Effects of Rustamiyah treatment plant effluent on concentration of some heavy metals in water and sediment of Diyala river

S.A.Musa

Department of Biology, Collge of Education, Ibn AL-Haitham, Universty of Baghdad

Abstract

Concentrations of four heavy metals, Zinc, Copper, Lead and Cadimium were determed in water and sediment samples collected bi-weekly from six sampling sites on the lower part of River Divala during low flow period (August to October) and high flow period (April to June). A reference point site (1) was situated upstream the effects of the effluent. Present work describes the effect of Rustamiya waste water on heavy metals in water and sediment of River treatment plant The results indicated that heavy metals level were higher in low flow period of water compared with high flow period. Pb concentration was high in treatment effluent site compared with mixing zone and reference point. Cd level in low flow period in water high and affected by the effluent disposal from the treatment plant. Concentration of heavy metals in sediment showed simple difference between both periods in refrence point and mixing zone. Average Cu concentration in the sediment for two periods was high in mixing zone compared with other metals.

Introduction

During the past 50 years, environmental levels of heavy metals have increased in the aquatic environmental (1). Impact of heavy metals wastes disposed into river may be assessed through increased levels in water, sediment or bioa, in some cases concentration of heavy metals reach harmful level to the ecosystems (1). In surface water the concentration of various elements may be increased beyond their natural levels due to release of industrial, agricultural, domestic and other wastes, thought, some elements are mainly available in dissolved forms, the major part and especially the heavy metals may be bound to small silt and clay particles also organics higher EC. Sevral authors have studied the heavy metals content of various marine and river sediment in relation to water pollution (2-10). In Iraq several works have considered the acute pollution problems in lower reaches of Dyala river (11-14). The aim of this study was to assess the effect of the Rustamiyah wastewater treatment plant on the concentration of heavy metals in Diyala river. The present work is a part of a

IBN AL- HAITHAM J. FOR PURE & APPL. SCI VOL22 (3) 2009

comprehensive program to evaluate a large number of different organic, inorganic, salts and heavy pollutans in area of a sewage treatment plant discharging into the Diyala river.

Material and methods

The study Area

Rustamiyah treatment plant is located on the right bank River Diyala 15km prior to reaching River Tigris south of Baghdad Figure(1), Diyala river is one of the important rivers in Iraq, the flow rate ranges between 5m/sec and 150m/sec(14) the discharging point of the treatment plant is 4km below the new Diyala bridge, 7km above the old Diyala bridge.

Sampling and analysis

Water samples were collected during two periods low and high flow periods of the year, the high flow period (HEP) covers April, May and June, while the low flow period (LFP) covers August, September, October and November. One sample per station per month was collected from 6 stations and analysed for Cd,Cu,Zn and Pb concentration in the river water and sediment of the river bed. A boat was used in the collection of the samples 30 cm below the water surface for the river water and from the river bed for the sediment samples. Sediment samples at reference point were not included because of the shallow water depth and high flow rate so the concentrations will be normal or lower than the others station. The first sampling station site D1 was 0.5 km upstream the treatment plant discharging point and was considered as a reference point. Site D2 was in the River Divala just below the discharging point. Site D3 and D4 were 1 km 2 km dawnstrem treatment plant. Site D5 and D6 were 2 km and 3 km below the treatment plant. According to procedures mentioned in standard method for examination of water and wastewater(15) A Pye Unicam Sp9 flame atomic absorption spectrometer was used to determined the concentration of heavy metals.

Water samples were prepared according to nitric-perchloric acids digestion method(15) while sediment samples were prepared by nitric-perchlorc-hydrochlorc acids digestion method(16).

Result and Discussion

Heavy concentrations (ppm) in the reference point, mixing zone, and the treatment plant at the two periods, were presented in table(1).

