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 A graph-theoretical method [1,2] for the structural analysis of dynamic lumped process models described by 
differential and algebraic equations (DAEs) is applied in this paper in order to determine the most important 
solvability properties of these models by using the so-called dynamic representation graph. The construction of the 
dynamic representation graphs that was originally proposed [2] for the most simple, single-step, explicit numerical 
methods, has been extended in this paper to higher order explicit and implicit solution methods, that are used more 
frequently and efficiently for numerical solution of DAE-systems. It is shown here that the representation graph for 
both higher order explicit and implicit solution methods has similar properties to the case of explicit numerical 
solution procedures both for index one and higher index models. Thus it is proven that the important properties of 
the representation graph including the differential index of the models are independent of the assumption whether a 
single-step, explicit or implicit numerical method is used for the solution of the differential equations. 
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Introduction 

The structural analysis of dynamic lumped process 
models forms an important step in the model 
building procedure [3] and it is used for the 
determination of the solvability properties of the 
model, too. This analysis includes the 
determination of the degree of freedom, structural 
solvability, differential index and the dynamic 
degrees of freedom. As a result of the analysis, the 
decomposition of the model is obtained and the 
calculation path can be determined. This way the 
appropriate numerical method for solving the 
model can be chosen efficiently. Moreover, advice 
on how to improve the computational properties of 
the model by modifying its form or its 
specification can also be given. 

Effective graph-theoretical methods have been 
proposed in the literature [2,4] based on the 
analysis tools developed by Murota, et al [1], for 
the determination of the most important solvability 

property of lumped dynamic models: the 
differential index. The properties of the dynamic 
representation graph of process models described 
by semi-explicit DAE-systems have also been 
analysed there in case of index 1 and higher index 
models. Besides of the algorithm of determining 
the differential index by using the representation 
graph, a model modification method has also been 
proposed in the literature, which results in a 
structurally solvable model even in the case of 
higher index models [5,2]. 
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Basic Notions 

Structural solvability 

As a first step, we consider a system of linear or 
non-linear algebraic equations in its so called 
standard form [1] : 
 yi = fi (x, u),    i = 1, …, M  
 uk = gk (x, u),    k = 1, …, K  
where xj (j = 1,…, N) and uk (k = 1,…,K) are 
unknowns, yi (i = 1,…,M) are known parameters, fi 
(i = 1,…,M) and gk (k = 1,…,K) are assumed to be 
sufficiently smooth real-valued functions. The 
system of equations above is structurally solvable, 
if the Jacobian matrix J(x, u) referring to the above 
model is non-singular. 

Consider a system of equations in standard 
form. We construct a directed graph to represent 
the structure of the set of equations in the 
following way. The vertex-set corresponding to 
unknowns and parameters is partitioned as 
X∪U∪Y, where X = {x1, …, xN}, U = {u1, …, uK} 
and Y = {y1, …, yM}. The functional dependence 
described by an equation is expressed by arcs 
coming into yi or uk respectively from those xj and 
ul, which appear on its right-hand side. This graph 
is called the representation graph of the system of 
equations. 

A Menger-type linking from X to Y is a set of 
pair-wise vertex-disjoint directed paths from a 
vertex in X to a vertex in Y. The size of a linking is 
the number of directed paths from X to Y contained 
in the linking. In case ⏐X⏐ = ⏐Y⏐, (M = N), a 
linking of size ⏐X⏐ is called a complete linking. 
The graphical condition of the structural 
solvability is then the following [1] : 

Linkage theorem: Assume that the non-
vanishing elements of partial derivatives fi and gk 
in the standard form model are algebraically 
independent over the rational number field Q. Then 
the model is structurally solvable if and only if 
there exists a Menger-type complete linking from 
X to Y on the representation graph. 

We can adapt the graphical techniques to DAE-
systems, as well. An ordinary differential equation 
of a DAE-system can be described by the 
following equation: 

x’ = f(x1,…, xn) 
Here x denotes an arbitrary variable depending on 
time, x’ denotes the derivative of x with respect to 
time and x1, …, xn are those variables which have 
effect on variable x’ according to the differential 
equation. 

In DAE-systems there are two types of 
variables. Differential variables are the variables 

with their time derivative present in the model. 
Variables, which do not have their time derivative 
present, are called algebraic variables. The 
derivative x’ is called derivative (velocity) 
variable. 

