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One could easily believe that the technology surrounding us is already easily capable of determining the current location
of a vehicle. Whilst many devices, technologies, mathematical models and methods are available in the automotive world,
the complexity of the localization problem still cannot be underestimated. The expectation is to determine in real time with
a high degree of accuracy the location of a vehicle in order to make correct autonomous decisions and avoid dangerous
and potentially damaging situations. Various research directions have been undertaken since the birth of autonomous
driving from the well-known satellite navigation-based systems that rely on offline maps to the more sophisticated ap-
proaches that use odometry and existing sensor data using sensor fusion. The aim of the current work is to review what
has been achieved so far in this field and the challenges ahead, e.g. the need for a change in paradigm as today’s global
positioning systems are not intended for machines but humans and are based on the abstraction of human thinking and
human decision-making processes.
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1. Introduction

Vehicle localization is one of the four functions of au-
tonomous vehicle navigation, namely mapping, localiza-
tion, motion and interaction, which are the answers to the
four basic questions concerning navigation: Where am I?
Where can I move to? How can I do it? How do I inter-
act? If a vehicle is to navigate as expected, these functions
need to operate correctly [1]. Historically, the purpose of
in-car localization was driver assistance in the form of
helping the driver to navigate. Such systems that are cur-
rently in use provide information, with some degree of ac-
curacy, to the driver and then the driver makes decisions
based on the information, which can either be accepted
and acted upon or rejected in the form of proceeding in
another direction. In the case of autonomous driving, it
is quite clear that simply rejecting position information
since the main control algorithm is not an option as this is
the only item of data to be used, therefore, it must be used
and a decision made based on it. This raises the question
of certainty.

The requirement to operate safely anywhere and at
anytime makes the performance measures far stricter than
ever before. The performance measures are [2]:

Accuracy the degree of conformity of position informa-
tion provided by the localization system relative to
actual values.

*Correspondence: medve.hunor@mk.uni-pannon.hu

Integrity a measure of trust that can be implemented in
the information from the localization, which is the
likelihood of undetected failures given the specified
accuracy of the system.

Continuity of service the probability of the system con-
tinuously providing information without nonsched-
uled interruptions during the intended working pe-
riod.

Availability the percentage of time during which the ser-
vice is available for use taking into account all the
outages irrespective of their origins. The service is
available if the requirements concerning accuracy,
integrity and continuity are satisfied.

Over the last 10-15 years, the number of sensors and re-
lated advanced driver-assistance systems in passenger ve-
hicles has increased. The primary task of each of these
sensors and services is to observe a segment of the sur-
roundings and its status, then assist the driver in that re-
gard. Since the data from a single sensor does not contain
all the information about the vehicle’s surroundings, fur-
ther information concerning its absolute location cannot
be extracted based on a single sensor. In fact, the sensors
provide complementary information and through infor-
mation fusion the vehicle’s absolute location and status
can be obtained. This is shown in Fig. 1.

The main groups of information sources are the fol-
lowing:
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Figure 1: The concept of information fusion

• Global Navigation Satellite Systems (GNSS)
• Traditional vehicle sensors:

– Odometer
– Wheel speed sensor
– Steering angle sensor

• Inertial Measurement Unit (IMU):
– Accelerometer
– Gyroscope

• Optical, sound- and radio-based sensors:
– Radar
– Ultrasonic sensors
– Vision sensors
– LiDAR (Light Detection and Ranging)

• Vehicle models with various levels of complexity
• Databases; offline or cloud-based:

– Maps
– Traffic situation

• Dedicated short-range communication:
– Vehicle-to-vehicle (V2V)
– Vehicle-to-infrastructure (V2I).

It is important to note that none of these information
sources are ideal and error-free. The errors will propagate
through the sensor fusion algorithm, moreover, affect the
end result and the previously described figures of merit.

The following sections address each device family
then the fusion methods are analysed.

