A Space of Fuzzy Orderings

L.N.M. Tawfiq
Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

Abstract

In this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved.

Spaces of Fuzzy Orderings

Throughout $\mathrm{X}=(\mathrm{X}, \mathrm{A})$ denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exp onent 2. (see [1] (i.e. $x^{2}=1, \forall x \in G$), and X is a (non empty) fuzzy subset of the character group $\chi(\mathrm{A})=\operatorname{Hom}(\mathrm{A},\{1,-1\})$ satisfy ing.

1. X is a fuzzy closed subset of $\chi(\mathrm{A})$.
2. \exists an element $e \in \mathrm{~A}$ such that $\sigma(e)=-1 \forall \sigma \in \mathrm{X}$.
3. $\mathrm{X}^{\perp}:=\{a \in \mathrm{~A} \backslash \sigma(a)=1 \forall \sigma \in \mathrm{X}\}=1$.
4. If f and g are forms over A and if $x \in \mathrm{D}(f \oplus g)$ then $\exists y \in \mathrm{D}(f)$ and $z \in \mathrm{D}(g)$ such that x $\in \mathrm{D}\langle y, z>$.
Observe, by 3 , that the element $e \in \mathrm{~A}$ whose existence is asserted by 2 is unique. Also, $e \neq 1$ (since $\sigma(1)=1 \forall \sigma \in \mathrm{X}$).

Notice that for $a \in \mathrm{~A}$, the set $\mathrm{X}(a):=\{\sigma \in \mathrm{X} \mid \sigma(a)=1\}$ is clopen (i.e. both closed and open) in X. Moreover, $\sigma(a)=-1 \Leftrightarrow \sigma(-a)=1$ holds for any $\sigma \in \mathrm{X} \quad$ (by 2).

Definition 1

A forms f and g are said to be isometric (over X) if they have the same dimension and $\sigma(f)=\sigma(g) \forall \sigma \in \mathrm{X}$. This is denoted by writing $f \cong g$ or $g \cong f($ over X$)$.
Note A form f is said to represent the element $\mathrm{X} \in \mathrm{A}$ (over X) if \exists elements $x_{1}, \ldots, x_{n} \in \mathrm{~A}$ such that $f \cong<x, x_{2}, \ldots, x_{n}>\cdot \mathrm{D}(f)$ or $\mathrm{D}(f, \mathrm{X})$ will be used to denote the set of elements of A which are represented by f in this sense.

Definition 2

A form f is said to be isotropic if $\exists x_{3}, \ldots, x_{n} \in \mathrm{~A}$, such that
$f \cong<1,-1, x_{3}, \ldots, x_{n}>$. Notice, in particular, this implies $\operatorname{dim}(f) \geq 2$. A form which is not isotrop ic is said to be anisotropic, for any $x \in \mathrm{~A},\langle x,-x\rangle \cong\langle 1,-1\rangle$.
any such form will be called a hy perbolic plane.

Theorem 1

The following are equivalent
(i) $\forall x \in \mathrm{G}, x \neq-1 \Rightarrow \mathrm{D}<1, x>=\{1, x\}$.
(ii) $\mathrm{X}=\{\alpha \in \chi(\mathrm{A}) \mid \alpha(-1)=-1\}$.

Proof: see [3].
A space of fuzzy ordering satisfy ing either of the equivalent conditions in theorem 1 will be referred to as a fan.

Corollary 1

Suppose X is a fan. Then every subspace of X is also a fan.
Proof: compare [3].
Recall, a space of fuzzy orderings (X, A) is said to be finite if X (or equivalently A) is finite fuzzy set; and two spaces of fuzzy orderings (X, A) and ($\mathrm{X}^{\prime}, \mathrm{A}^{\prime}$) are said to be isomorphic if there exists a group isomorphism $\alpha: A \longrightarrow A^{\prime}$ such that the dual isomorphism $\alpha^{*}: \chi\left(\mathrm{A}^{\prime}\right) \longrightarrow \chi(\mathrm{A})$ maps X^{\prime} on to X .

