حساب ثوابت تفكك حامضي و بعض بيانات الدينمة الحرارية لبعض قواعد شيف المشتقة من 4، 6-ثنائى مثيل 2-أمينو بيرميدين

هاشم جلال عزيز
قسم الكيمياء، كلية التربية، جامعة صلاح الاين

الخلاصة

تم في هذا البحث حساب ثوابت تفكك حامضي لعدد من قواعد شيف المشتقة من4، 6 ثنثائي مثلبل - أمينو بيرميدين فی محيط (50\%) حجم /حجم دايوكسان/ مـاء فى 0.003 (X=H,OH;Y=H,OH,OCH3; Z=H,OH حيث ان ($\Delta \mathrm{S}^{0}$ ، $\Delta \mathrm{H}^{0}$ ، $\Delta \mathrm{G}^{0}$ (
 تحت الحمراء

Determination of pKa and Thermodynamic Data of Some Schiff Bases Derived From 4,6-Dimethyl 2-Amino Pyrimidine

H. J. Aziz
Department of Chemistry, College of Education, University of Salahaddin

Abstract

Acid dissociation constants of some Schiff bases derived from 4, 6-dimethyl 2-amino pyrimidine of the type (1) in $50 \% \mathrm{~V} / \mathrm{V}$ dioxane-water mixture in 0.003 M KCl , at three different temperatures were determined potentiometrically. The thermody namic energies were calculated and a good linear correlation was obtained between pKa and IR OH. Stretching frequencies.

Introduction

Schiff bases have recently received much attention because of their power chelation with traces of metal ions. The formation of hydrogen bonding adducts between 1-phenyl 2aminopyrimidine and vanillin was done in ethyl alcohol at 1993(1). The pKa values (macroscopic acidity constant K_{1} and K_{2}) of 1, 2-cyclopropanediammoniumdibromide (0.5 M) were determined by potentiometric titration with KOH in carbon dioxide free water, special measures were taken to avoid errors due to cis-trans isomerization or decomposition during the titration([2).
The pKa values of pigments were determined by a three-parameter function derived from the Handerson-Hassellbach equation.

$$
\Delta \mathrm{A}=\frac{\Delta \mathrm{A}_{\max }}{1+10^{\mathrm{n}(\mathrm{pKa}-\mathrm{pH})}}
$$

Where the parameters are $\Delta \mathrm{A}$ and $\Delta \mathrm{A}_{\text {max }}$, the absorbance difference and the maximum absorbance difference, correspondingly, between the protonated and deprotonated states, (n) is the number of protons participating in the above transition, and pKa is the midpoint of transition(3).

Under the chromatographic conditions used in the determination of mixtures of carboxylic acids and selected inorganic anions by ion exclusion chromato graphy; the degree of ionization, of the solutes was determined by the acid dissociation constant (pKa) of the solutes(4). Also acid dissociation constant of some 2-methyl-N-(substituted phenyl)-4,5-dihydrofuran-3-carboxamides in $50 \% \mathrm{~V} / \mathrm{V}$ dioxane-water mixture 0.003 M KCl at three different temperatures were determined potentiometrically(5). The measurements of pK_{1} and pK 2 for two amino acids (proline and valine) at four different temperatures in the range 293.15-323.15K, were done conductimetrically in water and in gly cerol-water mixtures with three different mole fractions of glycerol(6).

In the present study the dissociation constant of some Schiff bases derived from 4, 6-dimethyl2-amino pyrimidine was determined potentiometrically in $50 \% \mathrm{~V} / \mathrm{V}$ dioxane-water (structure 1) at three different temperatures. $\Delta \mathrm{G}^{\circ}, \Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ functions were also calculated.

Structure 1

Comp. No	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
A	H	OCH_{3}	OH
B	OH	H	OH
C	H	H	OH
D	OH	H	H
E	H	OH	OH
F	H	OH	H

Experime ntal

Schiff bases of the type (1) were synthesized by the following general procedure $(7,8)$. Equimolar proportion of 4, 6-dimethyl 2-amino pyrimidine and the appropriate aldehyde were heated under reflux in absolute ethanol for 1 hour and the solid yield was recrystalised from absolute ethanol. Schiff bases, obtained, were found to give single spots on TLC and chractreized by their CHN analysis.

Potassium hy droxide (0.01 M), carbonate free titrant was prepared from BDH (CVS).
An electronic pH -meter (model Kent) with a combined glass electrode was used to record the hydrogen ion concentration, in which the pH was maintained to ± 0.0. 1 unit.
The pH -meter was calibrated with buffers of pH 4.00 and 9.00 supplied from BDH.
The IR-spectra was recorded on a Pye-Unicam SP-300 S infrared spectrometer, as KBr disk by using polystyrene film as a standard.
The following stock solutions were prepared and used:
0.02 M solution of Schiff bases was prepared in dioxane-water v/v 50%.
0.1 M potassium chloride was prepared by using deionized water.