2. Information Sources

2.1 Global Navigation Satellite Systems

The global navigation satellite system (GNSS) is a radio
positioning-based technology using satellite infrastruc-
ture that aims to achieve global coverage. Historically,
satellite-based sytems have been considered as the core
element of localization. Currently, a number of systems
are in operation, the major ones are GPS (USA), BeiDou
(China), GLONASS (Russia) and Galileo (EU).

Every satellite broadcasts a specific signal and its po-
sition. The spectral range of the signals is 1.2− 1.6 GHz,
utilising frequency bands of between 2 and 40 MHz. Any
user equipped with a GNSS receiver receives the signal
and measures the signal propagation delay, then estimates

the range of distance from it. By using signals from at
least four satellites, the receivers can reduce the estimate
to intercept the ranges from each satellite, which basi-
cally provides a potential location within the range in
terms of geospatial coordinates. It is important to note
that the position information is useful only if used to-
gether with maps which put the information in context.

Even though the accuracy of receivers is increased
by various augmentation systems, issues resulting from
poor satellite constellations, signal blockage and multi-
path propagation in urban environments cannot be ex-
cluded. For this reason, safety-critical applications cannot
solely rely on GNSS technology.

Although satellite-based systems are far from perfect,
they are and will continue to be the single most important
information source of any localization algorithm.

2.2 Vehicle Model

Models representing the dynamic model of a vehicle’s
range from the simple spring-mass model to a complex
multibody multi-level model. A well-known and used
model is the single track model [3] with a number simpli-
fications, however, it provides a reasonable solution for
modeling lateral dynamics, therefore, it forms the core
of the electronic stability program (ESP) of many vehi-
cle manufacturers. The inputs of the single track model
are lateral acceleration, longitudinal speed and yaw rate,
which are provided by the relevant sensors as discussed
in Section 2.3.

Another element in a complex model is the tire model
which is assumed to be the only part in contact with the
road. These models, e.g. Pacejka’s Magic Formula [4],
are often semi-empirical.

It is important to note that a more detailed model
requires more parameters which, in the case of inaccu-
rate identification, may impact the overall accuracy of the
model’s output.

2.3 Traditional Vehicle Sensors and Inertial
Measurement Unit (IMU)

A wide range of traditional vehicle sensors have already
been installed in most vehicles, moreover, analogue mea-
surements are already being processed digitally. Most of
them provide basic information to human drivers directly,
e.g. the odometer, whilst others are parts of safety fea-
tures. For autonomous driving, exactly the same informa-
tion is also required.

Wheel speed sensors mounted in the wheel drum pro-
vide vital inputs to the anti-lock braking system by sens-
ing the movement of the circumference of each tire in a
passive or active setting.

Steering angle sensors are mounted on the steering
shaft and measure the steering wheel angle, their outputs
are interpreted as the intended direction of the vehicle,
which is a key input to the electronic stability program
(ESP).
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Accelerometers measure the acceleration of the vehi-
cle on the specified axis, multi-axis accelerometers are
also in use. They are primarily used for inertial naviga-
tion in combination with yaw-rate sensors.

Yaw-rate sensors, often referred to as gyroscopes,
measure the rotation of the vehicle along the vertical axis.
Such a sensor provides an input to the single track vehicle
model in conjunction with the ESP.

Accelerometers and yaw-rate sensors integrated in
one cluster comprise the inertial measurement unit
(IMU).

2.4 Optical as well as Sound- and Radio-
Based Sensors

In automotive radar systems, a distinction is made be-
tween short range radar (SRR) and long range radar
(LRR). The detection range of short range radar is from
0.2 to 50 meters with a detection angle of ±35◦, whilst
that of the long range radar is from 2 to 150 meters with
a detection angle of ±6◦. SRR is predominantly used in
anti-collision and parking aid systems.

