المجلد22 (3) 2009
 مجلة ابن الهيثيث للعلوم الصرفة و التطبيقية حول المقاسات الجزئية الأولية الضعيفة

أنعام محمد علي هاد ي

قسم الرياضيات ،كلية|لتربية -ابن الهيثث،جامعة بغداد

الخلاصة

لنكن R حلقة ابدالية ذا محايد وليكن M مقاساً أيسر على R. يُعرف ان مقاساً جزئياً فعلياً N في M يكون أولياً ضميفاً اذا كان لكل الحقيقة ان هذا المفهوم هو تعميم لـفهوم مثالي أولي ضعيف، اذ ان مثالياً فعلياً" P في R، يسمى أولياً ضـيفاً اذا كان لكل 0

خواص مخنلفة عن المقاسات الجزئية الأولية الضعيفة قد أعطيت.

On Weakly Prime Submodules

I. M.A.Hadi
 Department of Mathematics,Ibn-Al-Haitham College of Education University of Baghdad

Abstract

Let R be a commutative ring with unity and let M be a left R -module. We define a proper submodule N of M to be a weakly prime if whenever $r \in \mathrm{R}, x \in \mathrm{M}, 0 \neq r x \in \mathrm{~N}$ implies $x \in \mathrm{~N}$ or $r \in(\mathrm{~N}: \mathrm{M})$. In fact this concept is a generalization of the concept weakly prime ideal, where a proper ideal P of R is called a weakly prime, if for all $a, b \in \mathrm{R}, 0 \neq a b \in$ P implies $a \in \mathrm{P}$ or $b \in \mathrm{P}$. Various properties of weakly prime submodules are considered.

1.Introduction

Throughout this paper, R be a commutative ring with identity and M be a unity R module. A proper submodule N of M is said to be Prime if whenever $\quad r \in \mathrm{R}, x \in \mathrm{M}, r x \in$ N implies either $x \in \mathrm{~N}$ or $r \in(\mathrm{~N}: \mathrm{M})$, where $\quad(\mathrm{N}: \mathrm{M})=\{r \in \mathrm{R}: r \mathrm{M} \subseteq \mathrm{N}\}$, see (1).

Semiprime submodules was given by Dauns in (2), as a generalization of prime submodules, where a proper submodule N of M is semiprime if $r^{k} x \in \mathrm{~N}$, for $r \in \mathrm{R}, x \in \mathrm{M}, k$ $\in \mathrm{Z}_{+}$(set of positive integers) implies $r x \in \mathrm{M}$. Also Eman A.A. in (3) studied these notions.

In 1999, quasi-prime submodules was introduced and studied by Muntaha (see (4)), as another generalization of prime submodules, where a proper submodule N of M is quasiprime if $r_{1} r_{2} m \in \mathrm{~N}$, for $r_{1}, r_{2} \in \mathrm{R}, m \in \mathrm{M}$ implies $r_{1} m \in \mathrm{~N}$ or $r_{2} m \in \mathrm{~N}$; equivalently, N is quasi-prime if the ideal ($\mathrm{N}: \mathrm{M}$) is prime for all $m \in \mathrm{M}$.

In 2004, M.Behoodi and H.Koohi in (5) gave the notion of weakly prime submodules, where a proper submodule N of M weakly prime if $(\mathrm{N}: \mathrm{K})$ is a prime ideal, for all submodules K of M. Also this notion was studied by A.Azizi in (6), 2006.

By Th.2.14 in (4), we obtain that the two concepts weakly prime submodules and quasiprime submodules are equivalent.

In this paper, we give another generalization of prime submodules namely weakly prime submodules, however this concept is different from the concept of quasi-prime submodule (see Remarks 2.1.(5)).

In fact, D.D.Anderson and E.Smith in (7) gave the following: A proper ideal I of R is said to be a weakly prime if $0 \neq a b \in \mathrm{I}$, for $a, b \in \mathrm{R}$, then $a \in \mathrm{I}$ or $\quad b \in \mathrm{I}$. We define a proper submodule N of M is weakly prime if whenever $\quad r \in \mathrm{R}, x \in \mathrm{M}, 0 \neq r x \in \mathrm{~N}$ implies $x \in \mathrm{~N}$ or $r \in(\mathrm{~N}: \mathrm{M})$. Moreover S.E.Atani and F.Farzalipour in (8) introduced the notion of weakly primary submodules, where a proper submodule N of M is a weakly primary if whenever $r \in \mathrm{R}, x \in \mathrm{M}, 0 \neq r x \in \mathrm{~N}$ implies $x \in \mathrm{~N}$ or $r^{n} \in(\mathrm{~N}: \mathrm{M})$ for some $n \in \mathrm{Z}_{+}$. Also they gave that : a proper ideal of R is a weakly primary if it is a weakly prime submodule of the R-module R, (see (8)).

In this paper we study weakly prime submodules and give many basic properties related to this concept.

