
HUNGARIAN JOURNAL OF
INDUSTRY AND CHEMISTRY

Vol. 44(2) pp. 93–98 (2016)
hjic.mk.uni-pannon.hu

DOI: 10.1515/hjic-2016-0011

MOBILE DATA SYNCHRONIZATION METHODS

MIKLÓS PÁL AND GÁBOR LÁNER

Capture IT Solutions and Consulting, Záhony u. 7 Building B, Budapest, 1031, HUNGARY

The study introduces and compares the performance of a classical and two innovative mobile data
synchronization methods. A customized test environment will be created for every selected method researched.
Performance, stability, and other measurement results will be produced from these environments, which will be
the major outcome of the study.

Keywords: mobile synchronization, comparison, performance measurement, data optimization,
slow network connections

1. Introduction

The main goal of Mobile Workforce Management
software is to make fieldwork easier and more efficient.
This requires all necessary data to be available and in
sync with the server databases. This is why the
synchronization module is one of the most important
parts of Mobile Workforce Management software.
During the fieldwork, there are various data connection
conditions that the application needs to be conformed
with. There are several data objects, e.g. task, user,
client, etc., and multipart objects, e.g. document files,
images to be synchronized. The usability of an
application highly depends on the efficiency of this
synchronization.

The main problem that synchronization needs to
solve is to transfer data between the devices and the data
source. The solution begins with the data source and
through the communication channel ends with the saved
data on the device. Three potential implementation
methods will be introduced and compared in this article.

2. Experimental

All three considered solutions have different technical
backgrounds. The first one is a SOAP (Simple Object
Access Protocol) web service implementation based on
XML communication. This is the classical way to
transfer data between two different platforms. The
protocol originally was designed for Microsoft in 1998.
The XML-based web service is a widespread solution
because it is platform independent and built on industry-
wide standards. It was one of the first ways to build
service-oriented, modular architectures using smaller

*Correspondence: www.capture.hu

applications is by the communication of web services
instead of robust, monolithic systems.

As the technology was mainly used in enterprise
environments, and has been in use for more than 15
years, naturally it consists of an antiquated approach
compared to modern, lightweight services. While the
technology is based on standard HTTP protocols, the
requests and responses travel in objects called
envelopes. All of the envelopes have a header and a
body part, where the body contains the actual payload,
the data that is the main reason of communication. The
format of the envelopes is strict, and furthermore, there
are several encoding, formatting, and parsing standards
that have been created since the birth of the protocol.
Unfortunately, not all implementations are compatible,
it is easy to create a server that cannot digest the client’s
request, while both endpoints use valid but different
soap formats, even though the raw format of the
envelope is an easily readable XML file.

The strict format has both benefits and
inconveniences. When the service at the server is ready,
it is easy to generate a unique description XML, called
WSDL (Web Services Description Language). This file
not only helps the development of the client side, but
there are several tools available that can generate almost
all of the client-side code, that can be used to connect to
the service. Overall, it is a strict, old fashioned, but
really reliable way to approach services in the modern
mobile world.

The second tested solution is the RESTful
(Representational State Transfer) service in the
architecture of microservices. REST is also known as
RESTful architectural design, and was represented in
2000 by Roy Thomas Fielding in his dissertation at the
University of California, Irvine [1]. REST has become
the main architectural design for web and mobile
development over the last few years. According to
‘ProgrammableWeb’, 69% of the newly created APIs
were using REST while only 22% were using SOAP in
2014.

 PÁL AND LÁNER

Hungarian Journal of Industry and Chemistry

94

There are many advantages of this architectural
design. The first is its solid performance, due to the high
level approach of the solution. It typically
communicates over HTTP (Hypertext Transfer
Protocol) using HTTP verbs like GET, POST and PUT.
REST supports more message formats, e.g. XML, CSV
(comma-separated values), JSON (JavaScript Object
Notation), etc. The primary communication format is
JSON, which is structured text data type. This message
format requires significantly less metadata than the
XML format, thus greatly increasing the network
efficiency as the valuable data can fit in smaller network
packages. The spread of the JSON message format is
shown in Fig.1. The diagram shows the percentage of
JSON versus XML message formats used by APIs in
the ‘Programmable Web Directory’ between 2005 and
2013 [2]. Another great advantage of RESTful is its
simplicity. It is easy to implement and maintain due to
its structure. It clearly separates the client and server
implementations.