Dynamic representation graph 

The value of differential variables is usually 
computed by using a numerical integration method. 
So a system of equations including also differential 
equations, can be represented by a dynamic graph. 
A dynamic graph is a sequence of static graphs 
corresponding to each time step of integration. On 
a dynamic graph there are directed arcs attached 
from the previous static graph to the succeeding 
static graph that are determined by the method 
applied for solving the ordinary differential 
equations. In case of a single step explicit method, 
the value of a differential variable at time t+h is 
computed using the corresponding differential 
value and its value at a previous time t. For 
example, when the explicit Euler method is used: 
x(t+h) = x(t) + h⋅x’(t) 
where h denotes the step length during the 
numerical integration. 

The structure of a dynamic graph assuming 
explicit Euler method for solving differential 
equations can be seen in Fig. 1.  

The structural analysis based on graph 
theoretical technique is carried out in steps 
performed sequentially. The first step is to rewrite 
the model into its standard form. The second step 
is the assignment of types to vertices in the 
representation graph. The important types of 
vertices determined by the model specification are 
the following [6,2] : 
• <S>(set)-type variables: These represent 

variables, which are assigned to the specified 
given values. In the case of a dynamic 
representation graph assuming explicit method 
for solving the differential equations, the 
differential variables will be labelled by type 
<S*> because their initial value can be obtained 
from the initial values, and then their values 
can be calculated step by step by numerical 
integration. Labels <S> and <S*> are treated 
the same way during the analysis. 

• <G>(given)-type variables: A variable assigned 
to a specific value of a left hand side is a <G>-
type variable. Unlike the <S>-type variables, 
the values of the right hand side variables will 
be suitably adjusted so as to preserve the 
equality of the two sides. 
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Fig.1 Dynamic representation graph assuming first order explicit solution method 

 
According to the representation graph, the 

value of every variable which has incoming arcs 
only from vertices labelled by type <S> can be 
calculated by simple substitution into the 
corresponding equation. These variables become 
secondarily labelled by type <S>, and this process 
can be repeated if necessary. Omitting all vertices 
labelled primarily, secondarily, etc. by type <S> 
and all arcs starting from them from the 
representation graph we obtain the reduced graph. 
The classification of vertices of a reduced graph is 
as follows: 
• all initial vertices form the unknown variable 

set X, 
• all terminal vertices labelled by type <G> 

constitute the known variable (parameter) set Y, 
• all other vertices constitute the unknown 

variable set U. 
The algebraic subgraph belonging to any static 

graph in the dynamic representation graph can be 
obtained by considering the algebraic part of the 
model and taking its induced subgraph. The vertex 
set of the algebraic subgraph contains the variables 
that appear in the algebraic equations and the arc 
set that corresponds to the algebraic equations. 

Differential index 

Dynamic process models can be described by semi-
explicit DAEs as follows: 
 z1

‘’= f(z1, z2, t),   z1(t0) = z10
  0 = g(z1, z2, t) 

The most important structural computational 
property of DAE models is the differential index. 
By definition [7], the differential index of the 
above semi-explicit DAE is one if one 
differentiation is sufficient to express z2

‘’ as a 
continuous function of z1, z2 and t. One 
differentiation is sufficient if and only if the 
Jacobian matrix gz2 is non-singular. 

In our earlier work we have proved that the 
differential index of the models investigated in 
[5,2]  is equal to 1 if and only if there exists a 
Menger-type complete linking on the reduced 
graph at any time step t. 

An equivalent condition [5] of the above is that 
the differential index of a semi-explicit DAE 
model M is equal to one if and only if there exists a 
Menger-type complete linking on the reduced 
graph of the algebraic subgraph belonging to 
model M. 

We have also proposed an algorithm using the 
structure of the representation graph for 
determination of the differential index of the 
underlying model. 

The following two examples described in 
details in [5,2] are used throughout the paper to 
illustrate the notions and algorithms. 