Radars are able to detect multiple objects as well as
measure distance, relative speed and the angle to an ob-
ject simultaneously. LRR is typically applied in adaptive
cruise control and collision avoidance. Radar technol-
ogy is affected by the weather and functionality cannot
be guaranteed in extreme conditions. Overall information
from radars can complement other location-related infor-
mation sources.

Vision sensors are primarily used in vehicles to detect
and possibly recognise its surroundings, e.g. other vehi-
cles, obstacles, pedestrians and landmarks, which are po-
tentially useful pieces of information for a localization
algorithm.

Charge-coupled (CCD) and complementary metal ox-
ide semiconductor (CMOS) devices are the main sensor
technologies applied in digital cameras to generate an im-
age of the surroundings, in fact both are semiconductor
devices.

In CMOS devices, every pixel has its own charge-to-
voltage conversion and digitalization, so their outputs are
digital signals. Pixels that perform their own charge-to-
voltage conversion decrease their uniformity and image
quality as well as remove a useful area from light capture.

In CCD sensors, a pixel’s charge signal is sent through
a limited number of outputs to be converted into voltage
and then transmitted out of the chip as an analogue signal
to be processed and digitalized. This requires more time
and energy when compared to CMOS sensors, however,
results in a higher quality but less noisy image. As the
CMOS manufacturing process is cheaper, recent devel-
opments have focused on overcoming the drawbacks of
CMOS sensors.

Ultrasonic sensors transmit higher frequency sound
waves and evaluate the echo received by the sensors. The
sensors also measure the elapsed time between sending
and receiving back the signal, then calculate the distance

from the object. The types currently used in the automo-
tive industry are able to measure within the range of 0.2
to 1.5 meters, with a horizontal angle of ±60◦ and a ver-
tical angle of ±30◦, and are primarily used in parking
aids. Nevertheless, the use of such sensors might provide
useful inputs for a localization algorithm under given cir-
cumstances.

LiDAR (Light Detection and Ranging) measures the
distance of an object by emitting laser light and detecting
the returning light. The differences in return times and
wavelengths then provide the basis for a 3D representa-
tion of the surroundings.

2.5 Databases and Maps

Maps stored in digital format differ from the classical
map representations intended to be read by humans. Dig-
ital road maps are comprised of nodes and arcs connect-
ing the nodes. Arcs are represented in a discrete form and
every node and shape point on the arc has geospatial co-
ordinates linked to them. They are often represented as
planar models in applications currently on the market.

2.6 Dedicated short-range communications

For any vehicle to communicate with either the infras-
tructure (vehicle-to-infrastructure: V2I) or with another
vehicle (vehicle-to-vehicle: V2V), it is assumed that a
suitable wireless protocol is in place, which allows bidi-
rectional information flow in real time when a vehicle is
travelling at high speed and is able to simultaneously han-
dle multiple vehicles. Based on these assumptions, only
applications related to localization are considered here.

The main purpose of V2I communication is to sup-
port applications that target safety and mobility. Safety
applications mainly consist of alerts and warnings, while
mobility applications collect data from vehicles in order
to capture the actual state of the traffic and provide such
information to vehicles.

V2V applications determine the state of other nearby
vehicles through the transmission of one or several mes-
sages. Overall, the location-related content of these mes-
sages alone might be insufficient for a vehicle to deter-
mine its own location, but can still provide useful com-
plementary information to fusion algorithms.

3. Fusion Algorithms

The purpose of information fusion is to obtain more in-
formation from the sources than what is accessible from
each individual source. This is achieved by combining
sources which are complementary, moreover, the use of
partially redundant sources reduces the ambiguity of the
measured data which, overall, improves the performance
of the system.