The volumes of the various solutions were added in such amounts that the final concentration in the solution becomes 0.01 M ligand and 0.003 M KCl . The final volume was completed to 50 ml of well-stirred, double wall cell, in which nitrogen was bubbled. Potassium hydroxide was added in small increments through microburette. Constant temperature was maintained with the help of HAAKE E3 thermostat.

Results and Discussion

pKa determination

The calculation of the acid dissociation constants depends on the evaluation of the average number of associated with the reagent(9) \tilde{n}_{A}, using the equation used by M asoud, which was the protons determined at different $\mathrm{pH}^{\circ} \mathrm{s}$

$$
\tilde{\mathrm{n}}_{\mathrm{A}}=\mathrm{Y}-\mathrm{V}_{1} \mathrm{~N}^{\circ} / \mathrm{V}_{0} \mathrm{C}^{\circ} \mathrm{R}
$$

Where V_{1} denotes the volume of alkali required to reach a given pH on the titration curve, V_{\circ} is the initial volume of the ligand, N° is the alkali concentration, $\mathrm{C}^{\circ} \mathrm{R}$ is the total concentration of the reagent and Y is the number of displaceable hydrogen atoms in the reagent and the pKa values was obtained by point-wise calculation method $(9,10)$. Table (1) summaries the pKa values obtained at three different temperatures. The data indicates that the compounds under investigation are different in acidic strength, due to the number and position of substitutents (especially compounds $\mathrm{B} \& \mathrm{E}$) have lower values of pKa , which is attributed to the longer conju gation(11) (structure 2), which leads to stabilize the anion compounds and because all
atoms (except H) have an octet state. Also shows that as temperature of the medium increases, the pKa values decreases.

Structure (2) Compound (E)

IR spectra

The infrared data shown in Table (2), indicates that the band at $3600 \mathrm{~cm}^{-1}$ due to free OH is absent and replaced by a band or bands at the range ($3140-3320$) cm^{-1}. This may be attributed to the hydrogen bonding (inter and intra).
Fig.(1) shows the correlation between the pKa with wave number $\left(\mathrm{cm}^{-1}\right)$ of OH stretching in IR spectra, and the best indication for the formation of Schiff bases is due to the formation of $\mathrm{C}=\mathrm{N}$ bonding Table (2) with stretching vibrations (1630-1680) $\mathrm{cm}^{-1}(12,13)$.

Thermodynamic parameters

The change in free energy is related to the other parameters by the following equations:

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{Ka}
\end{aligned}
$$

From the above two equations

$$
\begin{gathered}
-\mathrm{RT} \operatorname{lnKa}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
-2.303 \mathrm{RT} \log \mathrm{Ka}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
-\operatorname{logKa}=\Delta \mathrm{H}^{\circ} / 2.303 \mathrm{RT}-\Delta \mathrm{S}^{\circ} / 2.303 \mathrm{R}
\end{gathered}
$$

A plot of pKa vs.1/T does not deviate much from linearity Fig.(2). The slope of the line gives $\Delta \mathrm{H}^{\circ}$ value and the intercept gives $-\Delta \mathrm{S}^{\circ}$ value. The thermodynamic parameters, calculated from these relations are reported in Table (3).

The positive values of $\Delta \mathrm{G}^{\circ}$ indicate that the dissociation process is non spontaneous which support that no weak acid of its own dissociates into ions.

$$
\mathrm{LH} \longrightarrow \mathrm{~L}^{-}+\mathrm{H}^{+}
$$

The higher degree of solvation of the negative ions than that of the undissociated molecule, causes the negative value of $\Delta \mathrm{S}^{\circ}$, and more salvation means a sy stem is more orderly fashion, which implies loss of entropy.