Example 1: Consider a liquid tank system with 
one inlet stream F and one exit stream L. Let the 
vessel be perfectly stirred. Heat is transferred to 
the liquid using a heater. The standard form of the 
model of the liquid tank system (M1) is the 
following: 
 M  = ∫ M’ 
 U  = ∫ U’ 
 M’ = –L + F 
 U’ = –L⋅hL + F⋅hF + Q 
 hL = U ⁄ M  
 hL* = f1(TL, p) 
 hF = f2(TF, pF) 
 s = hL – h L*,     s = 0 
 L  = f3(M) 

Here M denotes the mass, U the internal 
energy, Q the heat transfer rate, hL and hL the 
specific internal enthalpy of inlet and outlet flow, 
respectively, TF the temperature of inlet flow, pF 
the pressure of inlet flow, TL the temperature in the 
vessel, p the atmospheric pressure and f1 and f2 are 
given functions. 
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Let us consider the following two model 
specifications. 
Specification 1.: 

The variables F, TF, pF and Q are given as 
functions of time, the initial values M0, U0 and the 

pressure p are constants. The variables M, U, TL, 
and L are to be calculated as functions of time. 
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Fig.2 Representation graph of model M1 with Specification 1 assuming first order explicit method 

 
 

The representation graph of the liquid tank 
system and the assignment types of variables 
corresponding to the above specification are shown 
in Fig.2, while the reduced graph can be seen in 
Fig.3. It can be seen, that there exists a Menger-
type complete linking on the reduced graph, which 
indicates that the differential index of the above 
model is equal to one. 

TL s
<G>

hL
*

 
Fig.3 Reduced graph of model M1 with 

Specification 1 
 

Next let us consider the following specification. 
Specification 2.: 

The variables F, TF, pF and TL, are given as 
functions of time, the initial values M0, U0 and the 
pressure p are constants. The variables M, U, Q 
and L are to be calculated as functions of time. 

Representation graph of model M1 with the 
assignment of vertices corresponding to 
Specification 2 are shown in Fig.4. It can be seen 
that there is no Menger-type complete linking on 
the graph, hence the standard form model is not 
structurally solvable. There is an overspecified part 
on the graph, which indicates the fact that the 
initial values of the model can not be chosen 
independently. The underspecified part Q →U 
indicates that Q cannot be calculated from the 
algebraic equations. This structure of the 
representation graph shows that the differential 
index of the model M1  with Specification 2 is 
greater than 1. In our earlier work [2] we suggested 
an algorithm, which determines the differential 
index of the model using the structure of the 
representation graph and transform the model into 
a structurally solvable modified form. 
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Fig.4 Representation graph of model M1 with Specification 2 assuming first order explicit solution method 

 
Example 2: Consider a simple tank system shown 
in Fig.5. The model (M2) describing change of the 
level of liquid in the tank in standard form is the 
following [5]:  
 l = ∫ l’ 
 l’ = 1/A•(F1- F2) 
 F1 = cv• (P1- P2)1/2 
 F2 = cv• (P2 - P3) 1/2 
 s = P2 - P0 - ρ g l,     s = 0 

Here l denotes the level of the liquid in the 
tank, F1 and F2 the inlet and outlet flow rate 
respectively. P0, P1, P2 and P3 are pressures 
corresponding to Fig.5. The cross-section of the 
tank A, the valve parameter cv, the density of the 
liquid ρ and the gravitational constant g are 
constant parameters. 
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Fig.5 A simple tank system 

The variables P0, P1, and P3 are given as 
functions of time, the initial value l0 is constant. 

The variables P2, F1, F2 and l are to be calculated 
as functions of time. 

The representation graph corresponding to 
above model and the variable type specifications 
are shown in Fig.6, while the reduced graph is 
shown in Fig.7. It can be seen that there exists a 
Menger-type complete linking on the reduced 
graph, which indicates that the differential index of 
the model is equal to one. 

Representation of DAE-s assuming a higher-order 
explicit solution method 

Higher order explicit solution methods, such as 
Runge-Kutta methods, are widely used for 
numerical solution of ordinary differential 
equations. As a characteristic example of such 
methods, let us consider a fourth order explicit 
Runge-Kutta method, where the value of the 
differential variable x at time t+h is computed as  

k1 = f (t, x(t)) 
k2 = f (t + h/2,  x(t)+h/2• k1) 
k3 = f (t + h/2,  x(t)+h/2• k2) 
k4 = f (t + h,   x(t) + h• k3) 
x(t + h) = x(t) + h/6• (k1+2 k2 +2 k3 + k4) 

from the known value x(t) at time t and from the 
right-hand side function f.  
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Fig.6 Representation graph of model M2 assuming first order explicit solution method 
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Fig.7 Reduced graph of model M2  

 
In order to construct the dynamic representation 

graph for this case, we construct three additional 
auxiliary graphs in between a pair of static graphs 
(main graphs) corresponding to an integration step 
from t to t+h. The internal structure of the 
auxiliary graphs is similar to that of the main 
graphs with the exception, that they do not contain 
the vertices associated to the differential variables 
and the arcs originating therefrom.  