Fusion algorithms can be realized in either central-
ized or decentralized structures, as is shown in Fig. 2.
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Figure 2: Filtering structures: a) centralized, b) decentral-
ized

As the name suggests, in centralized structures, one fil-
ter performs the filtering of all signals which yields the
benefit of minimal information loss as everything is di-
rectly available to the filter, while the amount of data to
be processed in real time might imply an impractical de-
gree of computational complexity. This is addressed by
decentralized filters as every signal is filtered separately
before being processed by a master filter. The computa-
tional load in general would be significantly less for one
filtering unit, however, at the expense of partial informa-
tion loss and reduced estimation accuracy.

In this chapter, selected filtering methods are pre-
sented: a conventional and widely used localization
method, as well as a linear and a non-linear filtering
method. Advanced filtering methods require prior knowl-
edge of the system model and dynamics, the type of noise
and their probability density functions as these are core
elements to design a high-performance filter. The filtering
algorithms presented in the following sections are used
by the scientific community in various forms but often
altered when compared to their originally published for-
mat (Kalman filter in [5], particle filter in [6]), in order to
better suit the actual problem. In this paper, the thought
process of [7] is followed.

3.1 Simple Algorithms: Dead Reckoning, In-
ertial Navigation and Map Matching

The conventional localization algorithm consists of two
steps; the first is the GNSS which defines the coordinates,
the second is to match the given coordinates to a map.
This is shown in Fig. 3.

The process of calculating the position based on its
previously known position, elapsed time and speed is
referred to as dead reckoning [8]. Inertial navigation is
a very similar concept where the position is calculated
based on data from accelerometers and gyroscopes, also
referred to as dead reckoning based on inertial sensors.
In the following sections, no specific distinction is made
between dead reckoning and inertial navigation.

Figure 3: Conventional localization algorithm

Traditional vehicle sensors and the inertial measure-
ment unit (IMU) provide information about either the first
or second order derivatives of the position of the vehicle
together with the odometer which measures the distance
travelled. All the data provided is relative to the starting
position, therefore, none of the sensors provide informa-
tion about its absolute position. In addition, all data will
be incorporated into the coordinate system of the vehicle
since all the sensors are mounted on the vehicle, there-
fore, coordinate transformations to the main coordinate
system, which are used for the localization, are required.
The measured values are integrated by taking into consid-
eration an initial position and, over time, the errors will
be accumulated as part of the integration. It is important
to note that the extent to which the error can increase is
infinite. Despite such a disadvantage, the popularity of
the method lies in the fact that it does not rely on external
sources of information and the update rate is determined
by the system itself, which overall defines the comple-
mentary nature of inertial navigation to GNSS.

Map matching is the process of identifying on the map
the coordinates given by the GNSS on the map. On dig-
ital road maps, the road network is represented in a dis-
crete form as nodes and arcs which connect nodes, each
of which has geospatial coordinate information linked to
it. The purpose of the map matching algorithm is to match
the GNSS coordinates to the road map. It is highly likely
that the map will not contain the exact coordinates de-
fined by the GNSS and inertial navigation, therefore, it
has to be matched to one of the few possible ones. Map
matching algorithms assign probabilities to each possible
location based on a set of information including previ-
ous locations, speed and heading of the vehicle, subse-
quently the evaluation is concluded based on these prob-
abilities. Such algorithms can provide useful inputs to
assist a human driver, however, it is easy to realize that
rarely rarely can they provide sufficiently reliable inputs
for autonomous driving. This creates the need for more
reliable algorithms, which are normally more complex
and require more computational power.

3.2 Linear Filtering: The Kalman Filter

The Kalman filter is a useful engineering tool in many in-
dustries and control applications ranging from robotics,
automotive, plant control, aircraft tracking and naviga-
tion. In general, they are relatively easy to design and
code with an optimal degree of estimation accuracy for
linear systems with Gaussian noise.