Results showed no significant defferences in concentrations among stations within each period, Hence, a comparision was made between the concentrations of heavy metals in the reference point, the treatment plant effluent and the mixing zone stations 2,3,4,5 and 6.A reference point, the treatment plant effluent and the mixing zone at the two periods are shown in table1. The percentage of increases or decreases in

IBN AL- HAITHAM J. FOR PURE & APPL, SCI VOL.22 (3) 2009

heavy metals concentrations at reference point, mixing zone and treatment plant effluent is summarized in table(2).

Heavy metals increase in the water was 63,2% - 261% from reference point to mixing zone during LFP as compared to a range of 138% - 670% increase during HFP table(2). On the other hand these parameters showed a decrease of 29.2% - 144% at the mixing zone as compared to the treatment plant effluent during HFP. Cu concentration was increased by 262% during LFP from the treatment plant to the mixing zone which was due to Cu low concentration in the treatment plant effluent at this period table(1). Adecrease of 12.7 38.7 was observed in Zn and Pb concentration seemed to be initially high in River Diyala prior reaching the mixing zone and a reduction of 49% and 92% was observed during LEP and HFP in its concentration at a mixing zone as compared to reference point. Cadimium concentration in mixing zone as compared to treatment plant effluent was also reduced by 84.1% and 89.3% during LEP and HFP respectively.

Table(3) shows heavy metals concentrations in River Diyala were within the permissible level of raw surface water (18). Except Pb and Cd which exceed the permissible limits of 0.05ppm and 0.005ppm respectively.

Figure(2) shows the variation of heavy metals in sediment for the two periods. The Cu concentration in the sediment of the river bed at the mixing zone was the highest and decreased for the Zn,Pb and Cd respectively. Average Cu concentration in the sediment for the two periods varied between 100 and 10ppm for all stations at the mixing zone. On the other hand, Cd average concentration varied between 0.02 and 0.2ppm.

Heavy metals concentrations in the sediment were high in the mixing zone bed especially during LEP. Several authers were observed that phosphate and Iron hydroxides played a key role in the trapping of heavy metals such as Pb,Cd and Zn (17). This phenomenon, in addition to the fact that high flow in the river ,was either diluting the sediment material by adding more sediment ,or washing out the bed material. However,the dynamics of sedimentation should be investigated more in a comprehensive research programme.

References

- 1- Moore, J.W. and Ramamoorthy, S.(1984). Heavy metals in natural waters springervelarge, New York Inc., 268.
- 2- Brooks,R.R.;Presley,B.J. and Kaplan,I.R. .(2001).Trce elements in interstitial waters of Marine Sediments.Geochim.Cosmochim.,Acta.,32,399
- 3-Maxfield,D.;Rodriguz,J.M.;BttnerM.;Dies,J.;Forbes,L;Kovacs,R.;Russe,W.;Schultz, L.;Smith,R.;Stanton,J. ad Wai,C.M. (1994). Heavy metals pollution in the sediments of the Coeurd, Alene River Delta. Environ.,Pollut.,7, 1-6
- 4-Haknson, L. and Ahl, T. (1999). The distribution of heavy metals in the superficial sediments of the Lake Valtern, Sweden, In proc. Int. Hutchinson, Toronto, Canada, 765,

IBN AL- HAITHAM J. FOR PURE & APPL. SCI VOL22 (3) 2009

- 5-Forstner, U. (1993). Metals concentrations in fresh water sediment-Natural Background and Cultural effects in the Interactions between sediments and water fresh, ed.by H.L.Colterman, the Hague, Junk., 94-103,
- 6-Lu, J. S. C. and Chen, K. Y. (1998). Migration of trace metals in Interfaces of Sea Water and Polluted Superficial Sediments .Environ. Sci. Technol. ,11, 174.
- 7. Vernet, J.P.; Rapin, F. and Scolari, G,Switzerland, (1993). In interaction between sediment and fresh water, ed by H.L. Golterman, the Hsague, Junk.
- 8. Vivan, C.M.G. and Massie, K. S. (1995). Trace Metals in Water and sediments of River Tawe, South Wales, in relation to local Sources, Environ, Pollut., 14-47,
- 9. Bower, P. M.; Simpson, H. J.; Williams, S. C. and Li, Y.J. (1998),