Today’s trends point in a direction where
developers need to create highly availabile applications
exhibiting high level of scalability that are ready to run
in cloud environments. Microservice architecture is a
method of developing software applications as a suite of
independently deployable, small, modular services in
which each service runs a unique process and
communicates through a well-defined, lightweight
mechanism to serve a business goal. The most well-
known microservice architecture users are Netflix and
Amazon. Applications based on this architecture are
easy to understand and modify because of the
independent parts. Instead of a robust application which
contains all functions, logics and millions lines of code,
there are many separated services with a focused
function. These applications or application modules are
able to run on multiple copies of multiple machines
which makes them highly scalable, available and
capable of running in cloud environments.

Patterns in programming are reusable solutions to
a problem occurring in a particular context. In the world
of microservice architecture there are many patterns
available to choose from. From the aspect of
deployment there are two main patterns:

• Multiple services per host - There is one
physical server with all services installed on it.

• Single service per host - In this case, there is a
standalone host for each service. The host
could be a virtual machine or a container.

The communication methods between the clients
and servers are described with the API gateway
communication pattern. In this pattern the gateway is a
service discovery between the client and server. This
service is the single entry point. From the aspect of the
database there are two main patterns. The shared
database pattern uses only one database for all services.
The database per service pattern uses a standalone
database for every single service.

Finally, the third solution is a distributed NoSQL
implementation of mobile data synchronization. Early
versions of NoSQL databases have existed since the
1960s but the technology started to spread only in the
twenty-first century. NoSQL in other words means non-
relational database. One of the main benefits of these
databases is the simplicity in design, because they store
data in a key-value structure. The other main benefit is
the horizontal scalability with the support of clustered
environments and cloud infrastructure. These types of
databases are mainly used in big data environments. All
three applications have the same functionalities.

During the experimental three demonstration
applications were created. One separated environment
for each featured solution. All the applications have
three main modules with the same functionalities: (i)
database at the backend side to store test data and (ii)
synchronization module to transfer data between the
backend and mobile application.

Mobile applications exist with the capability to
connect to the synchronization module and synchronize
data to the mobile device. Additionally, there are some
status checking and logging functionalities on this side.
Every mobile application was created with its own
mobile database to store synchronized records. The data
source of solutions was tested, which contains up to 50
thousand historical roadwork items of data from 2011
until 2016. The structure and an example record of the
database are shown in Table 1. Test data is stored in a
single table with a sequence number as a primary key.

The architecture of SOAP web service
implementation is shown in Fig.2. On the database side

Figure 1. Percentage of APIs added to the
ProgrammableWeb directory based on communication
types over the years [2].

P
er

ce
ta

ge
s

of
 A

P
I t

yp
es

Years

Table 1. Data structure used in tests with the field data
types and typical contents.

Column Type Example
ID numeric

 LA reference numeric 476483
promoter character Vultron
street character STONEGATE ROAD
locality character MEANWOOD
works type character STANDARD
easting numeric 428804
northing numeric 437215
location character OPP STAINBECK AVENUE

description character

VULTRON DUCTING FOR
MAINS CABLE TO
DISPLAY IN BUS SHELTER

works start date date 19/03/2008
works end date date 08/06/2013

MOBILE DATA SYNCHRONIZATION METHODS

44(2) pp. 93–98 (2016) DOI: 10.1515/hjic-2016-0011

95

there is a PostgreSQL server (version: "PostgreSQL
9.0.3, compiled by Visual C++ build 1500, 64-bit")
installed. For the experimental, a separated database
was created with pg_default tablespace and UTF-8
encoding. Inside the database test, tables were created in
a public scheme.

The application server is a J2EE web application
implemented with the SpringBoot framework, which
builds a standalone runnable jar application that
includes a WAR web application and also grants an
embedded Apache Tomcat application server. This
solution provides a monolithic architecture, which is
widely used in the enterprise environment. The core
framework of the application server is SpringBoot
(version 1.3.6.-RELEASE), where the embedded
Tomcat server version is 8.0.36. The web service itself
is provided by Spring-WS (version 2.3.0.-RELEASE).
The getRoadworkListRequest web service provides the
main query about synchronization logic. This service
performs a select * from roadworks query through the
persistence layer and returns the whole list of the
currently stored roadworks. The response is the XML
representation of the data table presented in Table 1. As
a persistence layer the application uses the EclipselLink
JPA provider version 2.5.0.

