $27,28,29,30,31,32,35,36,37,38,40,41,42,43,44,45,46,47,48,49,51,52,53,54,56$, $57,58,59,61,62,63,64,65,67,69,70,71,73,74,75,77,78,79,80,82,83,84,85,86,87$, $88,90,92,93,95,96,98,99,100,103,104,105,107,111,112,113,116,117,119,120,121$, $125,128,133\}$ is a complete $(95,10)$-arc, since there are no points of index zero, i.e. $\mathrm{C}_{0}=0$.

Similarly complete arcs of degree 10 can be constructed, call it $\mathrm{B}_{2}, \mathrm{~B}_{3}, \ldots, \mathrm{~B}_{9}$ from $\mathrm{O}_{2}, \mathrm{O}_{3}, \ldots$, O_{9}.

9. Them construction of complete arcs of degree 11

Complete arcs of degree 11 can be constructed from complete arcs of degree 10 .
The complete arcs of degree $10 B_{1}$ is taken. B_{1} is in complete (95,11)-arc, since there exist some points of index zero for B_{1} which are: $\{7,11,18,19,20,33,34,39,50,55,60,66,68$, $72,76,81,89,91,94,97,101,102,106,108,109,110,114,115,118,122,123,124,126$, $127,129,130,131,132\}$, by adding to $B_{1}(26)$ points of these points which are : $\{11,19,20$,

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI VOL. 22 (2) 2009

$33,50,66,68,89,91,94,96,101,106,108,109,110,114,115,122,124,126,127,129,130$, $131,132\}$, so we get a complete (121,11)-arc, call it $Z_{1}=\{1,2,3,4,5,6,8,9,10,11,12,13$, $14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,40,41$, $42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,61,62,63,64,65,66,67,68$, $69,70,71,72,73,74,75,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95$, $96,98,99,100,101,103,104,105,106,107,108,109,110,112,113,114,115,116,117$, $119,120,122,124,125,126,127,128,129,130,131,132,133\}$, The Z_{1} is complete $(121,11)$-arc, since There are no point of index zero ,i.e. $\mathrm{Co}=0$. Similarly complete arcs of degree $11, Z_{2}, Z_{3}, \ldots, Z_{9}$ can be constructed from complete arcs of degree 10 .

Refrence

1. Hirschfeld, J.W.P., (1979), Oxford University press, Oxford.
2. Mayssa, G. M., (2004), M.Sc. Thesis, Baghdad University, College of Education Ibn-AlHaitham, Iraq.
3. Aziz, S.M., (2001), M.Sc. Thesis, Mosul University.
4. Sawsan, J. K., (2001), M.Sc. Thesis, University of Baghdad, College of Education Ibn-Al-Haitham, Iraq.
5. Rashad, (1999), M.Sc. Thesis, University of Baghdad, College of Education Ibn-AlHaitham

Table : $(1,1)$ of the points and lines of $\operatorname{PG}(2,11)$

\mathbf{i}	\mathbf{P}_{i}			L_{i}											
1	1	0	0	2	13	24	35	46	57	68	79	90	101	112	123
2	0	1	0	1	13	14	15	16	17	18	19	20	21	22	23
3	1	1	0	12	13	34	44	54	64	74	84	94	104	114	124
4	2	1	0	7	13	29	45	50	66	71	87	92	108	113	129
5	3	1	0	9	13	31	38	56	63	70	88	95	102	120	127
6	4	1	0	10	13	32	40	48	67	75	83	91	110	118	126
7	5	1	0	4	13	26	39	52	65	78	80	93	106	119	132
8	6	1	0	11	13	33	42	51	60	69	89	98	107	116	125
9	7	1	0	5	13	27	41	55	58	72	86	100	103	117	131
10	8	1	0	6	13	28	43	47	62	77	81	96	111	115	130
11	9	1	0	8	13	30	36	53	59	76	82	99	105	122	128
12	10	1	0	3	13	25	37	49	61	73	85	97	109	121	133
13	0	0	1	1	2	3	4	5	6	7	8	9	10	11	12
14	1	0	1	2	23	34	45	56	67	78	89	100	111	122	133
15	2	0	1	2	18	29	40	51	62	73	84	95	106	117	128
16	3	0	1	2	20	31	42	53	64	75	86	97	108	119	130
17	4	0	1	2	21	32	43	54	65	76	87	98	109	120	131
18	5	0	1	2	15	26	37	48	59	70	81	92	103	114	125
19	6	0	1	2	22	33	44	55	66	77	88	99	110	121	132
20	7	0	1	2	16	27	38	49	60	71	82	93	104	115	126
21	8	0	1	2	17	28	39	50	61	72	83	94	105	116	127
22	9	0	1	2	19	30	41	52	63	74	85	96	107	118	129
23	10	0	1	2	14	25	36	47	58	69	80	91	102	113	124
24	0	1	1	1	123	124	125	126	127	128	129	130	131	132	133
25	1	1	1	12	23	33	43	53	63	73	83	93	103	113	123
26	2	1	1	7	18	34	39	55	60	76	81	97	102	118	123
27	3	1	1	9	20	27	45	52	59	77	84	91	109	116	123