2.Basic Properties

As we mentioned in the introduction, we introduce the following:
Definition 2.0 : A p roper submodule N of an R -module M is weakly prime if whenever $\mathrm{r} \in \mathrm{R}$, $x \in M, 0 \neq r x \in N$ implies $x \in N$ or $r \in(N: M)$.
In this section, we will give basic properties of weakly prime submodules. Some of these are extension of the results about weakly prime ideals, which are given in (7).

Let us start with the following:

Remarks 2.1:

(1) It is clear that every prime submodule is weakly prime. However, since (0) the zero submodule of any module) is always weakly prime (by definition), a weakly prime submodule may not be prime; for example: the zero submodule of the Z -module Z_{4} is weakly prime, but it is not prime.
Moreover it is easy to check that in the class of torsion free modules, the concepts of prime submodule and weakly prime submodule are equivalent.
(2) Every weakly prime ideal P of a ring R is a weakly prime submodule of the R -module R.
(3) Every weakly prime submodule is weakly primary, but the converse is false as the following example shows.
The submodule $\mathrm{N}=(\overline{4})$ of the Z-module Z_{8} is weakly primary but it is not weakly prime.
(4) It is easy to check that :if P is a weakly primary submodule of an R-module M and ($\mathrm{P}: \mathrm{M}$) is a semiprime ideal, then P is weakly prime.
(5) (a) Weakly prime submodule need not be quasi-prime as the following example shows: The zero submodule of the Z -module Z_{12} is weakly prime, but it is not quasi-prime since $(\overline{0}: \overline{3})=4 \mathrm{Z}$ which is not a prime ideal of Z .
(b) Quasi-prime submodule need not be weakly prime submodule, as the following example shows
If M is the Z -module $\mathrm{Z} \oplus \mathrm{Z}$, and $\mathrm{N}=2 \mathrm{Z} \oplus(0)$, then N is a quasi-prime submodule of M (see (4), Rem.2.1.2(1)). But N is not weakly prime submodule, since $(0,0) \neq 2(3,0) \in$ $\mathrm{N},(3,0) \notin \mathrm{N}$ and $2 \notin(\mathrm{~N}: \mathrm{M})=(0)$.
(6) If P is a proper submodule of an R -module M . Then P is a weakly prime R -submodule of M iff P is a weakly prime R / I-submodule of M, where I is an ideal of R with $I \subseteq$ ann M .
The following result gives characterizations of weakly prime submodules.
Theorem 2.2: Let M be an R-module. The following asserations are equivalent:

1. P is a weakly prime submodule of M .
2. $(\mathrm{P}: x)=(\mathrm{P}: \mathrm{M}) \cup(0: x)$ for any $x \in \mathrm{M}, x \notin \mathrm{P}$.
3. $(\mathrm{P}: x)=(\mathrm{P}: \mathrm{M})$ or $(\mathrm{P}: x)=(0: x)$ for any $x \in \mathrm{M}, x \notin \mathrm{P}$.
4. If $(0) \neq(a) \mathrm{N} \subseteq \mathrm{P}$, then either $\mathrm{N} \subseteq \mathrm{P}$ or $(a) \subseteq(\mathrm{P}: \mathrm{M})$, where $a \in \mathrm{R}, \mathrm{N}$ is a submodule of M.