Definition 3

The chain length of $\mathrm{X}($ denoted $\mathrm{C} 1(\mathrm{X}))$ is the maximum integer $k \geq 1$ such that $\exists a_{0}, \ldots$, $a_{k} \in$ A satisfy ing: $\mathrm{X}\left(a_{i-1}\right) \subset \mathrm{X}\left(a_{i}\right), i=1, \ldots, k$ (or $\mathrm{C} 1(\mathrm{X})=\infty$ if no such maximum exists).

Remark 1

It is easily verified that $\mathrm{C} 1(\mathrm{X})=1$ if and only if $|x|=1$, and $\mathrm{C} 1(x) \leq 2$ if and only if X is a fan.

Recall that X is said to be decomposable if there exist non-empty subspaces X_{i} of $\mathrm{X}, i=$ 1,2 such that $\mathrm{X}=\mathrm{X}_{1} \oplus \mathrm{X}_{2}$.
Let us denote by $\operatorname{gr}(\mathrm{X})$ the translation fuzzy group of X , i.e., $\operatorname{gr}(\mathrm{X})=\{\mathrm{T} \in \chi(x) \mid \mathrm{TX}=\mathrm{X}\}$.
Thus $\operatorname{gr}(\mathrm{X})$ is a closed fuzzy subgroup of $\chi(\mathrm{A})$.
Let the residue space of X be defined to be $\mathrm{X}^{\prime}=\left(\mathrm{X}^{\prime}, \mathrm{A}^{\prime}\right)$ where $\mathrm{A}^{\prime}=\operatorname{gr}(\mathrm{X})^{\perp} \subseteq \mathrm{A}$, and where X^{\prime} denotes the image of X in $\chi\left(\mathrm{A}^{\prime}\right)$ via restriction, X^{\prime} is a space of fuzzy orderings. Moreover $\operatorname{gr}\left(\mathrm{X}^{\prime}\right)=1$, and X is a fuzzy group extension of X^{\prime}.

We can state the main theorem concerning spaces of finite chain length.

Theorem 2

Suppose $\mathrm{C} 1(\mathrm{X})<\infty$. Then either $|\mathrm{X}|=1$, or $\operatorname{gr}(\mathrm{X}) \neq 1$, or X is decomposable.
The proof of this key result is found in [4]. For now we concentrate on giving two important applications.

Theorem 3

Suppose a form f is anisotropic over a space of fuzzy ordering X_{0}. Then there exists a finite subspace $\mathrm{X} \subset \mathrm{X}_{0}$ such that f is an isotropic over X .
Proof: Let $\mathrm{X}=(\mathrm{X}, \mathrm{A})$ be a subspace of X_{0} chosen minimal subject to f is anisotropic over X . Let $a_{0}, \ldots, a_{k} \in \mathrm{~A}$ satisfy: $\mathrm{D}<1, a_{i-1}>\subset \mathrm{D}<1, a_{i}>, i=1, \ldots, k$. Thus $<1, a_{i}>\cong<a_{i-1}, a_{i-1} a_{i}>$ and $a_{i-1} \neq a_{i}$ for $i=1, \ldots, k$. We may assume $a_{0}=1, a_{k}=1$. Let $b_{i}=a_{i-1} a_{i}$. Thus $b_{i} \neq 1$, so $\mathrm{X}\left(b_{i}\right)$ is a proper subspace of X . Thus f is isotropic over $\mathrm{X}\left(b_{i}\right)$, i.e. there exists a form g_{i} of dimension $n-2$ (where n denotes the dimension of f) such that $f \sim g_{i}$ over $\mathrm{X}\left(b_{i}\right)$. Thus:
$f \otimes<1, b_{i}>\sim g_{i} \otimes<1, b_{i}>$ over X, so by addition
$f \otimes\left(\sum_{\mathrm{i}=1}^{\mathrm{k}}<1, b_{i}>\right): \sum_{\mathrm{i}=1}^{\mathrm{k}} g_{i} \otimes<1, b_{i}>($ over X$)$
But using the assumptions on a_{0}, \ldots, a_{k} we see that (over X) $<b_{0}, \ldots, b_{k}>\cong<a_{0} a_{1}$, $a_{1} a_{2}, \ldots, a_{k-1} a_{k}>\cong<a_{1}, a_{1} a_{2}, \ldots, a_{k-1} a_{k}>\cong<1, a_{2}, a_{2} a_{3}, \ldots, a_{k-1} a_{k}>\cong \ldots \cong<1, \ldots, 1, a_{k}$ $>\cong\langle 1, \ldots, 1,1\rangle$.
Substituting this in (1) yields
$(2 k-2) f: \sum_{\mathrm{i}=1}^{\mathrm{k}} g_{i}<1, b_{i}>$