28	41	1	10	21	29	37	56	64	72	80	99	107	115	123
29	51	1	4	15	28	41	54	67	69	82	95	108	121	123
30	61	1	11	22	31	40	49	58	78	87	96	105	114	123
31	71	1	5	16	30	44	47	61	75	89	92	106	120	123
32	81	1	6	17	32	36	51	66	70	85	100	104	119	123
33	91	1	8	19	25	42	48	65	71	88	94	111	117	123
34	$10 \quad 1$	1	3	14	26	38	50	62	74	86	98	110	122	123
35	$0 \quad 2$	1	1	68	69	70	71	72	73	74	75	76	77	78
36	12	1	11	23	32	41	50	59	68	88	97	106	115	124
37	22	1	12	18	28	38	48	58	68	89	99	109	119	129
38	32	1	5	20	34	37	51	65	68	82	96	110	113	127
39	42	1	7	21	26	42	47	63	68	84	100	105	121	126
40	52	1	6	15	30	45	49	64	68	83	98	102	117	132
41	62	1	9	22	29	36	54	61	68	86	93	111	118	125
42	72	1	8	16	33	39	56	62	68	85	91	108	114	131
43	$8 \quad 2$	1	10	17	25	44	52	60	68	87	95	103	122	130
44	92	1	3	19	31	43	55	67	68	80	92	104	116	128
45	102	1	4	14	27	40	53	66	68	81	94	107	120	133
46	03	1	1	90	91	92	93	94	95	96	97	98	99	100
47	13	1	10	23	31	39	47	66	74	82	90	109	117	125
48	23	1	6	18	33	37	52	67	71	86	90	105	120	124
49	33	1	12	20	30	40	50	60	70	80	90	111	121	131
50	43	1	4	21	34	36	49	62	75	88	90	103	116	129
51	53	1	8	15	32	38	55	61	78	84	90	107	113	130
52	63	1	7	22	27	43	48	64	69	85	90	106	122	127
53	73	1	11	16	25	45	54	63	72	81	90	110	119	128
54	83	1	3	17	29	41	53	65	77	89	90	102	114	126
55	93	1	9	19	26	44	51	58	76	83	90	108	115	133
56	103	1	5	14	28	42	56	59	73	87	90	104	118	132
57	04	1	1	101	102	103	104	105	106	107	108	109	110	111
58	14	1	9	23	30	37	55	62	69	87	94	101	119	126
59	24	1	11	18	27	36	56	65	74	83	92	101	121	130
60	34	1	8	20	26	43	49	66	72	89	95	101	118	124
61	44	1	12	21	31	41	51	61	71	81	91	101	122	132
62	54	1	10	15	34	42	50	58	77	85	93	101	120	128
63	64	1	5	22	25	39	53	67	70	84	98	101	115	129
64	74	1	3	16	28	40	52	64	76	88	100	101	113	125
65	84	1	7	17	33	38	54	59	75	80	96	101	117	133
66	94	1	4	19	32	45	47	60	73	86	99	101	114	127
67	104	1	6	14	29	44	48	63	78	82	97	101	116	131
68	05	1	1	35	36	37	38	39	40	41	42	43	44	45
69	15	1	8	23	29	35	52	58	75	81	98	104	121	127
70	25	1	5	18	32	35	49	63	77	80	94	108	122	125
71	35	1	4	20	33	35	48	61	74	87	100	102	115	128
72	45	1	9	21	28	35	53	60	78	85	92	110	117	124
73	55	1	12	15	25	35	56	66	76	86	96	106	116	126
74	65	1	3	22	34	35	47	59	71	83	95	107	119	131
75	75	1	6	16	31	35	50	65	69	84	99	103	118	133
76	85	1	11	17	26	35	55	64	73	82	91	111	120	129
77	95	1	10	19	27	35	54	62	70	89	97	105	113	132
78	105	1	7	14	30	35	51	67	72	88	93	109	114	130
79	06	1	1	112	113	114	115	116	117	118	119	120	121	122
80	16	1	7	23	28	44	49	65	70	86	91	107	112	128
81	26	1	10	18	26	45	53	61	69	88	96	104	112	131
82	36	1	11	20	29	38	47	67	76	85	94	103	112	132
83	46	1	6	21	25	40	55	59	74	89	93	108	112	127
84	56	1	3	15	27	39	51	63	75	87	99	111	112	124
85	66	1	12	22	32	42	52	62	72	82	92	102	112	133
86	76	1	9	16	34	41	48	66	73	80	98	105	132	130
87	86	1	4	17	30	43	56	58	71	84	97	110	112	125
88	96	1	5	19	33	36	50	64	78	81	95	109	112	126
89	106	1	8	14	31	37	54	60	77	83	100	106	112	129
90	07	1	1	46	47	48	49	50	51	52	53	54	55	56
91	17	1	6	23	27	42	46	61	76	80	95	110	114	129
92	27	1	4	18	31	44	46	59	72	85	98	111	113	126
93	37	1	7	20	25	41	46	62	78	83	99	104	120	125
94	47	1	3	21	33	45	46	58	70	82	94	106	118	130
95	57	1	5	15	29	43	46	60	74	88	91	105	119	133
96	67	1	10	22	30	38	46	65	73	81	100	108	116	124
97	77	1	12	16	26	36	46	67	77	87	97	107	117	127
98	87	1	8	17	34	40	46	63	69	86	92	109	115	132
99	97	1	11	19	28	37	46	66	75	84	93	102	122	131
100	107	1	9	14	32	39	46	64	71	89	96	103	121	128
101	08	1	1	57	58	59	60	61	62	63	64	65	66	67
102	18	1	5	23	26	40	54	57	71	85	99	102	116	130
103	28	1	9	18	25	43	50	57	75	82	100	107	114	132
104	38	1	3	20	32	44	56	57	69	81	93	105	117	129