The arcs between the main and auxiliary graphs 
are determined by the numerical solution method, 
in the above fourth order Runge-Kutta method case 
the above set of equation generates the arcs shown 
in Fig.8. If there is an arc from the vertex of the 
differential variable x to another vertex of another 
variable xk on the main graph corresponding to 
time t, then we direct  further arcs from vertex x 
towards every auxiliary graph ending at their 
vertex xk. The type labels of the vertices on the 
auxiliary graphs should be identical to that of the 

corresponding vertex on the main graphs. 
Futrhermore, we associate type <S*> labels to the 
vertices which have incoming arcs from only main 
or auxiliary graphs corresponding to previous time 
instances.  

As an example, Fig.9 shows the representation 
graph of model M2 assuming a fourth order explicit 
Runge-Kutta method as its solution procedure.  

Because of the way of the representation, the 
main graphs of a representation graph with higher 
order explicit solution method are identical with 
the static graphs of the earlier dynamic 
representation graph belonging to the Euler 
method. Only the connecting arcs between the 
main and the auxiliary graphs become more 
complicated as a consequence of the more complex 
numerical solution method. At the same time, the 
algebraic subgraphs of the main and auxiliary 
graphs are identical to the earlier algebraic 
subgraphs belonging to the Euler method. 
Therefore we can state the following propositions.  

Proposition 1. The differential index of a semi-
explicit DAE model M is equal to one if and only 
if there exists a Menger-type complete linking on 
the reduced algebraic subgraph of its dynamic 
representation graph independently of the fact if a 
first or higher order one-step explicit method is 
applied for the numerical solution.  

The reduction of the main and auxiliary graphs 
can be performed following the same rules as we 
have seen earlier in the case of applying the 
explicit Euler method for the numerical solution. 
Then the following statement is valid.  
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Fig.8 Dynamic representation graph assuming fourth order explicit Runge-Kutta method 

 
Proposition 2. By performing the reduction of 

any of the main or auxiliary graphs, the same 
reduced graph is obtained, and it is identical to the 
reduced graph of the model when assuming the 
explicit Euler method as a numerical solution 
procedure.  

Proof. The statement follows from the structure 
of the dynamic representation graph and from the 
way the type-labels are associated to the vertices 
on the main and auxiliary graphs.  

In agreement of the above proposition, the 
reduced graphs of the main and auxiliary graphs of 
model M2 shown in Fig.9 are identical to the 
reduced graph seen in Fig.7.  

It is important to note that there will be 
overspecified and underspecified subgraphs on 
each of the main and auxiliary graphs in the case 
of higher index models assuming higher order 
explicit numerical solution methods, similarly to 
the case when the simple explicit Euler method 
was assumed.  

Representation of DAE-s assuming an implicit 
solution method 

If we consider a single-step implicit solution 
method (for example the implicit Euler method) 

for the numerical solution procedure of the 
differential equations, then the value of differential 
variable x at time t+h is calculated as follows: 

x(t+h) = x(t) + h⋅x’(t+h) 
where h is the step length. 

In this case the modified structure of the 
dynamic representation graph is depicted in 
Fig.10. It can be seen that the algebraic part of the 
representation graph does not change compared to 
the case when an explicit solution method was 
assumed, hence the following proposition holds.  

Proposition 3: The differential index of model 
M is equal to 1 if and only if, there is a Menger-
type complete linking on the reduced graph of the 
algebraic part of the dynamic representation graph 
belonging to model M, independently of either an 
explicit or an implicit single step numerical 
solution procedure is applied for the solution of the 
differential equations. 