Now f (and hence $(2 k-2) f$, by (3, corollary $3.5(i i)$) is anisotropic over X , so comparing dimensions, and using (3, lemma 2.4), $(2 k-2) n \leq k(n-2)(2)$, i.e., $\quad k \leq \frac{1}{2} n$. This proves $\mathrm{C} 1(\mathrm{X})<\infty$.
Now, we apply theorem 2. If $|X|=1$ we are done.
Suppose $\mathrm{X}=\mathrm{X}_{1} \oplus \mathrm{X}_{2}$ where $\mathrm{X}_{i}=\left(\mathrm{X}_{i}, \mathrm{~A} / \Delta_{i}\right)$ is a non-empty subspace of $\mathrm{X}, i=1,2$. Thus there exist elements $a_{i 3}, \ldots, a_{i n} \in \mathrm{~A}$ such that
$f \cong<-1,1, a_{i 3}, \ldots, a_{i n}>$ over $\mathrm{X}_{i}, i=1,2$.
Since $\mathrm{X}=\mathrm{X}_{1} \oplus \mathrm{X}_{2}$, the natural injection $\mathrm{A} \longrightarrow \mathrm{A} / \Delta_{1} \times \mathrm{A} / \Delta_{2}$ is surjective, so there exist a_{3}, $\ldots, a_{n} \in$ A such that $a_{j} \equiv a_{i j}\left(\bmod \Delta_{i}\right), 3 \leq j \leq n, i=1,2$.
Then clearly $f \equiv<1,-1, a_{3}, \ldots, a_{n}>$ over X , a contradiction. Thus X is indecomposable, so $\operatorname{gr}(\mathrm{X}) \neq 1$. Let $\mathrm{X}^{\prime}=\left(\mathrm{X}^{\prime}, \mathrm{A}^{\prime}\right)$ denote the residue space of X and decomp ose f as $f \cong \pi_{1} f_{1} \oplus \ldots \oplus \pi_{\mathrm{s}}$ f_{s} where $f_{1}, \ldots, f_{\mathrm{s}}$ are forms over A^{\prime}, and $\pi_{1}, \ldots, \pi_{\mathrm{s}} \in \mathrm{A}$ are distinct modulo A^{\prime}.
The assertion that f is anisotropic over X is equivalent to the assertion that each $f_{1}, \ldots, f_{\mathrm{s}}$ is anisotropic over X^{\prime}.
There are two cases to be considered.
Suppose $\mathrm{S}=1$. Let Δ be any fuzzy subgroup of A such that A is the direct product $\mathrm{A}=\Delta$ $\times \mathrm{A}^{\prime}$, and let $\mathrm{Y}=\Delta^{\perp} \cap \mathrm{X}$. Then one verifies easily that $\mathrm{Y}=(\mathrm{Y}, \mathrm{A} / \Delta)$ is a subsp ace of X and that $(\mathrm{Y}, \mathrm{A} / \Delta) \sim\left(\mathrm{X}^{\prime}, \mathrm{A}^{\prime}\right)$, this equivalence being induced by the natural isomorphism $\mathrm{A} / \Delta \cong \mathrm{A}^{\prime}$ Thus, since f_{1} is anisotropic over X^{\prime}, it (and then $f \cong \pi_{1} f_{1}$) is anisotropic over Y. But, on the other hand $\operatorname{gr}(\mathrm{X}) \neq 1$, i.e. $\mathrm{A}^{\prime} \neq \mathrm{A}$, i.e. $\Delta \neq 1$, i.e., $\mathrm{Y} \subset \mathrm{X}$.
This contradicts the minimal choice of X.
Thus $\mathrm{S} \geq 2$. It follows that each f_{i} has strictly lower dimension than f so by induction on the dimension, there exist finite subsp aces $\mathrm{Z}_{1^{\prime}}, \ldots, \mathrm{Z}_{\mathrm{s}^{\prime}} \subseteq \mathrm{X}^{\prime}$ such that f_{i} is anisotropic over $\mathrm{Z}_{i^{\prime}}$. Thus $f_{1}, \ldots, f_{\mathrm{s}}$ are all anisotropic over the subspace of X^{\prime} generated by $\mathrm{Z}_{1^{\prime}}, \ldots, \mathrm{Z}_{\mathrm{s}^{\prime}}$. Denote this sp ace by $Z^{\prime}=\left(Z^{\prime}, A^{\prime} / \Delta^{\prime}\right)$. Note Z^{\prime} is still finite $Z=\Delta^{\prime \perp} \cap X$. Then $Z=\left(Z, A / \Delta^{\prime}\right)$ is a subsp ace of X, and a fuzzy group extension of $Z^{\prime}=\left(Z^{\prime}, A / \Delta^{\prime}\right)$. Moreover, since π_{1}, \ldots, π_{s} are distinct modulo A^{\prime}, f is anisotropic over Z . Thus, by minimal choice of $\mathrm{X}, \mathrm{Z}=\mathrm{X}$, i.e. $\Delta^{\prime}=1$, i.e., $\mathrm{Z}^{\prime}=$ X^{\prime} is finite. However, X itself could be infinite (since, a priori, $\operatorname{gr}(x)$ could be infinite). Define $\mathrm{A}^{\prime \prime}$ to be the fuzzy subgroup of A generated by A^{\prime} and π_{1}, \ldots, π_{s}, and let $\mathrm{X}^{\prime \prime}$ denote the restriction of X to $\mathrm{A}^{\prime \prime}$.