Proof. (1) \Rightarrow (2) Let $r \in(\mathrm{P}: x)$ and $x \notin \mathrm{P}$. Then $r x \in \mathrm{P}$. Suppose $r x \neq 0$. Hence $r \in(\mathrm{P}: \mathrm{M})$ because P is weakly prime and $x \notin \mathrm{P}$. If $r x=0$, then $\quad r \in(0: x)$. Thus $(\mathrm{P}: x) \subseteq(\mathrm{P}: \mathrm{M}) \cup$ (0:x). Now if $r \in(\mathrm{P}: \mathrm{M}) \cup(0: x)$, then either $\quad r \in(\mathrm{P}: \mathrm{M})$ or $r \in(0: x)$. Hence, when $r \in$ $(0: x), r x=0 \in \mathrm{P}$ and so $r \in(\mathrm{P}: x)$. If $\quad r \in(\mathrm{P}: \mathrm{M})$ then $r \mathrm{M} \subseteq \mathrm{P}$, and this implies $r x$ $\in \mathrm{P}$. Hence $r \in(\mathrm{P}: x)$. Thus $\quad(\mathrm{P}: \mathrm{M}) \cup(0: x) \subseteq(\mathrm{P}: x)$ and therefore $(\mathrm{P}: \mathrm{M}) \cup(0: x)=(\mathrm{P}: x)$.
(2) \Rightarrow (3) It is well-known that the union of two ideals A, B of R is an ideal if $\mathrm{A} \subseteq \mathrm{B}$ or $\mathrm{B} \subseteq$ A. By condition, the ideals $(\mathrm{P}: \mathrm{M})$ is the union of the ideals $\quad(\mathrm{P}: \mathrm{M}),(0: x)$, so either $(\mathrm{P}: \mathrm{M})$ $\subseteq(0: x)$ or $(0: x) \subseteq(\mathrm{P}: \mathrm{M})$. Thus either $(\mathrm{P}: x)=(0: x)$ or $(\mathrm{P}: x)=(\mathrm{P}: \mathrm{M})$.
(3) \Rightarrow (4) If $0 \neq(a) \mathrm{N} \subseteq \mathrm{P}$. Suppose that $\mathrm{N} \nsubseteq \mathrm{P}$ and (a) \nsubseteq (P:M). $\mathrm{N} \nsubseteq \mathrm{P}$ implies that there exists $x \in \mathrm{~N}$ and $x \notin \mathrm{P}$, hence $a x \in a \mathrm{~N} \subseteq \overline{\mathrm{P}}$; that is $a \in(\mathrm{P}: x)$. By condition (3), either $(\mathrm{P}: x)=(\mathrm{P}: \mathrm{M})$ or $(\mathrm{P}: x)=(0: x)$. If $(\mathrm{P}: x)=(\mathrm{P}: \mathrm{M})$, we get $\quad a \in(\mathrm{P}: \mathrm{M})$ which is a contradiction. Thus ($\mathrm{P}: x)=(0: x)$ and so $a x=0$.
On the other hand, $0 \neq(a) \mathrm{N} \subseteq \mathrm{P}$ implies that there exists $y \in \mathrm{~N}$ such that $\quad 0 \neq a y \in \mathrm{P}$ and so $a \in(\mathrm{P}: y)$. Moreover we can see that $y \in \mathrm{P}$, for if we assume that $y \notin \mathrm{P}$, then by condition 3, either $(\mathrm{P}: y)=(\mathrm{P}: \mathrm{M})$ or $(\mathrm{P}: y)=(0: y) . \quad$ If $(\mathrm{P}: y)=(\mathrm{P}: \mathrm{M})$, then $a \in(\mathrm{P}: \mathrm{M})$ which is a contradiction. If $(\mathrm{P}: y)=(0, y)$, we get $a y=0$ which is a contradiction. Moreover $0 \neq$ $a y=a y+a x=a(y+x) \in \mathrm{P}$; that is $a \in(\mathrm{P}: y+x)$. But $y+x \notin \mathrm{P}$ because $x \notin \mathrm{P}, y \in \mathrm{P}$, hence by condition 3, either $(\mathrm{P}: y+x)=(\mathrm{P}: \mathrm{M})$ or $(\mathrm{P}: y+x)=(0: y+x)$. If $(\mathrm{P}: y+x)=(\mathrm{P}: \mathrm{M})$ then $a \in(\mathrm{P}: \mathrm{M})$ which is a contradiction. If $(\mathrm{P}: y+x)=(0: y+x)$, then $a(y+x)=0$ and hence $a y+$ $a x=a y+0=0$ which is a contradiction. Therefore our assumption is false and so either $\mathrm{N} \subseteq$ P or $(a) \subseteq(\mathrm{P}: \mathrm{M})$.
(4) \Rightarrow (1) Let $r \in \mathrm{R}, x \in \mathrm{M}$, such that $0 \neq r x \in \mathrm{P}$. Then $0 \neq(r)(x) \subseteq \mathrm{P}$. By condition (4), (x) $\subseteq \mathrm{P}$ or $(r) \subseteq(\mathrm{P}: \mathrm{M})$ and hence either $x \in \mathrm{P}$ or $r \in(\mathrm{P}: \mathrm{M})$; that is, P is weakly prime.

Remark 2.3

It is known that if P is a prime submodule of an R -module M , then ($\mathrm{P}: \mathrm{M}$) is a prime ideal of R. However the "weak" analogs of this statement is not true in general, for example:
The zero submodule of the Z -module Z_{4}, is weakly prime, but $\left(0 ; \mathrm{Z}_{4}\right)=4 \mathrm{Z}$ is not a weakly prime ideal of Z.

We give the following:
Proposition 2.4: If P is a weakly prime submodule of a faithful R -module M , then $(\mathrm{P}: \mathrm{M})$ is a weakly prime ideal of R.
Proof. Let $a, b \in \mathrm{R}$. If $0 \neq a b \in(\mathrm{P}: \mathrm{M})$; then $a b \mathrm{M} \subseteq \mathrm{P}$. Since M is faithful, $a b \mathrm{M} \neq(0)$, hence $0 \neq(a)(b \mathrm{M}) \subseteq \mathrm{P}$ and so by Th.2.2 either $(a) \subseteq(\mathrm{P}: \mathrm{M})$ or $\quad b \mathrm{M} \subseteq \mathrm{P}$; that is, either a $\in(\mathrm{P}: \mathrm{M})$ or $b \in(\mathrm{P}: \mathrm{M})$. Thus $(\mathrm{P}: \mathrm{M})$ is a weakly prime ideal of R .

