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This paper concerns the computational stability analysis of locally stable Lotka-Volterra (LV) systems by 
searching for appropriate Lyapunov functions in a general quadratic form composed of higher order monomial 
terms. The Lyapunov conditions are ensured through the solution of linear matrix inequalities. The stability 
region is estimated by determining the level set of the Lyapunov function within a suitable convex domain. The 
paper includes interesting computational results and discussion on the stability regions of higher (3,4) 
dimensional LV models as well as on the monomial selection for constructing the Lyapunov functions. Finally, 
the stability region is estimated of an uncertain 2D LV system with an uncertain interior locally stable equilibrium 
point. 
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1. Introduction 

Approximating the domain of attraction (DOA) is often 
a fundamental task in the analysis and control of 
nonlinear systems. The stability properties of dynamical 
systems are most often studied using Lyapunov 
functions. Therefore, extensive literature exists on the 
computational construction of Lyapunov functions [1]. 

Due to their advantageous properties and the 
availability of efficient numerical solvers, the use of 
linear matrix inequalities (LMI) and semi-definite 
programming (SDP) techniques has become popular in 
the field of system and control theory. Important results 
were announced [2,3] in the context of linear uncertain 
systems, their stability analysis and control synthesis. 

Recently, an optimization-based method for DOA 
estimation was published [4], where the authors use 
Finsler’s lemma and affine parameter-dependent LMIs 
to compute rational Lyapunov functions for a wide class 
of locally asymptotically stable nonlinear systems. 
Based on these results an improved method was 
published [5,6], where the transformation of the model 
to the form required for optimization is done 
automatically using the linear fraction transformation 
(LFT) and further automatic model simplification steps, 
which results in the dimension reduction of the 
optimization task. As the dimensions of the problem are 
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reduced, the method is capable of handling more 
complex models. For example, the DOA is successfully 
estimated for a 3-dimensional rational uncertain system 
[6] (bioreactor model with an applied proportional and 
integral substrate feedback law). 

The dynamical descriptive power of Lotka-
Volterra systems is so extensive that LV models “have 
the status of canonical format” within the class of 
smooth nonlinear dynamical systems [7]. Besides 
modelling biological/ecological environments, they are 
widely used in other scientific fields like neural 
networks [8] or in economics, where the Goodwin-
Lotka-Volterra models are applied for modelling the 
predator-prey mechanism of the technological 
substitution [9,10]. In order to model the correlation 
between the employment rate and the share of wages of 
the working population, the authors of Ref. [11] used a 
stochastic extension of the Goodwin model. 

Some important results that make LV models even 
more attractive are the existing techniques used to 
represent a general nonlinear system as a 
multidimensional LV model [12]. The analysis of 
stability and behaviour of LV systems is extensive in 
the literature [13]. Plank has shown [14] that N-
dimensional LV systems are Hamiltonian if they fulfil 
certain algebraic properties (Theorem 3.1 in Ref. [14]). 
He demonstrated that, when using an appropriate 
Poisson structure, one can obtain the Hamiltonian 
function of the system, which is a key object in 
determining the system's DOA. Furthermore, candidates 
of Hamiltonian function were defined in (Section IV in 
Ref. [14]). It is important to note that LV systems are 
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kinetic in the sense that they can be formally described 
as chemical reaction networks with mass action kinetics. 

In this paper, the local stability properties of LV 
models are analysed by applying the underlying method 
presented [6]. The stability region is estimated on a few 
locally stable 2-, 3-, and 4-dimensional benchmark LV 
systems. The DOA of an uncertain 2D system is also 
estimated by two concentric regions. 

The main motivation of our work was to evaluate 
the applicability of the approach [4] on a general 
polynomial system class consisting of low-degree 
monomials, and to study the limits of the method as the 
number of dimensions of the state space increase. 

2. Background 

In this section, the basic notions and results on which 
our computational method is based are presented. 