Let us describe a linear system with the following dis-

Hungarian Journal of Industry and Chemistry



CHALLENGES OF LOCALIZATION ALGORITHMS FOR AUTONOMOUS DRIVING 47

crete state-space model equations:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1

yk = Ckxk + vk (1)

where k in subscript refers to states and measurements at
each discrete time instant and k − 1 in subscript to those
at the previous time instant, xk denotes the vector of the
state variable, uk stands for the input or control vector,
yk represents the output vector, Ak refers to the system
matrix, Bk and Ck denote the input and output matrices,
wk and vk stand for the process and measurement noise,
respectively, which are white with Gaussian distribution
and zero mean, and Rk and Qk are known covariance
matrices.

wk ∼ (0, Rk)

vk ∼ (0, Qk)

E
[
wkw

T
j

]
= Qkδk−j

E
[
vkv

T
j

]
= Rkδk−j

E
[
wvTj

]
= 0 (2)

where δk−j is the Kronecker delta function (δk−j = 1, if
k = j and δk−j = 0, if k 6= j). The aim is to estimate the
system state xk by knowing the system dynamics and the
noisy measurements yk. The available information for the
state estimation always depends on the actual problem at
hand. If all measurements are up to date and accessible,
including kth, then a posteriori estimation can be com-
puted, which is denoted by x̂+k . The meaning of the “+”
sign in superscript means the estimation is an a posteriori
estimation.

The best way to estimate the a posteriori estimation is
by computing the expected value of xk conditioned to all
measurements up to now, including k as well.

x̂+k = E [xk|y1, y2, . . . , yk] (3)

If all measurements, apart from k, are accessible, then the
a priori estimate can be computed, denoted by x̂−k , where
the “−” sign in superscript denotes the a priori estimate.
The best way to estimate the a priori state estimate is if
the expected value of xk conditioned to all measurements
up to now, excluding k, is computed:

x̂−k = E [xk|y1, y2, . . . , yk−1] (4)

It is important to note that x̂−k and x̂+k are estimates of the
same quantity, before and after the actual measurement
is obtained, respectively. Naturally, it is expected that x̂+k
is a more accurate estimate as more information is avail-
able.

At the beginning of the estimation process, the first
measurement is obtained at k = 1, therefore, the estimate
of x̂+0 (k = 0) is given by computing the expected value
of x0:

x̂+0 = E [x0] (5)

Estimation of the error covariance is denoted by Pk,
therefore, P−

k represents the estimation of the error co-
variance of the a priori estimate x̂−k and P+

k stands for
the estimation of the error covariance of the a posteriori
estimation x̂+k :

P−
k = E

[(
xk − x̂−k

) (
xk − x̂−k

)T ]
P+
k = E

[(
xk − x̂+k

) (
xk − x̂+k

)T ]
(6)

The estimation process starts by computing x̂+0 , which
is the best available estimate at this time instant for the
value of x̂+0 . If x̂+0 is known, x̂−1 can be computed as fol-
lows:

x̂−1 = A0x̂
+
0 +B0u0 (7)

then the general form to compute x̂−k can be established:

x̂−k = Ak−1x̂
+
k−1 +Bk−1uk−1 (8)

This is referred to as time update from time instants
(k − 1)

+ to k−. No new measurement information is
available between the two, therefore, the state estima-
tion propagates from one time instant to the other, and
all state estimations are based on knowledge of the sys-
tem dynamics. The time update is often referred to as the
prediction step.

The next stage is to compute P , the estimation of the
error covariance. The process starts by computing P+

0

which is the error covariance of x̂+0 . If the initial state is
perfectly known, then P+

0 = 0; if no information is avail-
able, then P+

0 = ∞I . In general, the meaning of P+
0 is

the uncertainty regarding the initial estimation of x0:

P+
0 = E

[(
x0 − x̂+0

) (
x0 − x̂+0

)T ]
(9)

If P+
0 is known, then P−

1 can be computed as follows:

P−
1 = A0P

+
0 A

T
0 +Q0 (10)

Based on the above, the generic form of the time update
of P−

k can be stated:

P−
k = Ak−1P

+
k−1A

T
k−1 +Qk−1 (11)