Thus (X, A) is a fuzzy group extension see[2] of $\left(\mathrm{X}^{\prime \prime}, \mathrm{A}^{\prime \prime}\right)$ which, inturn, is a fuzzy group extension of $\left(\mathrm{X}^{\prime}, \mathrm{A}^{\prime}\right)$. M oreover $\left(\mathrm{X}^{\prime \prime}, \mathrm{A}^{\prime \prime}\right)$ is finite, and f is anisotropic over $\mathrm{X}^{\prime \prime}$. Finally, let Δ be fuzzy subgroup of A so that $A=\Delta \times A^{\prime \prime}$, and let $\mathrm{Y}=\Delta^{\perp} \cap \mathrm{X}$. Then $\mathrm{Y}=(\mathrm{Y}, \mathrm{A} / \Delta)$ is a subsp ace of X naturally equivalent to $\left(\mathrm{X}^{\prime \prime}, \mathrm{A}^{\prime \prime}\right)$. Thus Y is finite, and f is anisotropic over Y . Thus $\mathrm{Y}=\mathrm{X}$ is finite.

Notice, the condition $\mathrm{X}\left(a_{i-1}\right) \subset \mathrm{X}\left(a_{i}\right)$ is equivalent to $\mathrm{D}<1, a_{i}>\subset \mathrm{D}<1, a_{i-1}>$.