2.1. System Class, Lyapunov Functions, and 
the Domain of Attraction. 

Our computational method can handle general nonlinear 
systems of the form 

 
𝑥 𝑡 = 𝑓(𝑥 𝑡 , δ 𝑡 )

𝑥 𝑡 ∈ ℝ!, 𝑥! ∈ 𝒳, δ 𝑡 ∈ 𝒟, δ 𝑡 ∈ 𝒟 
 (1) 

where 𝒳 ⊂ ℝ! and 𝒟,𝒟  ⊂ ℝ! are given polytopes, x 
is the state vector function with its initial condition x0 = 
x(0), and δ is a smooth, bounded vector function of 
uncertain parameters with a bounded time derivative. 
The applied method is presented in detail elsewhere 
[15]. From now on, the time arguments of x and δ will 
be suppressed as is commonly done in the literature. It 
is assumed that function 𝑓:ℝ!×𝒟 ↦ ℝ! of Eq.(1) is a 
well-defined smooth rational mapping, with the 
property f(0, δ) = 0 for all 𝛿 ∈ 𝒟. Additionally, it is 
assumed that x* = 0 ∈ ℝ! is a locally asymptotically 
stable equilibrium point of Eq.(1) for all δ ∈ 𝒟. The set 
of all initial conditions, from which the solutions 
converge to x*, is called the domain of attraction 
(DOA). Furthermore, it is assumed that function f(x, δ) 
can be written in a so-called quasi-LPV form f(x, δ) = 
function A(x, δ) x 

The aim is to identify an appropriate rational 
Lyapunov function V(x, δ), which satisfies the following 
conditions: 

 
𝑣! 𝑥 ≤ 𝑉 𝑥, δ ≤ 𝑢! 𝑥 ,∀(𝑥, δ) ∈ 𝒳×𝒟
𝑉 𝑥, δ, δ ≤ −𝑣! 𝑥  ∀(𝑥, δ, δ) ∈ 𝒳×𝒟×𝒟 (2) 

where vl, ux, vd are continuous positive functions on 𝒳. 
Due to conditions of Eq.(2) any closed level set of the 
Lyapunov function contained entirely in 𝒳 bounds an 
invariant region of the state space. Our objective is to 
find a Lyapunov function, which fulfils the conditions 
of Eq.(2) and to determine its maximal invariant level 
set completely inside 𝒳. 

2.2. Dynamical System Representation 

A Lyapunov function can be computed [4] in the form 
shown in Eq.(3). 

 𝑉 𝑥, δ = π!! 𝑥, δ 𝑃π! 𝑥, δ ,π! =
𝑥
π  (3) 

where 𝑃 ∈ ℝ!×! is a constant symmetric matrix, not 
necessarily positive definite, and π:ℝ!×𝒟 ↦ ℝ!  is 
mapping, in which each element is a monomial in (x, δ), 
or a smooth rational function with a monomial 
numerator. The arguments of π and πb will be 
suppressed below. 

Applications of the linear fractional transformation 
(LFT) and further algebraic steps have been proposed 
[5,6] to transform the system equation 𝑥 = 𝑓 𝑥, δ =
𝐴(𝑥, δ)𝑥  into the desired differential-algebraic 
representation that was introduced in the same 
references: 

 
𝑥 = 𝐴 𝑥, δ 𝑥 = 𝐴𝑥 + 𝐵𝜋 𝑥! ∈ 𝒳
0 = 𝒩!! 𝑥, δ π! 𝛿 ∈ 𝒟, 𝛿 ∈ 𝒟 (4) 

where 𝐴 ∈ ℝ!×!  and 𝐵 ∈ ℝ!×!  are constant matrices, 
and 𝒩!! 𝑥, δ ∈ ℝ!×! is an affine matrix function in (x, 
δ) also known as an “annihilator”. These 
transformations also result in the dimension reduction of 
the optimization problem compared to the results 
presented in Ref. [4]. The representation in Eq.(4) 
separates the linear part of the system (x) from its 
nonlinear part (π). 

3. The SDP Problem for Estimating the 
DOA 

In this section, how to construct the semi-definite 
optimization task (SDP) is presented, which will 
uniquely characterize an appropriate Lyapunov function 
and its maximal invariant level set εα as an estimate of 
the true domain of attraction. It is assumed that 
polytopes 𝒳,𝒴, and 𝒟 are already given. 

Using the model representation of Eq.(4) and a 
Lyapunov function candidate of the form in Eq.(3), 
sufficient LMIs for the Lyapunov conditions in Eq.(2) 
can be formulated. According to Finsler’s lemma 
(Lemma 2.1 in Ref. [4]), if real-valued matrices 
𝐿! ∈ ℝ!×! and 𝐿! ∈ ℝ(!!!"!!!!!")×(!"!!!!!") exist 

 
∀ 𝑥, δ ∈ 𝜗 𝒳×𝒟 :
𝑃 + 𝐿!𝒩!! 𝑥, δ +𝒩!!

