Photodegredation of Schiff Bases Copper(II) Complexes in Dimethyl Sulphoxid (DMSO)

A.J.AL-Lami Department of Chemistry, College of Science, University of AL-Mustansyriah

Abstract

Photodecomposition of dichlorobis N [4-Azo benzene aniline)2-hydroxy benzilidene] Copper (II) (Complexe A₁) and dichloro N[2-Azo 3- sulphonic -2- naphthol) 6- carboxy lic 2- hydroxy benzilidene] copper (II) (Complex A₂).have been performed at $\lambda = 373$ nm for complex A₁ and at $\lambda = 358$ nm for complex A₂ in dimethyl sulphoxide at 25C°. the absorbance spectrum of these complexes have been recorded with time of irradiation in order to examine the kinetics of photodecay. The apparent rate constant (K_d) for the first order reaction has been calculated and found to be 1.1 ×10⁻² min⁻¹ for complexe A₁ and 2.34 × 10⁻² min⁻¹ for camplexe A₂. the primary quantum yields (Ø) has also been calculated and found to be 2.810×10⁻¹ and 0.2765×10⁻¹ for complex A₁ and A₂ respectively.

Introduction

Copper is a metal that has a wide rang of applications due to its good

properties. It is used in electronics, for production of wiers, sheets, tubes, and also to form alloys. The use of inorganic inhibitors as another native to organic compounds that are based on the possibility of degradation of organic compounds with time and temperature[1]. Long – lived, photochemically generated excited states of the second and third row transition metal complexes usually feature significant triplet character and often are based on internal charge transfer [2]. Schiff bases form stable complexes with metals that perform important role in biological systems. They find also wide application in analytical chemistry since they allow simple and inexpensive determinations of several organic and inorganic substances. Some Schiff bases complexes were found to be very effective catalysts for hydrolytic cleavage or transesterification of RNA phosphate diester back bone. Therefore metal complexes of Schiff bases attained a prominent place in coordination chemistry [3,4]. Photodecomposition of Schiff bases complexes are among the most known photoreactive metal complexes [5]. Schiff bases are condensation products of an amine and a ketone or aldehyde, with $R_2C=NR$ as their general formula they, contain heteroatoms and π electrons that enable bonding with copper[1,5]. Marjorie and Joseph have studied toxicity 0f copper to larval pimephales promelas in the presence of photodegraded natural dissolved organic matter[6]. The photodegradation of copper complexes in (DMSO) solvent was perfomed.

In this work, we used the following copper complexes as examples for studying the photodegradation in DM SO solvent.

 $Complex (A_2) \ dichloro \ N \ [\ (\ 2-Azo - 3-sulphonic-2-naphthol) \ 6- \ carboxy lic aniline \ -2-hy \ droxy \ benziliden \] \ copper(II).$

[Cu(C₂₄H₁₇N₃O₇S)Cl₂]

Photodegredation of molybdeum(II) and tungesten(II) carbonyl complexes with triazole, benz – imidazole, and oxadiazole acetylinic derivatives have been studied previously[5]. In this departs the Kinetic and mechanism of degredation have been established. Copper is necessary for the formation of blood cells, connective tissue and it is also involved in producing the skin pigment melanin [7].

Experimentals techniques

Chemicals

(a) potassium ferrioxalate hydrate K_3 [Fe (C_2O_4)₃] .3H₂O actinometer was perepared by the method reported by Hatchard and Parker[9].

(b) Two complexes $(A_1 \text{ and } A_2)$ was prepared as reported earlier[8].

The ligand L_1 (2 mmole,0.63 g) that was dissolved in ethanol (10 ml) was added to ethanolic solution (10 ml) of (1.05 mmole, 0.17 g) 0f CuCl_{2.2}H₂O with stirring the mixture was refluxed for 2 hr, the products was recrystallized from ethanol and dired under vacuum.