The mobile application of SOAP implementation
was built for the Android SDK version 24.0.0. Android
does not offer any built-in library to handle SOAP calls.
There are several third-party libraries to fill the gap, but
one could not be found that could be a fully satisfactory
solution to our problem. In the tests, the kSOAP2
(version 3.6.1) implementation was used that also has
some very uncomfortable limitation, but during the test
it was working reliably. The synchronized data is saved
into the SQLite database in the mobile device. SQLite is
the built-in Android database that offers a relational
database with functionalities to access and store data.

The architecture of the RESTful service
implementation is shown in Fig.3. This architecture is a
typical microservice architecture where the service itself
implements the synchronization functions. The mobile
application implements the mobile-device functions like
synchronization calls and status reports. A shared
database pattern was used by sync service, which means
the database used by synchronization service is a
database used by other services, too. The same
PostgreSQL database was used at the database level in
the REST implementation as used before for the SOAP

test application. Thus, the database version and database
configuration were the same.

The service is implemented as a standalone Java
application supported by Jetty (version
9.2.1.v20140609). Jetty provides a lightweight
embeddable web server and it has support for REST
APIs of Web Socket. These features make Jetty ideal to
use in microservice architecture. Sync Service provides
a REST API for mobile clients to conduct
synchronization. The main API is the GET
/rest/sync/roadworks HTTP/1.1; Content-Type:
application/json service that responds with the whole
list of roadworks as a JSON content type. The
roadworks data is accessed with a full table selected
from a database over an EclipseLink persistence layer.
The same JPA provider (EclipseLink version 2.5.0) is
used for this service as it is for the SOAP application.

The mobile application of the REST
implementation was also built for the Android SDK
version 24.0.0. However, Android has its own HTTP
client provider, in this article Android-async-http
(version: 1.4.9) was used for asynchronous HTTP client
functionalities at the mobile application level. This is a
well-featured and widely used library by top developers
like Instagram and Pinterest [3]. The SQLite database
was used to store synchronized data in the mobile
device as well as in SOAP implementation. It was
experienced during development that implementing
REST API calls in the mobile environments is relatively
easy to perform since it is a widely supported method of
communication. Couchbase was used to build the
NoSQL database because it offers a complete solution
with a server-side database (Couchbase server),
synchronization gateway and mobile-side database
(Couchbase Lite). The architecture of this solution is
shown in Fig.4.

The data layer is a Couchbase server (version
4.0.0-4051 Community Edition (build-4051)). The
database has a single server node configured. The server
node in Couchbase represents an instance of the
database. In our test only one instance was run. In
production environments, more instances are necessary
to improve server availability. The node contains the
physical data representation objects, called buckets. A
new bucket was configured for the article as a
Couchbase bucket type with 200 MB of memory
allocated per node. The optimization of disk I/O

Figure 2. The SOAP based test application’s logical
architecture. The communication between the client
and server component is based on XML / SOAP
messages.

Figure 3. The REST based test application’s logical
architecture. The communication between the client
and server component is based on JSON / REST
messages.

 PÁL AND LÁNER

Hungarian Journal of Industry and Chemistry

96

operations was set to default, which means the disk I/O
priority is low for this bucket. In this article this is an
issue, because there are no other buckets in use. The
auto-compaction settings are also set to default which
means auto-compaction should run if the fragmentation
is above 30%.

The Sync Gateway (version 1.2.1 was installed) is
located at the server side as a standalone application.
This module implements database read / write functions
and solution specific APIs to transfer data to and from
mobile devices. It has a built-in versioning logic, which
adds revision information to the documents stored in the
server of the database and handles synchronization
metadata like synchronization cycles and user data. The
Sync Gateway is configured. It was created to setup the
gateway to sync every document type without any user
authorization. In this case every connected device
synchronizes every document without restrictions
between the client and server.

The mobile application of NoSQL implementation
is similar to the previous solutions built for Android
SDK version 24.0.0. The most significant difference
here is the mobile database, which is Couchbase Lite
(version 1.3.0). This is a mobile database created for
Couchbase and Sync Gateway. It contains the mobile
database engine, the mobile database handler and the
synchronization interface implementation. The
synchronization supports both push and pull requests
with version checking so only modified documents are
transferred during a call.