! 𝑥, δ 𝐿!! > 0 (5) 

 
∀ 𝑥, δ, δ ∈ 𝜗 𝒳×𝒟×𝒟 :
𝑃! + 𝑃!! + 𝐿!𝒩!! 𝑥, δ, δ +𝒩!!

! 𝑥, δ, δ < 0
 (6) 

then the conditions of Eq.(2) are satisfied for every 
(𝑥, δ, δ) ∈ 𝒳×𝒟×𝒟. Variables Pa and 𝒩!! 𝑥, δ, δ  are 
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defined in Eqs.(3.16) and (3.22) of Ref. [15], 
respectively. 𝜗 ∙  denotes the corner points (vertices) of a 
given polytope. 

Since the Lyapunov conditions are satisfied within 
𝒳, an attempt is made to identify the maximal α-level set 

 ε! = 𝑥 ∈ 𝒳|𝑉 𝑥 = 𝛼, 1 ≤  𝛼  , 

which lies inside 𝒳. That level set will be invariant, in 
the sense that every trajectory entering this region will 
never leave it. 

α ≥ 1is defined, as a free variable of the 
optimization task, and 𝜀!  is constrained inside 𝒳. One 
can observe that by maximizing α an unbounded feasible 
solution is obtained, as the function V(x, δ) can be scaled 
arbitrarily. Therefore, as Fig.1 illustrates, an auxiliary 
polytope 𝒴  is defined around the locally stable origin 
inside 𝒳 , constraining the 1-level set 𝜀! = 𝑥 ∈
𝒳|𝑉 𝑥 = 1  to be around 𝒴. 

According to Finsler’s lemma, for every 𝑘 = 1,𝑀𝒳 
and 𝑙 = 1,𝑀𝒴, if real-valued matrices 𝐿!! , 𝐿!! ∈ ℝ

!×!, 
𝑀!! ,𝑀!! ∈ ℝ

(!!!)×! exit 

 𝑄!!𝑃!!
(!) 𝑥, δ 𝑄! ≥ 0 ∀ 𝑥, δ ∈ 𝜗 ℱ!𝒳×𝒟  (7) 

 𝑄!!𝑃!!
(!) 𝑥, δ 𝑄! ≤ 0 ∀ 𝑥, δ ∈ 𝜗 ℱ!

𝒴×𝒟  (8) 

then 𝜀! is inside 𝒳 and 𝜀! is around 𝒴. Variables 𝑄! , 𝑄! , 
𝑃!!
(!), and 𝑃!!

(!) are defined in Eqs.(3.34) and (3.36) of 
Ref. [15], ℱ!𝒳 denotes the kth facet of 𝒳, furthermore, 𝑀𝒳 
denotes the number of facets of 𝒳. 

The LMI conditions of Eqs.(5)-(8) are affine 
parameter-dependent LMIs, which can be 
computationally handled by checking their feasibility at 
the corner points of the polytopic region, on which the 
parameters 𝑥, δ, δ  are defined. Depending on the 
number of the corner points, a given number of parameter 
independent LMI conditions (Table 1) is obtained. 

The SDP task can be summarized as follows. In 
order to find the maximal invariant level set 𝜀! of the 
Lyapunov function, one should maximize α, under the 
following conditions: 

Eq.(5) 𝑉 𝑥, δ  is positive on 𝒳×𝒟 
Eq.(6) 𝑉 𝑥, δ, δ  is negative on 𝒳×𝒟×𝒟 
Eq.(7) 𝜀! lies inside 𝒳 
Eq.(8) 𝒴 is inside 𝜀! 

The number of LMIs and their dimensions are given 
in Table 1, furthermore, the free variables of the 
optimization task are listed in Table 2. 

 
Figure 1. Illustration of the conditions regarding 𝒳 
and 𝒴 . Inside polytope 𝒳 of the Lyapunov conditions  
in Eq.(2) are required. The α-level set ε! of the 
Lyapunov function should lie inside polytope 𝒳 
(hence it is invariant). The 1-level set ε1 should be 
around polytope 𝒴. This condition ensures that the 
problem has a bounded solution. 

Table 2. Free variables of the optimization task and 
the number of (scalar) symbolic decision variables 
they introduce into the optimization task. 