The converse of prop.2.4 is not true as the following example shows:
Let M be the Z -module $\mathrm{Z} \oplus \mathrm{Z}$, let $\mathrm{P}=(0) \oplus 2 \mathrm{Z}$. Then $(\mathrm{P}: \mathrm{Z})=(0)$ which is a weakly prime ideal in Z, however P is not a weakly prime submodule of M because $(0,0) \neq 2(0,1) \in$ P , but $(0,1) \notin \mathrm{P}$ and $2 \notin(\mathrm{P} \dot{\mathrm{z}}$ M $)=(0)$.

Also, we have the following:-
Proposition 2.5 : Let P be a weakly prime submodule of an R-module M . Then $\left(\mathrm{P}_{\overline{\mathrm{R}}}: \mathrm{M}\right)$ is a weakly prime ideal of \bar{R}, where $\bar{R}=R / a n n \mathrm{M}$.
Proof. By remark 2.1 (6), P is a weakly prime \bar{R}-submodule of M . But M is a faithful \bar{R} module, so by prop.2.6, ($\mathrm{P} \dot{\overline{\bar{R}}} \mathrm{M}$) is a weakly prime ideal of \bar{R}.

Recall that an R-module M is called multiplication module if for each submodule N of M , $\mathrm{N}=\mathrm{I} M$ for some ideal I of R , equivalently $\mathrm{N}=(\mathrm{N}: \mathrm{M}) \mathrm{M}$ (see (9)).

In the class of finitely generated faithful multiplication modules, we have the following: Theorem 2.6: Let M be a faithful finitely generated multiplication R-module, let N be a proper submodule of M . Then the following statements are equivalent

1. N is a weakly prime submodule of M .
2. ($\left.\mathrm{N}_{\dot{R}} \mathrm{M}\right)$ is a weakly prime ideal of R.
3. $\mathrm{N}=\mathrm{I} M$ for some weakly prime ideal I of R .

Proof. (1) \Rightarrow (2) It holds by prop. 2.4
(2) \Rightarrow (1) Let $r \in \mathrm{R}, x \in \mathrm{M}$, such that $0 \neq r x \in \mathrm{~N}$. (x) is a submodule of M , hence $(x)=\mathrm{J}$ M for some ideal J of R . Thus $0 \neq r \mathrm{~J} \mathrm{M} \subseteq \mathrm{N}=(\mathrm{N}: \mathrm{M}) \mathrm{M}$. But M is a faithful finitely generated multiplication R-module, so by (10, Th.3.1) $\quad r \mathrm{~J} \subseteq\left(\mathrm{~N}_{\dot{R}} \mathrm{M}\right)$. Moreover $r \mathrm{~J} \neq(0)$ and since $\left(\mathrm{N}_{\dot{R}} \mathrm{M}\right)$ is weakly prime ideal, either $r \in\left(\mathrm{~N}_{\dot{R}} \mathrm{M}\right)$ or $\mathrm{J} \subseteq\left(\mathrm{N}_{\dot{R}} \mathrm{M}\right)$ (see Th. 3 in (7)). Hence either $r \in\left(\mathrm{~N}_{\dot{R}} \mathrm{M}\right)$ or $(x)=\mathrm{J} \mathrm{M} \subseteq\left(\mathrm{N}_{\dot{R}}: \mathrm{M}\right) \mathrm{M}=\mathrm{N}$, that is $r \in\left(\mathrm{~N}_{\dot{R}}: \mathrm{M}\right)$ or $x \in \mathrm{~N}$. Thus N is weakly prime.
(2) \Rightarrow (3) Since $\left(N_{\dot{R}}: M\right)$ is weakly prime and $N=(N: M) M$, so condition (3) hold.
(3) \Rightarrow (2) By (3), $\mathrm{N}=\mathrm{I} M$ for some weakly prime ideal I of R . But M is a multiplication module, so $\mathrm{N}=(\mathrm{N}: \mathrm{M}) \mathrm{M}$. Hence $\mathrm{I} \mathrm{M}=(\mathrm{N}: \mathrm{M}) \mathrm{M}$ and so by $\quad(10, \mathrm{Th} .3 .1) \mathrm{I}=(\mathrm{N}: \mathrm{M})$.

Proposition 2.7 : Let P be a weakly prime submodule of an R -module M . If P is not prime, then $(\mathrm{P}: \mathrm{M}) \mathrm{P}=(0)$.
Proof. Suppose ($\mathrm{P}: \mathrm{M}$) $\mathrm{P} \neq 0$. We will show that P is prime. Let $r x \in \mathrm{P}$. If $\quad r x \neq 0$, then either $x \in \mathrm{P}$ or $r \in(\mathrm{P}: \mathrm{M})$, since P is weakly prime. Now assume $r x=0$. First sup pose $r \mathrm{P} \neq$ (0), so there exists $y \in \mathrm{P}$ such that $0 \neq r y \in \mathrm{P}$. Hence $0 \neq r y=r(x+y) \in \mathrm{P}$ which implies that either $x+y \in \mathrm{P}$ or $r \in(\mathrm{P}: \mathrm{M})$. Hence either $x \in \mathrm{P}$ or $r \in(\mathrm{P}: \mathrm{M})$. Now we can assume that $r \mathrm{P}=0$ and $\quad(\mathrm{P}: \mathrm{M}) x=0$. Since $(\mathrm{P}: \mathrm{M}) \mathrm{P} \neq(0)$, there exists $s \in(\mathrm{P}: \mathrm{M}), y \in \mathrm{P}$ such that $0 \neq s y \in \mathrm{P}$. Thus

$$
\begin{aligned}
(r+s)(x+y) & =r x+s x+r y+s y \\
& =0+0+0+s y \\
& =s y
\end{aligned}
$$