 Comparative effects of sediment and water concentration in two lakes, York,
 Environ. Sci, Techol., 12, 283.
- 10. Warren, L. J. (1995). Concentration of Sediments by Lead, Zinc and Cadmium, A review. Environ. Pollut. Ser., Z, 401.
- 11. Almukhtar, E. A. (1993).Heavy metals in water and Benthos of the pollution lower part of River Diyala center Iraq . J. , IBN AL-Haitham pure and APP . Sci, <u>4</u> (2); 12-21.
- 12. Almukthar, E. A., S. A. and Ali N.M. (1987), physical and chemical characteristics of the lower reaches of river Diyala, center Iraq. J; Environ Sci, Health, <u>A21</u> (6) :537-5 Jo.
- 13. Mussa, S. A.; Al-Masri, N. A. and Nadia, M.A.(1987). Efficiency Evaluation of Rustamiya treatment plant at Baghdad. J. Biolog. Sci Res. <u>17</u>: 181-197
- 14-Al-Masri ,N. A. (1989).River Diyala quality as affected by effluent discharge paper presented to Iraq conference on engineering CICE 85,Baghdad ,Iraq,
- 15-APHA, (2000). Standared methods for the examination of water and wastewater, American public Health association ,15th Edition, Washington, D. C .1134,
- 16-Agemia, H. and Ghau, A. S. Y . .(1999), Evaluation of extraction techniques for the Determination of metals aquatic sediments . Analyst. London ,101 -761
- 17- Meduffie, B. ;El-barbary, I. and Hollod, G. J. (1998)., Trace elements in rivers speciation, transport and role of sediments .Race substances in environmental health proceeding ,Columbia, 85 -95
- 18 Ministry of Environment ,Directorate -General of planning (2005). The new limits for protection of Rivers and Public waters from pollution. Bulletin technical report . 25 ,68 -70

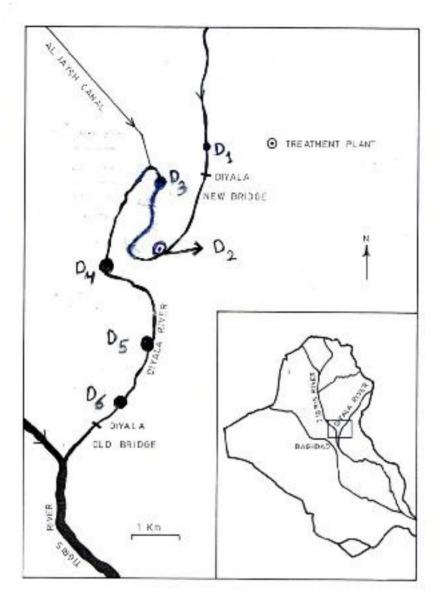


FIG.1. LOCATION OF SAMPLING STATIONS

Table (1) Heavy metals concentrations (ppm) in the Reference point, mixing zone and the treatment plant effinent at the two periods(ppm)

Low Flow Period			High Flow Period					
Paratri- mers	Cose. at ref. Sh. 1	Mixing Zone cone.	ggt No.	Coop. in treat Effect plant	Conc. at rec. rea.	Mixing zone park.	olar, No.	Conc. in must plant offici
Cd	0+0015	04007	3	0+0048	0.0070	$0_{p}0070$	3	0.0048
	0.0098	0+0160	3	0,0044	0+0030	0, 0089	3	0,0127
Zn	04 0350	0.0580	4	0.0 660	0-0180	0.0 440	3	0-0180
Ph	0-0166	0,0630	1	0(0.980	0, 0545	3-04200		0,3240

Table (2) Increase or Decrease Percent in Heavy Metals Concentrations at Reference Point, Mixing Zang and Treatment what Follows (comp.)