(c) The DMSO used was of spectroscopic grade

IBN AL- HAITHAM J. FORPURE & APPL. SCI VOL 22 (4) 2009

Apparatus

- I) The photolysis apparatus consist of medium pressure mercury lamp 150w, λ =365 nm supplied by PHYWE ltd .was used as light source.
- II) UV-Vis spectral absorption bands were obtained using Pye-unicam(8800) spectrophotometer at 25 C°. using dimethel sulphoxide (DMSO) as a solvent in quartz photochemical cell.
- III) IR spectra were obtained using Pye-unicam SP3 -300 infrared spectrop hotometer for the range (4000-200)cm⁻¹ but for the ligands were recoded on KBr discs with a Pye-unicam SP3 -100 infrared spectrophotometer for the range 4000- 600 cm⁻¹.
- IV) The acidity (pH) of the solution before and after irradiation was measured by (Multi 740/pH-meter).

procedures

The photoexperiments wer carried out in (35 ml) pyrex cell with two holes in its upper section for the passage of gas and for sampling processes. 150W medium pressure mercury lamp was used as a radiation source. A known concentration $(1.5 \times 10^6 \text{ M})$ of the complex was introduced into the cell after treatment with oxygen for 20 min the cell was closed tightly and the absorption spectra were recorded between 200-800 nm. The measurement of the incident light (I_o) was carried out by using standard method of potassium ferrioxalate actinometry [9].

 $I_{\circ} =$

 $\varepsilon \overline{\emptyset}_{\lambda} V_2 t$

where I_{\circ} is the incident light intensity, A; the absorption at 510 nm. V_1 the final volume (25 ml); ε the extinction coefficient = slope of calibration curve, \emptyset_{λ} the quantum yield = 1.21 at 365 nm, V_2 the volume taken from irradiation solution (1 ml) and t; the time of irradiation of actinometer solution (s).

Results and Discussion

The spectra of cupper complexes.

UV-Vis. spectra for the complexes have shown absorption bands around 373 nm(Fig 1). The ε values are 0.043 ×10⁶ and 0.009 × 10⁶ mol⁻¹.L. cm⁻¹ for the complexes A₁and A₂ respectively, the band at 34129 cm⁻¹ is due to charge transfer(C.T) transition from (L → M) and at 23255 cm⁻¹ is due to ² Eg -2_{T_2g} transition. Electronic absorption for complex (A₂) shows band at 34482 cm⁻¹ which is due to C.T transition from (L → M) and at 24813 cm⁻¹ which is due to ² Eg -2_{T_2g} transition ,Table (1) , which supports the squar planar structure. The changes in absorbance during photolysis were measured for different irradiation periods of time at 373 nm for complex A₁ and 358 nm for the complex A₂ in order to study the kinetics of the photodecay of complexes in solution (Fig .2). The specific decomposition rate constant of each complex (K_d) was determined after examining the order of reaction of these compounds. The spectra of the [Cu(C₁₉ H₁₅ N₃ O) Cl₂] were treated kinetically by plotting the curve between(A_∞ - A_t) and Ln(A_∞ - A_t) versus irradiation time(Fig .3). Only the plot of Ln (A_∞ - A_t) with irradiation time gives straight line which indicates that the reaction is first – order. The K_d of decomposition of this complex was determined by the following first – order equation,

 $\operatorname{Ln} (\mathbf{A}_{\infty} - \mathbf{A}_{t}) = \operatorname{Ln} (\mathbf{A}_{\circ} - \mathbf{A}_{\infty}) - \mathbf{K}_{d} \mathbf{t}.$

The value of K_d for this complex is 1.1×10^{-2} min⁻¹; photolysis of other complex(A_2) has been performed in a similar manner. Fig 2(b)) shows the change in Uv-Visb. Spectra with time of irradiation . On irradiation of the complex A_1 in dimethyl sulphoxide, the color changes

IBN AL- HAITHAM J. FORPURE & APPL. SCI VOL 22 (4) 2009

gradually from pale yellow to coloress and the absorbance intensity of all bands increases with time of irradiation in the region 200-600 nm, all photochemical changes in these complexes are reactively similar and simple . Although we believe that the solvent(DMSO) undergoes photolysis during irradiation, but this fact does not affect the change in the spectra of the complex.