That is $0 \neq(r+s)(x+y) \in \mathrm{P}$. Then P is weakly prime gives $x+y \in \mathrm{P}$ or $\quad r+s \in$ (P:M). Hence $x \in \mathrm{P}$ or $r \in(\mathrm{P}: \mathrm{M})$.

Now we have the following.
Proposition 2.8: Let M and M^{\prime} be R -modules and let $f: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be an R-epimorphism. If N is a weakly prime submodule of M such that $\operatorname{ker} f \subseteq \mathrm{~N}$, then $f(\mathrm{~N})$ is a weakly prime submodule of M^{\prime}.
Proof. Let $r \in \mathrm{R}, y \in \mathrm{M}^{\prime}$, such that $0 \neq r y \in f(\mathrm{~N})$. Then there exists $x \in \mathrm{~N}$ such that $0 \neq r y$ $=f(x)$, and since f is an epimorphism, $y=f\left(x_{1}\right)$ for some $\quad x_{1} \in \mathrm{M}$. Thus $f\left(r x_{1}-x\right)=0$ and so $r x_{1}-x \in \operatorname{ker} f \subseteq \mathrm{~N}$. It follows that $0 \neq r x_{1} \in \mathrm{~N}$ and since N is weakly prime either $x_{1} \in$ N or $r \in(\mathrm{~N}: \mathrm{M})$. Thus $y=f\left(x_{1}\right) \in f(\mathrm{~N})$ or $r \in\left(f(\mathrm{~N})\right.$: $\left.\mathrm{M}^{\prime}\right)$; that is $f(\mathrm{~N})$ is weakly prime.

As a particular case of prop.(2.8), we have the following: if N, W are submodules of an R-module M such that $\mathrm{N} \supseteq \mathrm{W}$ and N is weakly prime, then N / W is a weakly prime Rsubmodule of M / N.

The following result discussos the localization of weakly prime submodules.
Proposition 2.9 : Let P be a weakly prime R -submodule and S be a multiplicative subset of R with $(\mathrm{P}: \mathrm{M}) \cap \mathrm{S}=\varnothing$. Then P_{S} is weakly prime $\quad \mathrm{R}_{\mathrm{S}}$-submodule of M_{S}.
Proof. Let $\frac{a}{b} \in \mathrm{R}_{\mathrm{S}}$ and $\frac{x}{c} \in \mathrm{M}_{\mathrm{S}}$ such that $0_{\mathrm{s}} \neq \frac{a}{b} \frac{x}{c} \in \mathrm{P}_{\mathrm{S}}$. Hence $0_{\mathrm{s}} \neq \frac{a x}{b c} \in \mathrm{P}_{\mathrm{S}}$ and so there exists $y \in \mathrm{P}$ and $d \in \mathrm{~S}$ such that $\frac{a x}{b c}=\frac{y}{d}$, and this implies that there exists $t \in \mathrm{~S}$ such that $t a d x=t b c y$. On the other hand $\frac{a x}{b c} \neq \frac{0}{1}=\left(0_{\mathrm{s}}\right)$ which implies that $f a x \neq 0$ for all $f \in \mathrm{~S}$. Hence $0 \neq \operatorname{ta} d x \in \mathrm{P}$. But P is a weakly prime R -submodule of M , so either $t d x \in \mathrm{P}$ or $a \in$
(P:M) and hence either $\frac{t d x}{t d c} \in \mathrm{P}_{\mathrm{S}}$ or $\frac{a}{b} \in(\mathrm{P}: \mathrm{M})_{\mathrm{S}}$. Because $\left(\mathrm{P}: \mathrm{M}_{\mathrm{R}} \subseteq\left(\mathrm{P}_{\mathrm{S}_{R_{S}}}: \mathrm{M}_{\mathrm{S}}\right)\right.$, we have either $\frac{x}{c} \in \mathrm{P}_{\mathrm{S}}$ or $\frac{a}{b} \in\left(\mathrm{P}_{\mathrm{S}_{R_{S}}}: \mathrm{M}_{\mathrm{S}}\right)$.

As a generalization of Cohen theorem, the following was given in ((3),Prop.4.15,ch.1).
Let M be a finitely generated R-module, then M is Noetherian iff every prime submodule is finitely generated.