Parameter	s Low flow p	% Increase or Decrease		High flow period % Increase or Decrease (+ or -)	
	Ref. point to Point at Mixing zone	Effluent to Point at Mixing zone	Ref. point to Point at Mix ng zone	Effluent to Point at Mixing zone	
Cd	49.00	84.16	91.92	89.27	
Cu	63.26	262.00	198.00	-29.29	
Zn	65.71	-12.78	138.00	-144.00	
Pb	261.00	38.77	670,00	29.63	

Table (3) Iraqi Standards for some of Heavy Motals Conce (PPM) Discharged Effluents and Recovery Water Bedies (18)

Parameters	El'Illumi Discharged in to stream(Max.Cont/rang)	Stream Water (Max. Cont/rang)
CA	0.01	0.005
Cu	0.2 0	0.050
Zn	2.00	0.5 00
Pb	0.10	0.050

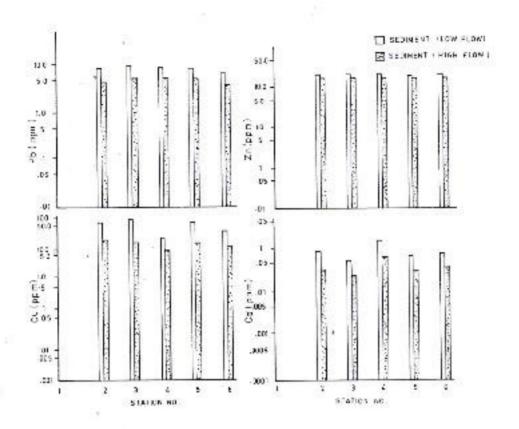


FIG _2_CONCENTRATION VARIATION OF HEAVY METAL IN SCHMENT OF THE MIXING ZONS:

تاثير المياه المصرفه من مشروع المعالجه في الرستميه على تراكيز بعض العناصر الثقيله في مياه و رسوبيات نهر ديالي

سهير ازهر موسى

قسم علوم الحياة ، كليه التربية - ابن الهيثم ، جامعه بغداد

الخلاصه

تمت دراسه تراكيز العناصر الثقيله وهي الكادميوم الخارصين النحاس و الرصاص في مياه و رسوبيات عده مواقع على نهر ديالى بالقرب من مشروع الرستميه لمعالجه المياه الثقيله. تم جمع النماذج لموسم انخفاض مناسيب المياه (شهر اب لغايه شهر تشرين الثاني) و موسم ارتفاع مناسيب المياه (شهر اب بنايه شهر تشرين الثاني) و موسم ارتفاع مناسيب المياه (شهر نيسان لغايه شهر تموز) و بمعدل مرتين في الاسروع و لمده ساتين. موقع رقم (1) اعتمد كمصدر للمقارنه والذي يقع اعلى من نقطه تصريف المشروع . تهدف هذا الدراسه لمعرفه تاثير تراكيز هذه العناصر المصرفه من مشروع الرستميه على تراكيزها في مياه و رسوبيات النهر .

اظهرت النتائج ان مستويات العناصر الثقيله في الماء كانت في فتره انخفاض مناسيب المياه عاليه مقارنه بفتره ارتفاع المناسيب. فقد كان تركيز الرصاص عاليا في منطقه التصريف مقارنه بمنطقه المزج و المصدر في فتره انخفاض المناسيب كان مرتفعا و لم يتاثر بتصريف مياه المشروع.

اما بالنسبه للرسوبيات فاوضحت النتائج ان هنالك فروقا بسيطه بين موسمين وبين نقطه التصريف و منطقه المزج حيث كان معدل تراكيز النحاس وللفترتين عاليا في منطقه المزج مقارنه ببقيه العناصر.