Determination of appearant quantum yield (\emptyset)

The appearant quantum yield (\emptyset) for copper complexes was determined after the determination of the absorbed light intensity I _{abs} and incidence light intensity I as follows :-

$$I_{abs.} = I_{\circ}(1 - e^{-\varepsilon c 1})$$

$$= 9.40 \times 10^{-7} (1 - e^{-0.043 \times 10.6 \times 1.5 \times 10^{-6}})$$

$$= 0.5875 \times 10^{-7} \quad \text{Ein} \cdot L^{-1} \cdot S^{-1} \quad \text{for complex A}_{1}$$

$$\emptyset = \frac{\text{Rate}}{I_{abs}} = \frac{K_{d} [C]}{I_{abs}}$$

$$= \frac{1.1 \times 10^{-2} \times 1.5 \times 10^{-6}}{0.587 \times 10^{-7}} = 2.810 \times 10^{-1}, \text{ for complex A}_{1}$$

The value of Ø for complex $A_2 = 0.2765 \times 10^{-1}$

Alias (10) found that appearent quantum yield for carbonyle complexes are in the range of 8.3 to 12.1×10^{-4} .

 A_1

Luetal have investigated several factors affecting the photocatalytic degradation of (DDVP) using a glass photo reactor coated with TiO_2 and 20 W black –light tungsten fluorescent tube[11]. They found that the quantum yield for the destruction of DDVP was 2.67%.

Qualitative Analysis of photolysis products

It is essential to examine the final products of photolysis in order to set up the mechanism. Infrared (IR) spectra have been recorded for the final photoproducts of these reactions. Fig 5 shows that there is only one peak appearing at 470 cm⁻¹ due to M—O band ,also the band at 247, 1625, 1560 cm⁻¹ were disappeared indicated to scission of Cu—Cl, (C= N) and (N= N) bands respectively, which clearly shows that the complex has photodecomposed to metal oxide(for complex A₁). The difference between

(Fig.4) before irradiation and (Fig.5) after irradiation, for example complex A_1 indicates that there is a complete degredation of this complex metal oxide and stable ion via a series of secondary reactions, the following is a well known chemical reaction equation (6).

 $Complex \longrightarrow (Complex)^* \longrightarrow Cu_x O_y + Cl^- + other ions.$

IBN AL- HAITHAM J. FORPURE & APPL. SCI VOL 22 (4) 2009

Analysis for NO_3^- have also been done by using classical analytical method, positive (brow-ring) has been detected depending on the number of nitrogen atom in the complex [12]. The acidity (pH)of the final photoproduct also was measured by during the photolysis which was increased with time of irradiation. The initial pH=9.8 and the final pH was at 3.2, all these final photoreactions have been suggested without proposing the exact primary process. Hussein [13] found that photodegradiation of dichlorovos (DDVP) under UV-150 W illumination in the presence of TiO₂ in oxgen atmosphere ,gives an increase in the formation of CI ions and conductivity , but a decrease in pH. These types of reactions have an application in environmental degradation or mineralization of polluted water[14].

Pollution molecule $\xrightarrow{\text{H }\upsilon}$ stable ions or molecule.