Matrix 
variable 

number of (scalar) independent decision 
variables appearing in the SDP 

α 1 
P ½ m(m+1) 
Lb mq 
La (n + 2p + n2 + np)(2q + n2 + nq) 

𝐿!!and 𝐿!!!  !𝑀𝒳 +𝑀𝒴!×𝑚𝑞 
𝑀!!and 𝑀!!!  !𝑀𝒳 +𝑀𝒴!×(𝑚 + 1)𝑛 
The dimensional parameters are the following:  
n number of state variables (size of x) 
P number of elements in π 
m number of elements in πb (n + p) 
q number of rows in annihilator 𝒩!!(𝑥, δ) 
𝑀𝒳  number of corner points of 𝒳 
𝑀𝒴 number of corner points of 𝒴 
𝑀𝒟 number of corner points of 𝒟 
𝑀𝒟!  number of corner points of 𝒟!  

 

Table 1. Number and dimensions of parameter 
independent LMIs of the optimization task. 

 Dimension of the LMIs No. of LMIs 
Eq.(5) m 𝑀𝒳 ∙𝑀𝒟  
Eq.(6) n + 2p + n2 + np 𝑀𝒳 ∙𝑀𝒟 ∙𝑀𝒟!   
Eq.(7) m + 1 2𝑀𝒳 ∙𝑀𝒟  
Eq.(8) m + 1 2𝑀𝒴 ∙𝑀𝒟  

 

 
Figure 2. Polytope 𝒳 is evaluated through iterations 
considering the bounding box of the obtained α-level 
set. 
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3.1. Finding the Most Appropriate Outer 
Polytope 

In the case of 2D systems, polytope 𝒳  is evaluated 
manually through iterations. When having a higher-
dimensional system (n  ≥ 3), the iterative procedure [6] is 
applied that starts from an initial polytope 𝒳(!), then a 
new polytope 𝒳(!)  is defined by enlarging the axis 
aligned bounding box of the obtained α-level set ε!

(!). 
During the iterations, 𝒳(!)  is constrained to be a 
rectangular polytope. Fig.2 illustrates the operation of a 
single iteration step. 

4. Lotka-Volterra Systems 

The N-dimensional LV equation has the form 

 𝑥 = 𝑑𝑖𝑎𝑔 𝑥 + 𝑏 ,   𝐴 ∈ ℝ!×!, 𝑏 ∈ ℝ!, (9) 

where diag(a), 𝑎 ∈ ℝ! denotes an n × n square diagonal 
matrix with the x1, …, xn on the main diagonal. The 
system is translated into its, by assumption, unique 
interior equilibrium point 𝑥∗ = −𝐴!!𝑏  by introducing 
the centred state vector 𝑥 = 𝑥 − 𝑥∗ . Then, an 
autonomous nonlinear system of the form 𝑥 = 𝒜 𝑥 𝑥 is 
obtained, where the matrix function 𝒜 can be expressed 
as: 𝒜 𝑥 = 𝑑𝑖𝑎𝑔 𝑥 + 𝑥∗ 𝐴. By applying the LFT and 
the further algebraic model transformation steps, a model 
is obtained in the representation of Eq.(4), where the 
entries of π(x) are second order monomials of the state 
variables. 

5. Numerical Results 

In this section, the applicability of the approach presented 
above is illustrated through different locally stable Lotka-
Volterra models. The results presented here have been 
computed in a MATLAB environment. For symbolic 
computations, MATLAB’S built-in Symbolic Math 
Toolbox was used based on MuPAD. For linear fractional 
transformations (LFT), the Enhanced LFR-toolbox is 
used [16, 17]. To model and solve semi-definite 
optimization (SDP) problems, Mosek solver with 
YALMIP was used [18]. 

5.1. 2D Lotka-Volterra System 

A locally stable LV system is considered with the model 
matrix: 

 𝐴 = -2 -3
1.4 1

 , 

with a unique interior equilibrium point x* =  
[1 1]T. In Fig.3, some trajectories of the centred system 
can be observed from different initial conditions. The 
red trajectories converge at the equilibrium point, the 
blue ones do not tend to the equilibrium point. After 
solving the corresponding SDP, the obtained Lyapunov 
function is 𝑉 𝑥 = π!!𝑃π! (Fig.4), where 

 π = 𝑥!! 𝑥!𝑥! 𝑥!! ! , π! =
𝑥
π  (10) 

 𝑃 =

87.39 63.83 -3.45 0 0
63.83 165.26 67.24 100.85 28.76
-3.45 67.24 7.63 0.15 0
0 100.85 0.15 38.78 39.97
0 28.76 0 39.97 15.53

 

In Fig.3, the shape of the manually chosen 
polytope 𝒳, and the obtained invariant α-level set of the 
Lyapunov function can be seen, which is considered as 
the estimated DOA (filled orange region). Areas can be 
observed, where the Lyapunov function's time 
derivative is positive (green region) can also be 
observed to be completely outside of 𝒳. Fig.5 illustrates 
how the value of the Lyapunov function decreases along 
the trajectories. 