105	4	8	1	11	21	30	39	48	57	77	86	95	104	113	133
106	5	8	1	7	15	31	36	52	57	73	89	94	110	115	131
107	6	8	1	8	22	28	45	51	57	74	80	97	103	120	126
108	7	8	1	4	16	29	42	55	57	70	83	96	109	122	124
109	8	8	1	12	17	27	37	47	57	78	88	98	108	118	128
110	9	8	1	6	19	34	38	53	57	72	87	91	106	121	125
111	10	8	1	10	14	33	41	49	57	76	84	92	11	119	127
112	0	9	1	1	79	80	81	82	83	84	85	86	87	88	89
113	1	9	1	4	23	25	38	51	64	77	79	92	105	118	131
114	2	9	1	3	18	30	42	54	66	78	79	91	103	115	127
115	3	9	1	10	20	28	36	55	63	71	79	98	106	114	133
116	4	9	1	8	21	27	44	50	67	73	79	96	102	119	125
117	5	9	1	9	15	33	40	47	65	72	79	97	104	122	129
118	6	9	1	6	22	26	41	56	60	75	79	94	109	113	128
119	7	9	1	7	16	32	37	53	58	74	79	95	111	116	132
12	8	9	1	5	17	31	45	48	62	76	79	93	107	121	124
121	9	9	1	12	19	29	39	49	59	69	79	100	110	120	130
122	10	9	1	11	14	34	43	52	61	70	79	99	108	117	126
123	0	10	1	1	24	25	26	27	28	29	30	31	32	33	34
124	1	10	1	3	23	24	36	48	60	72	84	96	108	120	132
125	2	10	1	8	18	24	41	47	64	70	87	93	110	116	133
126	3	10	1	6	20	24	39	54	58	73	88	92	107	122	126
127	4	10	1	5	21	24	38	52	66	69	83	97	111	114	128
128	5	10	1	11	15	24	44	53	62	71	80	100	109	118	127
129	6	10	1	4	22	24	37	50	63	76	89	91	104	117	130
130	7	10	1	10	16	24	43	51	59	78	86	94	102	121	129
131	8	10	1	9	17	24	42	49	67	74	81	99	106	113	131
132	9	10	1	7	19	24	40	56	61	77	82	98	103	119	124
133	10	10	1	12	14	24	45	55	65	75	85	95	105	115	125

إنثاء الأقواس الكاملة (k,n) في المستوي الاسقاطي 11 (2,11) $3 \leq n \leq 11$ حيث 11 GF (11) حقل كالوا

علي طالب محمد
قسم الرياضيات،كلية التربية- ابن الهيثم ، جامعة بـذاد
الخلاصة
ان الغاية الاساسية من هذا البحث هو ايجاد فوس كامل (k,)) في الفضاء الاسقاطي الثثائي

$$
\text { الكامل (k,n-1) حيث } 3 \leq n \leq 11 .
$$

القوس (k,n) هو مجموعة k من النقاط ليس هناللك n + 1 على اسنقامة واحدة. اللقوس الكامل (k,n) هو قوس لا يمكن ان يكون محتوى في القوس (k+1,n).