Assume that the values of all derivative 
variables x’ directly or indirectly depend on the 
corresponding differential variable x in the model. 
This assumption holds for stable models. As a 
result of this assumption a so called circle of 
calculation is obtained in the representation graph 
belonging to the differential variables according to 
the following definition.  
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Fig.9 Representation graph of model M2 assuming fourth order explicit Runge-Kutta method 

 
Definition: The circle of calculation belonging 

to the differential variable x is a directed circle 
path, which contains the vertices x and x’ and this 
directed circle is either 
1. present on the representation graph (type 1 

circle of calculation), or 
2. if it is absent, then the basic undirected circle 

(when directions of arcs are not to be 

considered) can be found on the representation 
graph and the circle of calculation can be 
obtained by changing the direction of some 
arcs (type 2 circle of calculation). The 
direction of arc x1→x2 can be changed, if there 
exists a Menger type complete linking on the 
reduced algebraic subgraph, which contains it.  
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Fig.10 Dynamic representation graph assuming single implicit solution method 
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Fig.11 Representation graph of model M1 with Specification 1 assuming an implicit solution method  

(  circle of calculation) 
 

The representation graphs of models in 
Examples 1. and 2. assuming implicit method for 
the numerical solution of differential equations can 
be seen in Figs.11 and 12. Type 1 circles of 
calculation can be seen in Fig.11, where the 
directed circles containing M and M’ or U and U’ 
are present in the representation graph. A Type 2 
circle of calculation can be found in Fig.12, where 

the directed circle belonging to variable l can be 
obtained by changing the direction of arc P2→s. 
According to the directed circle of calculation the 
values of some variables (for example x and x’) 
can be calculated at any time t by iteration.  

Therefore we propose a new type of assignment 
for all differential variables: 
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Fig.12 Representation graph of model M2 assuming an implicit solution method 

• <C> circle-type variables: Let <C> be the label 
of all differential variables in the representation 
graph, which indicates that the values of these 
variables can be calculated by iteration only. 
These labels can be seen in Figs.11 and 12. 
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Reduction of representation graphs assuming an 
implicit solution method 

The reduction of representation graphs can be 
performed in this case in two steps:  

The primary reduction is the same as in the 
case of explicit solution methods: the primary 
reduced graph can be obtained by omitting all 
vertices labelled primarily, secondarily, etc., by 
type <S> and all arcs starting from them. 

The primary reduced graphs of the investigated 
models can be seen in Figs.13 and 14. The primary 
reduction is directed both to the implicit part of the 
model and to the iterations belonging to the 
differential variables. In the first case (Fig.13) 
iterations can be calculated independently of the 
implicit calculation and the sequence of the 
calculation steps can be seen, too. In the second 
case (Fig.14) the implicit calculation of the 
algebraic variable P2 is a part of the iteration, 
hence the value of P2 can be obtained iteratively, 
too. 
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Fig.13 Primary reduced graph of model M1 with 

Specification 1 
 

The iterations belonging to differential 
variables come from the implicit numerical 
solution method and not from the structure of the 
models. If we do not want to consider these 
iterations, a secondary reduction can be 
constructed: the secondary reduced graph can be 
obtained if we omit the arcs x’→x belonging to all 
differential variables and the labels <C> are treated 
similarly to the labels <S> during the reduction. 
The secondary reduction is directed to the implicit 
part of the model, only. 
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Fig.14 Primary reduced graph of model M2

 
Proposition 4: The secondary reduction yields 

the same reduced graph as it can be obtained by 
assuming a single step explicit numerical solution 
procedure. 

Proof: It follows directly from the structure of 
dynamic representation graphs and from the 
procedure of reduction. 

In the case of higher index models with a single 
step implicit solution method, the representation 
graph contains an overspecified and underspecified 
subgraph, in the same way, as in the case of 
explicit solution methods. The algorithm for 
determination of the differential index can be 
performed similarly, too. 

Conclusion 

The effect of the numerical solution procedure on 
the structural analysis of dynamic lumped models 
described by semi-explicit differential and 
algebraic equations was investigated in this paper. 
The most important solvability properties of 
models were determined by graph-theoretical 
methods using the dynamic representation graph of 
the models. We compared the structure of dynamic 
representation graphs in the case of explicit and 
implicit solution methods for solving the 
differential equations.  

It was shown that the representation graph with 
both higher order explicit and implicit solution 
methods has similar properties both in case of 
index 1 and higher index models as compared to 
first order explicit single-step numerical solution 
procedures.  

Hence the properties of representation graph 
including the differential index of the models are 
independent of the assumption whether a single-
step, explicit or implicit numerical method is used 
for the solution of the differential equations. 
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