Since every prime submodule is weakly prime (by Rem.2.1.(11)), we have the following. Proposition2.10 : Let M be a finitely generated R-module. Then M is Noetherian if every weakly prime submodule is finitely generated.

Noteice that the condition M is finitely generated that cann't be dropped from Prop.2.10, as the following example shows:

The Z -module $\mathrm{Z}_{p^{\infty}}$ is not finitely generated, also it is not Noetherian. However if G is a nonzero submodule, then $\mathrm{G}=<\frac{1}{p^{i}}+z>$ for some $i \in \mathrm{Z}_{+}$, and $0 \neq \mathrm{P}\left(\frac{1}{p^{i+1}}+z\right) \in \mathrm{G}$. But $\mathrm{P} \notin\left(\mathrm{G}: \mathrm{Z}_{p^{\infty}}\right)=0$ and $\frac{1}{p^{i+1}}+z \notin \mathrm{G}$; that is G is not weakly prime. Thus (0) is the only weakly prime submodule of $\mathrm{Z}_{p^{\infty}}$ and it is obviously finitely generated.
Theorem 2.11: Let M_{1}, M_{2} be R-modules and let N be a proper submodule of M_{1}. Then W $=\mathrm{N} \oplus \mathrm{M}_{2}$ is a weakly prime submodule of $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2} \Leftrightarrow \mathrm{~N}$ is a weakly prime submodule of M_{1} and for $r \in \mathrm{R}, x \in \mathrm{M}_{1}$ with $r x=0$, but $x \notin \mathrm{~N}, r \notin\left(\mathrm{~N}: \mathrm{M}_{1}\right)$ implies $r \in$ ann M_{2}.
Proof. (\Rightarrow) Let $r \in \mathrm{R}, x \in \mathrm{M}_{1}$ such that $0 \neq r x \in \mathrm{~N}$. Then $(0,0) \neq r(x, 0) \in \mathrm{W}$, but W is weakly prime, so either $(x, 0) \in \mathrm{W}$ or $r \in(\mathrm{~W}: \mathrm{M})$. Thus either $x \in \mathrm{~N}$ or $r \in\left(\mathrm{~N}_{\dot{R}} \mathrm{M}_{1}\right)$, so that N is weakly prime. Now, if $r \in \mathrm{R}, x \in \mathrm{M}_{1}$ such that $\quad r x=0, x \notin \mathrm{~N}$ and $r \notin\left(\mathrm{~N}: \mathrm{M}_{1}\right)$. Assume that $r \notin$ ann M_{2}, so there exists $m \in \mathrm{M}_{2}$ such that $r m_{2} \neq 0$. Thus $r\left(x, m_{2}\right)=\left(r x, r m_{2}\right)$ $=\left(0, r m_{2}\right) \neq(0,0)$ and hence $\quad(0,0) \neq r\left(x, m_{2}\right) \in \mathrm{N} \oplus \mathrm{M}_{2}=\mathrm{W}$. Since W is weakly prime, so either $\left(x, m_{2}\right) \in \mathrm{N} \oplus \mathrm{M}_{2}$ or $r \in\left(\mathrm{~N} \oplus \mathrm{M}_{2}: \mathrm{M}_{1} \oplus \mathrm{M}_{2}\right)$. Thus either $x \in \mathrm{~N}$ or $r \in\left(\mathrm{~N}_{\dot{R}} \mathrm{M}_{1}\right)$ which is a contradiction with hypothesis.
(\Leftrightarrow) Let $r \in \mathrm{R},(x, y) \in \mathrm{M}$. Assume $(0,0) \neq r(x, y) \in \mathrm{N} \oplus \mathrm{M}_{2}$, so if $r x \neq 0$, then either $x \in \mathrm{~N}$ or $r \in\left(\mathrm{~N}^{\prime} \mathrm{M}_{1}\right)$, since N is weakly prime. Thus either $\quad(x, y) \in \mathrm{N} \oplus \mathrm{M}_{2}$ or $r \in(\mathrm{~N} \oplus$ $\left.\mathrm{M}_{2}: \mathrm{M}_{1} \oplus \mathrm{M}_{2}\right)$. If $r x=0$. Suppose $x \notin \mathrm{~N}$ and $\quad r \notin\left(\mathrm{~N}_{1}: \mathrm{M}_{1}\right)$, then by hypothesis $r \in$ ann M_{2} and so $r(x, y)=(0,0)$ which is a contradiction. Thus either $x \in \mathrm{~N}$ or $r \in\left(\mathrm{~N}_{1}: \mathrm{M}_{1}\right)$ and hence either $(x, y) \in \mathrm{N} \oplus \mathrm{M}_{2}$ or $r \in\left(\mathrm{~N}_{1} \oplus \mathrm{M}_{2}: \mathrm{M}_{\dot{R}} \oplus \mathrm{M}_{2}\right)$.

It is known that if Q is a primary submodule then $\mathrm{P}=\sqrt{(Q: \mathrm{M})}$ is a prime ideal, see (11, prop. 2.11, p.41). Sometimes Q is called P-primary, see(11, p.42).