2.1. Samples and Measurements

Four types of measurements were performed during the
experiment: speed test between server and devices for
different numbers of datasets (small 1-10, medium
1,000-10,000 and a large number of records up to
50,000). Speed tests were performed during data
transfer to and from the devices and with mixed
directions. Speed and stability tests were performed
using text and binary data types with a high amount of
data to transfer. During the tests, all data packages and
sizes of the packages were monitored, as well as the
performance of mobile applications, synchronization
gateways and databases.

3. Results and Analysis

3.1. Experiments

During the analysis an attempt was made to provide
constant conditions with the following hardware
infrastructure. An Asus K53S notebook with Intel®
Core™ i7-2630QM CPU, 8 GB RAM and HDD WDC
WD7500BPVT-80HXZ was used as the server to run
the database, application server, synchronization service
and synchronization gateway. A Samsung Galaxy SM-
G935F (S7 Edge) smart phone with Android 6.0.1
(build number MMB29K.G935FXXS1APG2) was used
as the mobile environment.

Every test was run on the same local network. The
network used a 100 Mb/s WIFI router. The server was
connected to the router with a local area network (LAN)
cable, the mobile device was connected via a WIFI
network. This way the network speed during the
experiment was constant.

During the experiment, six test rounds were run on
the three different solutions. The amount of data was
raised in every step from 1 row to 50,000 rows. One test
round with 100,000 records was also planned, but the
tests revealed the limitation of the mobile hardware, for
around 30 MB of data, the response could not be parsed
in one batch, mainly due to the lack of memory. To
achieve realistic conclusions from the measurements,
every step was repeated three times. Overall, a total of
54 tests were run.

Measurement results were collected using several
methods. In SOAP and REST implementations, most of
the information was collected from the mobile platform.
Both applications were provided with a logger module
that provided log entries in every main step of the
synchronization. These steps were the following:

• synchronization initialized
• synchronization started (request was sent from

the mobile device to the server)
• synchronization finished (the response came

back from the server)
• parse start (when the mobile application started

to process the response)
• parse done (when processing finished and all

records from the response were saved in the
database of the mobile client)

In the case of the NoSQL solution, the monitoring
was a bit different because there was no way to write a
custom logger module for the built-in processes.
Fortunately, the Couchbase Sync Gateway provides a
fine-grained log where nearly all equivalent steps can be
found that we redefined for the previous tests.

The performance and mobile database monitoring
was the other main part of the analysis. This part was
the same for all solutions including NoSQL. The
performance was monitored continuously with an
Android debug tool while the database was monitored
from the application with a status screen. It was
expected that the SOAP Web Service implementation
would be significantly slower than the RESTful and
NoSQL solutions mainly because of the larger data
packets transferred in XML format.

Figure 4. The CouchBase based test application’s
logical architecture. The communication between the
client and server component is based on the database
standard synchronization gateway.

MOBILE DATA SYNCHRONIZATION METHODS

44(2) pp. 93–98 (2016) DOI: 10.1515/hjic-2016-0011

97

The measured results refuted these expectations.
As Fig.5 and Table 2 show, the average sync times are
not just nearly the same but with smaller data amount
the SOAP is even faster than the REST. In this result,
the NoSQL lags behind the other two solutions, but the
sync time gets closer as the amount of data increases.
The reason for this difference could be the additional
versioning features of Couchbase. Furthermore, NoSQL
is built for working with high amounts of data.

The synchronized data amount on the horizontal
axis is increasing nearly logarithmically because of this,
a logarithmic view of this result set (Fig.6) could yield a
better understanding. Fig.6 shows the key point is at
1,000 rows. Here is the point where all solutions start to
converge into each other. From this point, increase in
the sync time becomes more directly proportional to the
increased in the data amount. By taking into
consideration the result, numbers and sync time per row
values in Table 3, is can be seen that the minimum
value using SOAP is at 1,000 records, using REST the
minimum value is at 10,000 and using NoSQL the
minimum is above 50,000. The results above were

calculated using synchronization and data processing. If
data processing is skipped, the results change as shown
in Table 4.