Theorem 4

(i) Suppose $\mathrm{X}_{i}=\left(\mathrm{X}_{i}, \mathrm{~A} / \Delta_{i}\right), i=1, \ldots, n$ are subspaces of X generating X . Then:

$$
\begin{equation*}
=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{CL}\left(\mathrm{X}_{i}\right) . \tag{X}
\end{equation*}
$$

(ii) If, in addition, $\mathrm{X}=\mathrm{X}_{1} \oplus \ldots \oplus \mathrm{X}_{n}$, then: $\mathrm{C} 1(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{C} 1\left(\mathrm{X}_{i}\right)$.
(iii) If X is a fuzzy group extension of X^{\prime}, then $C L(X)=C L\left(X^{\prime}\right)$, except in the case $\left|X^{\prime}\right|=1$ (in which case X is a fan).

Proof:

(i) Suppose $\mathrm{X}\left(a_{j-1}\right) \subset \mathrm{X}\left(a_{j}\right), j=1, \ldots, k$. Then for each $i, 1 \leq i \leq n, \mathrm{X}_{i}\left(a_{j-1}\right) \subset \mathrm{X}_{i}\left(a_{j}\right)$. Moreover, since $\mathrm{X}\left(a_{j-1}\right) \neq \mathrm{X}\left(a_{j}\right)$, there exists $i, 1 \leq i \leq n$ such that $\mathrm{X}_{i}\left(a_{j-1}\right) \neq \mathrm{X}_{i}\left(a_{j}\right)$. (for if $\mathrm{X}_{i}\left(a_{j-1}\right)=\mathrm{X}_{i}\left(a_{j}\right)$ for all $i \leq n$, then $a_{j} a_{j-1} \in \bigcap_{\mathrm{i}=1}^{\mathrm{n}} \Delta_{i}=1$, i.e., $a_{j}=a_{j-1}$ a contradiction). This holds for $j=1, \ldots, k$. Simple counting yields $\mathrm{k} \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{CL}\left(\mathrm{X}_{i}\right)$, i.e., $\mathrm{CL}(\mathrm{X}) \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{CL}\left(\mathrm{X}_{i}\right)$.
(ii) We are assuming $X=U_{i} X_{i}$ and the natural homomorphism from A into $\pi_{i} \mathrm{~A} / \Delta_{i}$ is an isomorphism. Suppose $\mathrm{X}_{i}\left(a_{i, j-1}\right) \subset \mathrm{X}_{i}\left(a_{i, j}\right), j=1, \ldots, k i, i=1, \ldots, n$.
We may as well assume $a_{i, 0}=-1$, and $\mathrm{a}_{i, k_{i}}=1$. Choose elements $b_{i j} \in \mathrm{~A}$ such that: $b_{i j}$ $=1\left(\bmod \Delta_{k}\right)$ for $k<i$.
$b_{i j} \equiv a_{i j}\left(\bmod \Delta_{i}\right)$, and $b_{i j} \equiv-1\left(\bmod \Delta_{k}\right)$, for $k>i$.