Refrences

- 1.Antonijevic. M.M and Petrovic M.B. (2008) "Copper Corrosin Inhibitors, a review", Int.J.Electrochem.Sci. 3: 1-28.
- 2.Walters Keith, A.; Kim Young Jin and Joseph, T.Hupp, (2002) " Experimental studies of Light – Induced charge transfer and charge redistribution in (X₂- Bipyridine) Re' (CO)₃Cl Complexes ", Inorg.Chem.<u>41</u>:2909-2919.
- 3.Hennig, H. ,(1999) "Homogeneous photocatalysis by transition metal complexes", coord.chem.Rev.<u>182</u>:101-123.
- 4.Osman, A.H.; Aref, A.Aly and Gamal, A.H.Gouda, (2004) "Photoreactivity and Thermogravimetrof copper (II) complexes of N-salicy liden aniline and its derivatives ",Bull.korean chem..Soc. <u>25</u>(1): 45-50.
- 5.Naman, S.A.; Ayad, H.J.and Alias, M.F. (2002)" Photodecomposition of Molybdenum (II) and Tungsten (II) carbonyl complexes with triazole, benz-imidazole, and oxadiazole acetylinic derivatives", J.photochemistry and photobiology A: chemistry <u>150</u>, 41-48
- 6.Marjorie, L.B.; Joseph, S. M. and Connie J.B. (2007) "Toxicity of copper to Larvel pimephales promelas in the presence of photodegraded natural dissolved organic matter" Can.J.Fish.Aquat.Sci, <u>64</u>: 391-401.
- 7.Abid, F.M. ;Al-Dori ,K.M.; Hamad ,A.W.R. (2002) "Measurement of Essential Trace Elements in blood serum of cardiovascular patients compared with normotensive control by atomic absorption spectrophotometry", National Journal of chemistry, <u>6</u>: 283-304.
- 8.Ayal, A.K. (2005). "Synthesis and spectrophotometric study of some metal ions complexes with some Schiff bases", M.Sc.Thesis, Mustansiriyah Univ.,
- 9.Hatchard, C.G. and Porker ,C.A. (1956) "A new sensitive chemical actinometer II. Potassium ferrioxalate as astandard chemical actinometer", Proc.Roy.Soc., page 235.
- 10. Alias, M.F. (2000). Ph.D. Thesis, Baghdad Univ., Baghdad
- 11.Lu, M.C.; Roam, G.D. (1993) J.N.chem, J.photochem.photobiol.<u>76</u>:103.
- 12.Hahn, R.B. (1987)Semimicro Qualitative Analysis.VanNostrand.New york.
- 13.Naman ,S.A.; Khammas,Z.A.A. Hussein, F.M. (2002) Photochem.Photobiology A:chemistry,<u>6100</u>:1-8.
- 14.Bahnemann, D. (1999). in:p. Boule, (Ed.), The Handbook of Environmental chemistry, <u>2</u>(L-) Environmental photochemistry, soringer, Bertin,

IBN AL- HAITHAM J. FORPURE & APPL SCI VOL 22 (4)2009

complex	Absorbance band cm ⁻¹	Transition	Geometry
[Cu(C ₁₉ H ₁₅ N ₃ O) Cl ₂]	34129 23255	2 Eg \rightarrow 2 T ₂ g	Squar planar
[Cu(C ₂₄ H ₁₇ N ₃ O ₇ S) Cl ₂]	34482 24813	2 Eg 2 T ₂ g	Squar p lanar

Table (1): UV-Visible bands of copper complexes in DMS O

Table(2): Absorbance of complex $[Cu(C_{19} H_{15} N_3 O)Cl_2]$ versus irradiation time

Time (sec.)	Abs.	$(\mathbf{A}_{\infty} - \mathbf{A}_{t})$	$Ln(A_{\infty} - A_{t})$
	373nm		
0	0.062	0.013	- 4.342
1800	0.066	0.009	- 4.710
3600	0.069	0.006	- 5.11
5400	0.0672	0.007	- 4.853
7200	0.071	0.004	- 5.52
9000	0.073	0.002	- 6.214
10800	0.075	0	