References

1.Ahmed, Farage, I.S.; Gad, A.M; El-shabiny, A.M. and Raybakov, V.B. (1993), Formation of hydrogen - bonding adduct between 1-phenyl-2-amino pyrmidine and vaniline, Cryst. Res. Technol., 28(8): 117-1133.
2.Wolfgang von der saal and Helmut Quast, (1996), Cyclopropanediamines. 6-Autocatalytic conversion of 1-methyl-r-1, t-2-cyclopropanediamine into 4-aminobutan-2-one in aqueous buffer solutions of $\mathrm{pH} 6.5-10$, Azomethine ylide as intermediates in the catalysis by alkylketones, J. Org. Chem., 61: 4920-4928.
3.Rousso, I.; Friedman, N.; Sheves, M. and Ottolenghi, M., (1995), pKa of the protonated Schiff base and Aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues, Biochemistry, 34(37): 12060-12065.
4.Magyani, O.F., (1997), Determination of mixtures of carboxy lic acids and selected inorganic anions by ion-exclusion chromatography, Philipp ine journal of Science, 126(1): 19-50.
5.Jameel, R.K., (1994), Determination of pKa , thermodynamic data for some 2 -methyl-N(substituted phenyl)-4,5-dihy drofuran-carboxamides, Mutah Journal for research and studies, 9(2): 105-115.
6.Radha, N.K., (2000), Dissociation constants of praline and valine in solvent mixtures, M.Sc. Thesis, Chem. Dept. College of Education, Salahaddin University.
7.Campillos, E. and Marcos, M., Omenat, A. and Serrano, J.L., (1996), Synthesis and properties of copper(11) and oxovandium (IV) complexes derived from polar Schiff bases, J. Mater. Chem., $\underline{6}$ (3): 349-355.
8.Yousif, Y.Z. and Ridha, S.H., (2000), Synthesis and mesogenic behavior of some novel copper (Cull) complexes derived from Schiff bases with polar substitutents, Iraqi. J. Science, 41A(1): 30-54.
9.Masoud, M.S. and El-Zaway, F., (1980), Equilibrium studies of β - diketo aryl azo compounds with cobalt (11), Nickel (11) and Copper (11), Talanta, 27: 766-768.
10.M asoud, M.S. and Adallah, A.A., (1982), J. Chem. \& Eng. Data (USA), 27(1): 60.
11.Sykes, P., (1981), A guide book to mechanism in organic chemistry, $5^{\text {th }}$ Ed., Longmans, New York, p.22.
12.Pavia, D. L.; Lampman, G.M. and Kriz G.S., (1979), Introduction to spectroscopy-guide for students of organic chemistry, W.B. Saunders Company, Toronto, p.26.
13.Nakanishi, K. and Solomon, P.H., (1977), Infrared absorption spectroscopy , second edition, HOLDEN-DAY, INC., San Francisco, p. 49.

Table (1): pKa values for the S chiff bases (A-F) at three different temperatures, $\pm 0.1^{\circ} \mathrm{C}$, in $50 \% \mathrm{~V} / \mathrm{V}$ dioxane-water, 0.003 M KCl

Compound No.	$\mathbf{p K a} \pm \mathbf{0 . 0 5}$ $\mathbf{2 5} \mathbf{C}$	$\mathbf{p K a} \pm \mathbf{0 . 0 4}$ $\mathbf{3 5} \mathbf{C}$	$\mathbf{p K a \pm \mathbf { 0 . 0 5 }}$
	$\mathbf{4 5}^{\circ} \mathbf{C}$		
A	7.02	6.81	6.64
B	$0 . \mathrm{OH}(7.9), \mathrm{P}-\mathrm{OH}(6.7)$	$7.69,6.56$	$7.46,6.43$
C	7.05	6.85	6.63
D	6.85	6.70	6.54
E	$\mathrm{m}-\mathrm{OH}(7.85), \mathrm{p}-\mathrm{OH}(6.5)$	$7.65,6.36$	$7.44,6.23$
F	7.55	7.37	7.18

Where $\mathrm{o}=$ ortho, $\mathrm{m}=$ meta, $\mathrm{p}=\mathrm{para}$

Table (2): IR frequencies in cm^{-1} for the prepared S chiff bases

Compound No.	OH str.	C=N str.
A	3180	1635
B	3310,3140	1630
C	3190	1635
D	3160	1630
E	3320,3110	1645
F	3300	1640

Table (3): Thermodynamic parameter values ($\Delta \mathbf{G}^{\circ}, \Delta \mathbf{H}^{\circ}, \Delta \mathbf{S}^{\circ}$) for hydroxyl group in the Schiff bases (A-F) in $\mathbf{5 0 \%} \mathbf{V} / \mathrm{V}$ dioxane - water, $\mathbf{0 . 0 0 3 M ~ K C l}$ at $\mathbf{2 5}{ }^{\circ} \mathbf{C} \pm 0.1$

Compound No.	$\Delta \mathbf{G}^{\circ} \mathbf{K J} / \mathbf{m o l e}$	$\Delta \mathbf{H}^{\circ} \mathbf{~ K J} / \mathbf{m o l e}$	$-\Delta \mathbf{S}$ J/mole.K ${ }^{\circ}$
A	40.06	34.48	18.72
B	$45.08,38.23$	$39.93,24.50$	$17.28,46.07$
C	40.23	38.11	7.11
D	39.09	28.13	36.78
E	$44.79,37.09$	$37.21,24.50$	$25.43,42.25$
F	43.08	33.55	31.98

Fig. (1) Rel ation between pKa and OH stretching vibration frequency of S chiff bases (A-F). Where Ep,Bp represent the values for para hydroxyl group, while Bo and Em represent the values for ortho and meta hydroxy groups respectivel.y

Fig. (2) Plot of pKa at $25^{\circ} \mathrm{C}$ against $1 / \mathrm{T}$ of S chiff bases (A-F)