Notice that $\mathrm{X}\left(b_{i j}\right)=\left(\mathrm{U}_{\mathrm{s}<i} \mathrm{X}_{\mathrm{s}}\right) \mathrm{U} \mathrm{X}_{i}\left(a_{i j}\right)$. It follows that $\mathrm{X}\left(b_{10}\right) \subset \ldots \subset \mathrm{X}\left(b_{1 k_{1}}\right)=\mathrm{X}\left(b_{20}\right)$ $\subset \ldots \subset \mathrm{X}\left(b_{n k_{\mathrm{n}}}\right)$. There are $\sum k_{i}$ inequalities in this chain, so $\mathrm{CL}(\mathrm{X}) \geq \sum k_{i}$, and hence $\mathrm{CL}(\mathrm{X}) \geq \sum \mathrm{CL}\left(\mathrm{X}_{i}\right)$.
The other inequality follows from (i).
(iii) Suppose $\left|\mathrm{X}^{\prime}\right| \neq 1$. Suppose $\mathrm{X}^{\prime}\left(a_{i-1}\right) \subset \mathrm{X}^{\prime}\left(a_{i}\right), i=1, \ldots, k$, with $a_{i} \in \mathrm{~A}^{\prime}$. Then clearly $\mathrm{X}\left(a_{i-1}\right) \subset \mathrm{X}\left(a_{i}\right), i=1, \ldots, k$. Thus $\mathrm{CL}(\mathrm{X}) \geq \mathrm{CL}\left(\mathrm{X}^{\prime}\right)$. Now suppose $\mathrm{D}<1, a_{i}>\subset \mathrm{D}<1$, $a_{i-1}>, i=1, \ldots, k$, with $a_{1}, \ldots, a_{k} \in \mathrm{~A}$. We may assume $a_{0}=-1, a_{k}=1$. Then $a_{1} \neq-1$. There are two cases to be considered
$1^{\text {st }}$ Case: Suppose $a_{1} \notin \mathrm{~A}^{\prime}$. It follows (from the definition of fuzzy group extension) that $\mathrm{D}<1, a_{1}>=\left\{1, a_{1}\right\}$. Thus $\mathrm{K} \leq 2$ in this case. Thus, since $\left|\mathrm{X}^{\prime}\right| \neq 1, \mathrm{CL}\left(\mathrm{X}^{\prime}\right) \geq 2 \geq k$.
$2^{\text {nd }}$ Case: Suppose $a_{1} \in \mathrm{~A}^{\prime}$. Then $\mathrm{D}<1, a_{1}>\subset \mathrm{A}^{\prime}$ (e.g. by (5 , lemma 4.9); notice $a_{1} \neq-1$. Thus a_{1}, \ldots, a_{k} are all in A^{\prime}, and $\mathrm{X}^{\prime}\left(a_{i-1}\right) \subset \mathrm{X}^{\prime}\left(a_{i}\right), i=1, \ldots, k$. Thus $\mathrm{CL}\left(\mathrm{X}^{\prime}\right) \geq \mathrm{K}$. Thus, in any case $\mathrm{CL}\left(\mathrm{X}^{\prime}\right) \geq K$, so $\mathrm{CL}\left(\mathrm{X}^{\prime}\right) \geq \mathrm{CL}(\mathrm{X})$.