 
Figure 3. Phase diagram of the 2D locally stable 
system. Red trajectories converge at the origin, the 
blue ones do not converge at the origin. The estimated 
DOA and the used polytope 𝒳 are illustrated by the 
orange-filled region and by the grey-dashed polytope, 
respectively. The green area highlights the subset of 
the state space where the Lyapunov function features a 
positive time-derivative. 

 
Figure 4. The obtained Lyapunov function in the case 
of the 2D LV system. 
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5.2. 3D Lotka-Volterra System 

A locally stable 3D LV system has been chosen with the 
model matrix 

 𝐴 =
0.06 0.21 0.83
−2.47 −2.10 −3.64
0.06 0.47 −0.45

 . 

Similarly to the 2D example, the equilibrium point 
is set to x* = [ 1 1 1 ]T. The monomial set appearing in 
πb contains the state variables and every possible 2nd 
order monomial:  

 π! = 𝑥!! 𝑥!𝑥! 𝑥!𝑥! 𝑥!! 𝑥!𝑥! 𝑥!!  (12) 

Matrix P is a 9×9 symmetric matrix. Fig.6 
illustrates the invariant α-level set of the obtained 
Lyapunov function (3D red volume). In Fig.7, one can 
see the cross-sections of the 3D invariant region from 
three different viewpoints. Some trajectories of the 
system are shown in red (stable) and blue (unstable). 

 
Figure 5. In Panel A, the obtained invariant level set is shown, furthermore some trajectories x(i)(t) of the system can be 
seen in different colors with initial conditions 𝑥!

(!) close to the boundary of the estimated DOA. The values of the 
Lyapunov function along the trajectories (v(i)(t)) are presented in Panel B, respectively.  

 
Figure 7. Cross-sectional view of the 3D estimate 
along the major planes xi,xj and using different values 
for xk, where (i, j, k) is a permutation of (1, 2, 3). 

 
Figure 6. Estimated DOA of the locally stable 3D 
Lotka-Volterra system (red mesh) and the 
corresponding final polytope 𝒳. 
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5.3. 4D Lotka-Volterra System 

The method was applied to a locally stable 4D LV 
system with a unique interior equilibrium point: 

 x* = [ 1 1 1 1 ]T . (13) 

The model matrix of the LV system was chosen to 
be: 

 𝐴 =

-4.7126 -1.5833 1.5346 2.3230
-9.2461 -3.1634 2.8648 2.7796
-14.258 -4.5477 3.6104 4.6238
-3.1687 -0.8016 1.2287 1.2656

 . 

Due to the fact that model matrix A is a “full” 
matrix,  i.e. there are no zero entries in it, every second-
order monomial will appear in the equation of the 
system. As a consequence, the LFT will produce a 
model Eq.(4), in which π will contain every possible 

second-order monomial. This means that the number of 
monomials (including the state variables) is mb = (n2 + 
3n) / 2 in the case of a “full” model matrix. 

In Table 3, the number and sizes of the LMIs have 
been summarised in the case of N-dimensional LV 
systems with a “full” model matrix. The exponential 
factor 2n in Table 3 originates from the rectangular 
shape of polytope 𝒳 possessing 2n corner points. On the 
other hand, the feasibility of LMI conditions in Eqs.(7) 
and (8) should be checked at each corner point of every 
facet of the polytope. Furthermore, an N-dimensional 
rectangular polytope has 2n facets with 2n-1 corner 
points. As can be seen, a rectangular polytope 
introduces an exponential increase in the dimension of 
the given problem. However, N-dimensional intervals 
can be easily handled compared to arbitrarily shaped 
polytopes defined by (hyper)-triangle meshes. Fig.8 
illustrates the cross sections of the invariant domain 
along the different pair of axes. 