Table (3): IR bands of the Ligand and complexes cm⁻¹

No.Complex	compound	υ(C=N)	υ(N=N),	υ(OH)	M -Cl	M-N	М-О	υ (CO)
			C=C					
L ₁	$C_{19}H_{15}N_{3}O$	1600	1560	3200	_	_	_	_
L ₂	$C_{24}H_{17}N_3O_7S$	1610	1532	3300	-	_	_	1720
A ₁	$[Cu(L_1) Cl_2]$	1625	1560	_	247-	334-	470	_
					271	364		
A ₂	$[Cu(L_2) Cl_2]$	1618	1533	3242	235-	322-	470-	1720
					260	340	520	

 $\begin{array}{l} Fig~(1):~Electronic ~spectra~of ~~(a)~[C~u(C_{19}~H_{15}~N_{3}~O~)~Cl_{2}~]~.\\ (b)~[C~u(C_{24}~H_{17}~N_{3}~O_{7}S~)~Cl_{2}~]~. \end{array}$

Fig. (2): Electronic spectra of (a) complex A₁ (b) complex A₂ changes at 373 nm accompany change in irradiation time in dimethyl sulphoxide solvent at 298 K° (1) 0, (2) 3 hr.

Fig.(3): Variation of nautral logarithm of absorbance with irradiation time of (a) complex A_1 and (b) com plex A_2 in dimethey sulphoxide solvent at

Fig.(4): IR spectrum of [Cu(C₁₉ H₁₅ N₃ O) Cl₂] at 289 k° before photolysis.

Fig.(5): IR spectrum of [Cu(C₁₉ H₁₅ N₃ O) Cl₂] at 289 k° after photolysis.

Fig.(6): a IR spectrum of $L_1 = C_{19}H_{15}N_3O$

Fig.(6): b IR spectrum of $L_2 = C_{24}H_{17}N_3O_7S$

مجلة ابن الهيثم للعلوم الصرفة والتطبيقية المجلد 22(4) 9 200

التجزئة الضوئية لمعقدي النحاس (II) مع قواعد شف في مذيب ثنائي مثيل سلفوكسايد (DMAO)

اسماء جميل علي اللامي قسم الكيمياء،كلية العلوم، الجامعة المستنصرية

الخلاصة

تــم فــي هـذا البحــث دراســة التجزئــة للــضوئية لمعقـدي النحـاس (II) مــع ثنـائي كلـورو $[A_1]$ وثدائي كلورو $[A_1]$ وثدائي كلورو $[A_1]$ وثدائي كلورو $[A_1]$ وندزين $[C_1]$ وبنزين $[C_1]$ سلفونك $[C_2]$ نفتول $[C_2]$ وبنزين $[C_1]$ ميدروكسي بنزيليدين $[A_1]$ المعد $[A_1]$ وثدائي كلورو $[A_1]$ وثدائي تأسين المونك $[A_2]$ سلفونك $[C_2]$ نفتول $[C_2]$ وبنزين $[C_2]$ ميدروكسي بنزيليدين $[A_1]$ المعد $[A_2]$ مدر $[A_1]$ من خدام الطرائق الطيفية مثل الاشعة تحت كربوكسيلك $[A_1]$ معدروكسي بنزيليدين $[A_1]$ المعد $[A_2]$ مدر $[A_2]$ من المونك $[A_2]$ معدروكسي بنزيليدين $[A_1]$ المعد $[A_2]$ مدر $[A_2]$ من المونك $[A_2]$ معدروكسي بنزيليدين $[A_2]$ المعد $[A_2]$ مدر $[A_2]$ من المونك $[A_2]$ معدروكسي بنزيليدين $[A_2]$ المعد $[A_2]$ مدر $[A_2]$ مدر $[A_2]$ من المونك $[A_2]$ معدروكسي المونك $[A_2]$ من المونك $[A_2]$ مدر $[A_2]$ مدر $[A_2]$ من المونك $[A_2]$ مدر $[A_2]$ مدر $[A_2]$ مدر $[A_2]$ مدر $[A_2]$ مدر $[A_3]$ مدر $[A_4]$ مدر $[A_$