Lemma 1

Suppose $b, a_{0}, \ldots, a_{k} \in$ A satisfy $\mathrm{D}<1, b>=\{1, b\}$, and $\mathrm{D}<1, a_{i-1}><1, b>\subseteq \mathrm{D}<1, a_{i}>$ $<1, b>, i=1, \ldots, k$. Then there exists $a_{\mathrm{i}}^{\prime} \in \mathrm{D}<a_{i}, a_{i} b>=\left\{a_{i}, a_{i} b\right\}$ such that $\mathrm{D}<1, a_{\mathrm{i}-1}^{\prime}>\subseteq$ $\mathrm{D}<1, a_{\mathrm{i}}^{\prime}>, i=1, \ldots, k$.
Proof: compare [6].
We now proceed to prove a deeper property of chain length.

Theorem 5

Suppose Y is a subspace of X . Then $\mathrm{C} 1(\mathrm{Y}) \leq \mathrm{C} 1(\mathrm{X})$.
Proof: Suppose, to the contrary, $\operatorname{cl}(\mathrm{Y})>\operatorname{cl}(\mathrm{X})$. Then, in particular, $\operatorname{cl}(\mathrm{X})<\infty$. Choose a subspace $\mathrm{Z} \subseteq \mathrm{X}$ minimal subject to $(1) \mathrm{Z} \supseteq \mathrm{Y}$ and $(2) \mathrm{C} 1(\mathrm{Z}) \leq \mathrm{C} 1(\mathrm{X})$. To show such Z exists. Suppose $\left\{Z_{i}\right\}$ is a collection of subspaces of X satisfy ing (1) and (2) and linearly ordered by inclusion. Let $z^{\prime}=\cap Z_{i}$. Then z^{\prime} is a subspace of X satisfying (1). To show z^{\prime} satisfies (2) suppose $a_{0}, \ldots, a_{k} \in \mathrm{~A}$ satisfy $z^{\prime}\left(a_{j}\right) \subset z^{\prime}\left(a_{j-1}\right), j=1, \ldots, k$. Thus the set $\mathrm{M}=\left\{\sigma \in \mathrm{X} \mid \sigma<1, a_{j} \geq \sigma\right.$ $\left.<a_{j-1}, a_{j-1} a_{j}>, j=1, \ldots, k\right\}$ is open in X and contains Z^{\prime}. By compactness, $\mathrm{Z}_{i} \subseteq \mathrm{M}$ for some i, so $Z_{i}\left(a_{j}\right) \subset Z_{i}\left(a_{j-1}\right), j=1, \ldots, k$. These inclusions must be strict, since $\mathrm{Z}^{\prime} \subseteq \mathrm{Z}_{i}$. Thus $k \leq$ $\mathrm{CL}\left(Z_{i}\right) \leq \mathrm{CL}(\mathrm{X})$, so $\mathrm{CL}\left(\mathrm{Z}^{\prime}\right) \leq \mathrm{CL}(\mathrm{X})$. So Z exists as asserted. To simplify notation, we may assume $\mathrm{X}=\mathrm{Z}$. Let $\mathrm{Y}=(\mathrm{Y}, \mathrm{A} / \Delta)$, since $\mathrm{Y} \neq \mathrm{X}(\mathrm{CL}(\mathrm{Y})>\mathrm{CL}(\mathrm{X}))$. It follows that $\Delta \neq 1$, so there exists $a \in \Delta, a \neq 1$. Thus $\mathrm{Y} \subseteq \mathrm{X}(a) \subset \mathrm{X}$. Since $\mathrm{CL}(\mathrm{X})<\infty$, there exists $b \in \mathrm{~A}, b \neq 1$, such that
$\mathrm{X}(a) \subseteq \mathrm{X}(b) \subseteq \mathrm{X}, \mathrm{X}(b)$ maximal. Thus $\mathrm{D}<1, b>$ is minimal, i.e., $\mathrm{D}<1, b>=\{1, b\}$. By the minimal choice of $\mathrm{X}(=Z)$, it follows that $\mathrm{CL}(\mathrm{X}(b))>\mathrm{CL}(\mathrm{X})$. On the other hand it follows from lemma (1) that $\mathrm{CL}(\mathrm{X}(b)) \leq \mathrm{CL}(\mathrm{X})$. This is a contradiction.

References

1. Malik ,D.S. and Mordeson, J.N. (1991),Fuzzy subgroups of Abelian group, Chinese J.Math., 19(2).
2. Mordeson ,J.N. and Sen,M.K. (1995), Basic Fuzzy subgroups, Inform Sci., 82, 167-179.
3. Marshall ,M. (1980), The Wittring of a space of ordeeerings,Trans. Amer. Math. Soc.258.
4. Marshall, M. (1989), Ouotients and inverse limits of spaces of orderings, Can. J.Math. 31,604-616.
5. Marshall,M. (1989), Classification of finite space of orderings,Can. J.Math. 31, 320-330.
6. Marshall,M. (1990), Spaces of orde ngs IV,Can. J.M ath., XXXII(3): 603-627.

الفضاء الضبابي الترتيب

لمى ناجي محمد توفيق
قسم الرياضيات ، كلية التربية - ابن الهيثم ، جامعة بغاد

الخلاصة

يعرض البحث تعريف طول سلسلة في فضاء ضبابي الترتيب ومن ثم عرض خواص وبرهنتها، ولقد تم برهـان المبرهنة الأساسية لطول السلسلة المنتهية وعرض بعض الننائج المتطلقة بالموضوع.