So far, the time update step has been presented, which
is based on the system dynamics. The next step is the
measurement update, where new information is obtained
from the measurements. Using the logic from the method
of recursive least squares, the availability of the measure-
ment yk changes the value of the constant x in the fol-
lowing way:

Kk = Pk−1C
T
k

(
CkPk−1C

T
k +Rk

)−1
= PkC

T
k R

−1
k−1

x̂k = x̂k−1 +Kk(yk − Ckx̂k−1)

Pk = (I−KkCk)Pk−1(I−KkCk)
T
+KkRkK

T
k =

=
(
P−1
k−1+C

T
k R

−1
k Ck

)−1
=

= (I−KkCk)Pk−1 (12)
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where x̂k−1 denotes the estimation and Pk−1 stands for
the the estimation of the error covariance before process-
ing measurement yk, therefore, x̂k and Pk refer to the
same informaton but after yk has been processed.

If the logic of x̂k−1 → x̂−k and x̂k → x̂+k (a priori and
a posteriori, respectively) is applied and the aforemen-
tioned equation reformulated, the a posteriori estimation
is produced:

Kk = P−
k C

T
k

(
CkP

−
k C

T
k +Rk

)−1
= P+

k C
T
k R

−1
k

x̂+k = x̂−k +Kk(yk−Ckx̂
−
k )

P+
k = (I−KkCk)P

−
k (I−KkCk)

T
+KkRkK

T
k =

=
[(
P−
k

)−1
+CT

k R
−1
k Ck

]−1

=

= (I−KkCk)P
−
k (13)

These are the equations for the Kalman filter measure-
ment update or a posteriori estimation. The matrix Kk is
often referred to as the Kalman gain.

By summarising the Kalman filtering algorithm, after
initiation, the a priori estimate for every time instant k is
given by:

x̂−k = Ak−1x̂
+
k−1 +Bk−1uk−1

P−
k = Ak−1P

+
k−1A

T
k−1 +Qk−1 (14)

and the a posteriori estimation is given by:

Kk = PkC
T
k R

−1
k−1

x̂+k = x̂−k +Kk(yk − Ckx̂
−
k )

P+
k = (I −KkCk)P

−
k (15)

The aforementioned Kalman filtering algorithm is the op-
timal state estimator for linear systems with Gaussian
unimodal noise processes, however, most real-world sys-
tems are nonlinear and, in many cases, with multimodal
non-Gaussian noise, include a probability density func-
tion. A number of variations of Kalman filters devel-
oped by the scientific community are trying to address
the problem of nonlinearity. Most of them rely on the ba-
sic concept of Kalman filters using nonlinear adaptations,
e.g. the extended Kalman filter which, at its core, is still
a linear filter.

In general, versions of the nonlinear Kalman filter are
considered to estimate accuracy well but are often poor
compared with the theoretically optimal accuracy, with
a real-time computational complexity in the order of d3

where d denotes a dimension of the state vector [9].

3.3 Nonlinear Filtering: The Particle Filter

Given the concerns about the estimation accuracy of ver-
sions of Kalman filters, true nonlinear filters or estimators
are needed. The particle filter is a statistics-based esti-
mator where at every discrete time instant, a number of
state vectors, referred to as particles, are assessed with

regard to how likely they are to be the closest to the ac-
tual state. The mathematical formulation of the aforemen-
tioned idea is summarized in this section.

Let us describe a nonlinear system using the following
equations:

xk+1 = fk (xk, wk)

yk = hk (xk, vk) (16)

where k denotes discrete time instants, xk and yk rep-
resent the state and measurement, respectively, and wk

and vk stand for the noises of the system and measure-
ment, respectively. The functions fk (·) and hk (·) are a
time variant nonlinear system and a measurement func-
tion, respectively. The noises of the system and measure-
ment are assumed to be white and independent from each
other with known probability density functions.