Now we have the following result:
Corollary 2.12: Let Q_{α} be P-primary submodules of an R -module M_{1} with $\cap \mathrm{Q}_{\alpha}=(0)$. If N is a weakly prime submodule of M_{1} and M_{2} is an R -module such that $\mathrm{P} \subseteq a n n_{\mathrm{R}} \mathrm{M}_{2}$, then N $\oplus \mathrm{M}_{2}$ is a weakly prime submodule in $\mathrm{M}_{1} \oplus \mathrm{M}_{2}$.
Proof. Let $r \in \mathrm{R}, x \in \mathrm{M}_{1}$ with $r x=0$. If $x \notin \mathrm{~N}_{1}$ (so $x \neq 0$) and $r \notin\left(\mathrm{~N}: \mathrm{M}_{1}\right)$. We will prove that $r \in$ ann M_{2} and hence the result is obtained by previous theorem. Suppose that $r \notin$ ann M_{2}. Hence $r \notin \mathrm{P}$.

On the other hand, $r x=0=\cap \mathrm{Q}_{\alpha}$, but $\cap \mathrm{Q}_{\alpha}$ is a P-primary submodule by (11, prop.1.1, p.15), so either $x \in \cap \mathrm{Q}_{\alpha}=0$ or $r \in \mathrm{P}$, which is a contradiction. Thus $r \in$ ann M_{2}.

Remark 2.13: Let M_{1}, M_{2} be R-modules. If (0) is a prime submodule of M_{1}, then (0) $\oplus M_{2}$ is a weakly prime submodule of $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$.
Proof. Let $r \in \mathrm{R},(x, y) \in \mathrm{M}$. If $(0,0) \neq r(x, y) \in(0) \oplus \mathrm{M}_{2}$, then $r x=0$ and $r y \in \mathrm{M}_{2}$. Since (0) is prime in M_{1}, either $x=0$ or $r \in\left(0: \mathrm{M}_{1}\right)$. Hence either $\quad(x, y)=(0, y) \in(0) \oplus \mathrm{M}_{2}$ or $r \in\left((0)+\mathrm{M}_{2}: \mathrm{M}_{1} \oplus \mathrm{M}_{2}\right)$; that is $(0) \oplus \mathrm{M}_{2}$ is weakly prime in M .

Thus we can give the following example:
$\mathrm{N}=(0) \oplus \mathrm{Z}_{4}$ is a weakly prime submodule of the Z -module $\mathrm{Z} \oplus \mathrm{Z}_{4}$.
Next we have the following.
Proposition 2.14: Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ be R-modules. If $\mathrm{N}=\mathrm{U} \oplus \mathrm{W}$ be a weakly prime submodule in $M=M_{1} \oplus M_{2}$, then U, W are weakly prime submodules in M_{1}, M_{2} respectively.
Proof. The proof is a straight forword, so it is omitted.
Remark 2.15: The converse of proposition 2.14 is not true in general as the following example shows.
Example: (0) is a weakly prime submodule of the Z-module Z, (2Z) is a prime submodule of the Z -module Z so it is weakly prime. But $\mathrm{N}=(0) \oplus 2 \mathrm{Z}$ is not weakly prime in the Z module $\mathrm{Z} \oplus \mathrm{Z}$.

For the next results we will assume that $\mathrm{R}=\mathrm{R}_{1} \times \mathrm{R}_{2}$ where each R_{i} is a commutative ring with identity, M_{i} be an R_{i}-module, where $i=1,2$. and $\quad \mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$ be the R-module with action $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$ where $r_{i} \in \mathrm{R}_{i}, m_{i} \in \mathrm{M}_{i}, i=1,2$.
Proposition 2.16: If P is a proper R_{1}-submodule of M_{1}, then the following statements are equivalent

1. P is a prime R_{1}-submodule of M_{1}.
2. $\mathrm{P} \times \mathrm{M}_{2}$ is a prime R -submodule of $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$.
3. $\mathrm{P} \times \mathrm{M}_{2}$ is a weakly prime R -submodule of $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$.