5.4. 2D Uncertain LV System with an 
Uncertain Equilibrium Point 

In this section, the same 2-dimensional system is 
presented that appeared in Section 5.1 with the same 
model parameters but with an additional uncertain term 
Kδ, where K = [1 1]T. It is assumes, that δ ∈ 𝒟 =
 -0.1, 0.1  is an unknown constant parameter (δ = 0). 
The equation of the uncertain model is the following: 

 𝑥 = 𝑑𝑖𝑎𝑔(𝑥) 𝐴𝑥 + 𝐾δ + 𝑏  (15) 

Table 3. Number and sizes of the LMIs in the case of 
N-dimensional LV systems. 

size number description 
mb × mb 2n positivity of 𝑉(𝑥) 
ma × ma 2n negativity of �̇�(𝑥) 
mb × mb n ⋅ 2n ε! ∈ 𝔗𝔫𝔱(𝒳) 
mb × mb n ⋅ 2n 𝒴 ∈ 𝔗𝔫𝔱(ε!) 

 
mb is the size of the Lyapunov matrix P, ma = ½ (n3 + 5n2 + 4n) is the 

size of the matrix Pa(P), which appears in the LMI ensuring the 
negativity of the time derivative of the Lyapunov function. 

 
Figure 8. Cross-sectional view of the DOA estimate of the 4D LV system.  
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The equilibrium point of the uncertain system is an 
affine function of the uncertain parameter δ: 

 𝑥∗ δ = 𝐴!! −𝐾δ − b = −𝐴!!𝐾δ + 𝑥!∗ , (16) 

where 𝑥!∗  is the equilibrium point of the system 
presented in Section 5.1, i.e. when δ = 0. Eq.(15) is 
translated into the following form: 

 𝑥 = 𝑑𝑖𝑎𝑔(𝑥)𝐴 𝑥 − 𝑥∗(δ ) . (17) 

The centred model of the system around the 
uncertain equilibrium point x*(δ) can be calculated if 
the new state vector x = 𝑥 – x*(δ) is introduced. The 
equation of the centred system is the following: 

 𝑥 = 𝑑𝑖𝑎𝑔 𝑥 + 𝑥∗ δ 𝐴𝑥 . (18) 

If the Lyapunov function depends on δ, especially 
when possessing an uncertain equilibrium point, it is not 
straightforward to determine an invariant region by 
considering the α-level set of the Lyapunov function. 
However, it is possible to compute a region ℑ, which is 
“invariant with respect to” a larger region 𝔘 (ℑ ⊂ 𝔘), in 
the sense that every trajectory with an initial condition 
from ℑ will not leave 𝔘. 

In order to compute ℑ and 𝔘, the α-level set ε!(δ) 
of the obtained Lyapunov function V(x, δ) is determined 
in the coordinates system of the original system and at 
the corresponding equilibrium point for every δ ∈ 𝒟. 
The overlining in the notation ε!(δ) means that this 
level set is translated into the original coordinates 
system. As Fig.9 illustrates, the intersection ℑ and the 
union 𝔘 of the α-level sets obtained for different values 
of δ have been computed. It can be stated that every 
trajectory starting from region ℑ will not leave region 
𝔘. 

6. Conclusion 

In this work, the Lyapunov function of N-dimensional 
LV systems (N = 2, 3, 4) was successfully computed by 
using the improved optimization-based method [6, 15]. 
In the case of each deterministic system, an invariant 
region was given, as the estimated DOA. In the case of 
an uncertain LV system with an uncertain interior 
equilibrium point, two regions (ℑ ⊂ 𝔘) were given, 
which describe the stable regions of the system. 

SYMBOLS 

𝑥 denotes the time-derivative of function x(t) 
LT denotes the transpose of a matrix L 
𝜗(∙) denotes the corner points of a polytope 
diag(x) denotes the diagonal matrix 
x = x(t) ∈ ℝ! represents the state variables of a 

dynamical system 

δ ∈ ℝ! vector of uncertain parameters 
π ∈ ℝ! vector valued function, which represents the 

set of monomial and rational nonlinear terms 
to be considered in the Lyapunov function 

π ∈ ℝ!!!!! auxiliary variable denoting 𝑥𝜋  
V(x) denotes the Lyapunov function 
𝒳 ⊂ ℝ!, 𝒟,𝒟 ⊂ ℝ! bounded polytopes 
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