The aim of the generic Bayes estimator is to ap-
proximate the conditional probability density function xk
based on measurements y1, y2, . . . , yk. This conditional
probability density function is denoted as follows:

p (xk|Yk) = xk (17)

conditioned on measurements y1, y2, . . . , yk. The particle
filter is the numeric implementation of the Bayes estima-
tor, in the following section this will be described.

At the beginning of the estimation, it is assumed
that the probability density function of p(x0) is known,
then N number of state vectors based on the probabil-
ity density function of p(x0) are randomly generated.
These state vectors are the particles and are denoted
by x+0,i (i = 1, . . . , N). The value of N can be chosen
arbitrarily, depending on the expected estimation accu-
racy and available computational capacity. At every k =
1, 2, 3 . . . discrete time instant, every particle is propa-
gated to the next time instant using process equations
fk (·):

x−k,i = fk−1

(
x+k−1,i, w

i
k−1

)
(18)

where (i = 1, . . . , N) and every noise vector wi
k−1 is

randomly generated based on the known probability den-
sity function of wk−1. This is the a priori estimate of the
particle filter.

Subsequently, at every time instant k, once the mea-
surement result can be accessed, the relative conditional
probability of each x−k,i can be computed and qi =

pk

(
yk

∣∣∣ x−k,i) evaluated if the nonlinear measurement
equation and the probability density function of the mea-
surement noise are known.

After the relative conditional probability of each par-
ticle has been evaluated, the relative probability of the
actual state being equal to each of the particles is correct.

The relative probabilities qi are then scaled to the in-
terval [0, 1] as follows:

qi =
qi∑N
j=1 qj

(19)
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This ensures that the total probability is equal to one. The
next stage is the resampling based on the computed and
scaled probabilities. This means that a set of new x+k,i
particles is generated based on the relative probabilities
qi. This is the a posteriori estimation of the particle filter.
The resampling is an important step with regard to the im-
plementation due to the required computational capacity
which needs to be considered carefully.

The distribution of the computed a posteriori x+k,i par-
ticles is in accordance with the probability density func-
tion pk (xk|yk). Based on this, any kind of statistical eval-
uation can be carried out, for example, of the expected
value, which can be considered as the statistical estima-
tion of the actual state vector:

E (xk|yk) ≈
1

N

N∑
i=1

x+k,i (20)

A number of ways, the resampling algorithm in particu-
lar, are available to design and implement the steps of the
filter. The number of particles required to achieve a given
estimation accuracy increases in direct correlation with
the dimension d of the state vector, this is linear for d of a
particle filter using a complex resampling algorithm, but
exponential for a plain resampling algorithm [10], while
the real-time computational complexity is directly pro-
portional to the number of particles.

4. Conclusion

Despite the fact that satellite-based systems are far from
perfect, they are and most likely will continue to be the
single most important information source of any local-
ization algorithm combined with digital maps. The role
of other information sources, on the one hand, is comple-
mentary in areas where GNSS has its weaknesses, but on
the other hand they contribute to an increase in accuracy
at the expense of computational complexity.

In a practical real-time application, the extra compu-
tational capacity and related costs are not necessarily pro-
portional to each other. This seems to be the main draw-
back of using nonlinear filtering methods, while on the
other hand autonomous vehicles are expected, in the long
term, to fall into the category of high-volume low-cost
products.

Hybrid approaches can be considered due to the fact
that the equations for localization systems are only par-
tially nonlinear or some of the subsystems can provide
sufficiently accurate results using a linear approach. The
filtering problem can then be divided into a linear and a
nonlinear part, where the former, assuming Gaussian dis-
tributed noise, may be solved by using a simple Kalman
filter and reducing the computational complexity and,

therefore, the cost of the system. The proportion of linear
filtering to nonlinear filtering within the full system is de-
termined by the complexity of the system model chosen
as the type of filtering is defined by the model, therefore,
modeling and filtering cannot be separate elements in the
design process.
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