Proof. (1) \Rightarrow (2) Let $\left(r_{1}, r_{2}\right) \in \mathrm{R},(x, y) \in \mathrm{M}$ such that $\left(r_{1}, r_{2}\right)(x, y) \in \mathrm{P} \times \mathrm{M}_{2}$. Then $r_{1} x \in \mathrm{P}$ and since P is prime, either $x \in \mathrm{P}$ or $r_{1} \in\left(\mathrm{P}: \mathrm{M}_{R_{1}}\right)$. If $\quad x \in \mathrm{P}$, then $(x, y) \in \mathrm{P} \times \mathrm{M}_{2}$. If $r_{1} \in$ $\left(\mathrm{P}_{R_{1}}^{:} \mathrm{M}_{1}\right)$, then $\left(r_{1}, r_{2}\right) \in\left(\mathrm{P} \times \mathrm{M}_{2}: \mathrm{M}\right)$. Thus $\mathrm{P} \times \mathrm{M}_{2}$ is a prime R -submodule of M .
(2) \Rightarrow (3) It holds by remark 2.1 (1).
(3) \Rightarrow (1) Let $r \in \mathrm{R}_{1}, x \in \mathrm{M}_{1}$ such that $r x \in \mathrm{P}$. Then for each $y \in \mathrm{M}_{2}, y \neq 0,(0,0) \neq(r, 1)$
$(x, y) \in \mathrm{P} \times \mathrm{M}_{2}$. But $\mathrm{P} \times \mathrm{M}_{2}$ is a weakly prime R -submodule of M , so either $(x, y) \in \mathrm{P} \times \mathrm{M}_{2}$ or $(r, 1) \in\left(\mathrm{P} \times \mathrm{M}_{2}: \mathrm{M}\right)$. Thus either $x \in \mathrm{P}$ or $\quad r \in\left(\mathrm{P}: \mathrm{M}_{R_{1}}\right)$; that is P is a prime $\mathrm{R}_{1}-$
submodule of M_{1}.
Similarly we have
Proposition 2.17: If P is a proper R_{2}-submodule of M_{2}, then the following statements are equivalent

1. P is a prime R_{2}-submodule of M_{2}.
2. $\mathrm{M}_{1} \times \mathrm{P}$ is a prime R -submodule of $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$.
3. $\mathrm{M}_{1} \times P$ is a weakly prime R -submodule of $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$.

Proposition 2.18: Let M_{1}, M_{2} be R_{1}, R_{2}-modules respectively. If $\quad P=P_{1} \times P_{2}$ is a weakly prime R-submodule of $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$, then either $\mathrm{P}=0$ or P is a prime submodule of M .
Proof. Assume $\mathrm{P} \neq 0$, so either $\mathrm{P}_{1} \neq 0$ or $\mathrm{P}_{2} \neq 0$. Suppose that $\mathrm{P}_{2} \neq 0$, hence there exists $y \in$ $\mathrm{P}_{2}, y \neq 0$. Let $r \in\left(\mathrm{P}_{1}: \mathrm{M}_{R_{1}}\right)$ and let $x \in \mathrm{M}_{1}$, then $\quad(0,0) \neq(r, 1)(x, y)=(r x, y) \in \mathrm{P}_{1}$
$\times \mathrm{P}_{2}=\mathrm{P}$. Since P is weakly prime in M , either $(x, y) \in \mathrm{P}$ or $(r, 1) \in\left(\mathrm{P}_{1} \times \mathrm{P}_{2}: \mathrm{M}_{1} \times \mathrm{M}_{2}\right)$. Hence if $(x, y) \in \mathrm{P}$, then $x \in \mathrm{P}_{1}$ and so $\mathrm{M}_{1}=\mathrm{P}_{1}$ which implies $\mathrm{P}=\mathrm{M}_{1} \times \mathrm{P}_{2}$. If $(r, 1) \in\left(\mathrm{P}_{1} \times \mathrm{P}_{2}: \mathrm{M}_{1} \times\right.$ M_{2}), then $M_{2}=P_{2}$ which implies $P=P_{1} \times M_{2}$. Hence by propositions $2.16,2.17, P$ is a prime R -submodule of M .

References

1. C.P.Lu, (1984), "Prime Submodules of Modules", Comment. Math. Univ. St, Paul, 33, 61-69.
Dauns, J. (1980), "Prime Submodules and One Sided Ideals in Ring
2. Theory and Algebra III", Proc. Of $3^{\text {rd }}$ Oklahoma Conference B.R Mc Donald (editor) Dekker, New York, 301-344.
3. Athab,E.A. (1996), "Prime Submodules and Weakly Prime Submodules", M.Sc Thesis, Univ. of Baghdad.
4. Hassin,M.A. (1990), "Quasi-Prime Modules and Quasi- Prime Submodules", M.Sc Thesis, Univ. of Baghdad.
5. M.Behoodi and H.Koohi, (2004), "Weakly Prime Submodules", Vietnam J. Math, 32(2), 185-195.
6. Azizi,A. (2006), Glasgow Math. J., 48: 343-346.
7. Anderson, D.D. and Eric Smith, (2003), "Weakly Prime Ideals", Houston J.of Math., vol.29, No.4, 831-840.
8. Atani, S.E. and Forzalipour,F. (2005), Georgian Mathematical Journal, 12, 1-7.
9. Barned,A. (1981), J. Algebra, 71, 174-178.
10. EL Bast, Z.A. Smith, P.F. (1988), "Multiplication Modules", comm in Algebra, 16, 755-779.
11. Larsen ,M.D. and Mc Carthy, P.J. (1971), "Multiplicative Theory of Ideals", Academic Press, NewYork and London,.
12. Al-Kalik, A.J. A. (2005), "Primary Modules", M.Sc thesis, College of Education, University of Baghdad,