Again, the key point here is the limit where the
number of records is 1,000. After that point the
synchronization using REST increases much faster. As
shown in Fig.7, the SOAP sync time rises sharply while
the REST sync time rises less rapidly. The size of the
messages can only be monitored for the SOAP and
REST implementations. The results of these
measurements were the same as expected. Due to the
strict data format, the XML structure requires larger
amount of data transfer packages than JSON, as shown
in Table 5. The logarithmic diagram in Fig.8 shows that
the increase in size is directly proportional to the
number of transferred rows.

Figure 6. The synchronization time required for each
test application with different record counts, in
seconds, on logarithmic scale.

Table 3. The time needed to synchronize one record
for each test applications in different package sizes.

Number
of rows

SOAP sync
time (s/record)

REST sync
time (s/record)

NoSQL sync
time (s/record)

1 0.06533 0.33833 6.67100
10 0.01280 0.03390 0.67633

100 0.00393 0.00621 0.06169
1,000 0.00309 0.00376 0.00817

10,000 0.00341 0.00343 0.00539
50,000 0.00451 0.00433 0.00526

 Table 4. The synchronization time required for the
SOAP and REST based test applications with different
record counts, in seconds, without data parsing and
persisting.

Number
of rows

SOAP sync time –
without parsing (s)

REST sync time –
without parsing (s)

1 0.044 0.278
10 0.090 0.239

100 0.134 0.243
1,000 0.815 0.764

10,000 6.842 3.589
50,000 26.540 7.020

Figure 7. The synchronization time required for the
SOAP and REST based test applications with different
record counts, in seconds, without data parsing and
persisting.

Figure 5. The synchronization time required for each
test application with different record counts, in
seconds.

Table 2. The synchronization time required for each
test application with different record counts, in
seconds.

Number
of rows

SOAP sync
time (sec)

REST sync
time (sec)

NoSQL sync
time (sec)

1 0.065 0.338 6.671
10 0.128 0.339 6.763

100 0.393 0.621 6.169
1,000 3.094 3.757 8.169

10,000 34.084 34.324 53.922
50,000 225.444 216.492 262.898

Table 5. The size of the data packages using XML and
JSON format, in kilobytes for different record counts.

Number
of rows

SOAP XML
size (KB)

REST JSON
size (KB)

1 0.727 0.272
10 6.200 3.700

100 55.400 32.900
1,000 554.400 331.600

10,000 5,734.000 3,481.600
50,000 29,286.000 17,920.000

 PÁL AND LÁNER

Hungarian Journal of Industry and Chemistry

98

The last measured value is the size of mobile
database after data synchronization. The SOAP and
REST implementations have the same database size
because both of them used an SQLite database with the
same data. This is the reason why only SQLite and
Couchbase Lite databases were compared in Table 6. As
shown in Table 6 and Fig.9, the size of the Couchbase
Lite database is much bigger than that of SQLite. The
difference increases as the amount of data rises.

4. Conclusion

Finally, we need to state that SOAP performed
surprisingly well during the experiment performance
tests. The biggest limitation with regards to it is the
minimal support in mobile development. Because in
enterprise companies SOAP is still the most common
technique this architecture is still popular.

More measurement data confirmed that there is a
common key point where there is only a minimal
difference between the selected solutions. This point is
around 1,000 records per transaction, which is the point
where it does not matter which solution is used. This is

not the optimal point of performance for all solutions
but it could be a good compromise.

The best choice is the REST synchronization, if
the goal is to quickly implement a customizable,
reliable, scalable, and extendable, cloud-ready modern
solution. Any amount of data is supported from small
datasets to big data solutions. The bottleneck of this
solution occurs during data processing.

The best choice is the SOAP synchronization if the
goal is to create an enterprise-ready highly secure and
auditable solution. This solution is not recommended
for big data environments, but up to medium amounts of
data, it could offer a real alternative to RESTful service.
Working with SOAP has many limitations in mobile
development.

NoSQL is the best choice for big data
environments where a very large amount of data needs
to be processed and there is a limited time for
development.

Acknowledgement

We acknowledge the financial support of this work by
the Hungarian State under the VKSZ_12-1-2013-0088
project.

REFERENCES

[1] Fielding, R.T.: Architectural styles and the design
of network-based software architectures, Ph.D.
Dissertation, University of California, Irvine, 2000

[2] DuVander, A.: JSON's eight year convergence
with XML, 2013 www.programmableweb.com/
news/jsons-eight-year-convergence-xml/2013/12/26

[3] Smith, J.: Android asynchronous HTTP client,
2016 loopj.com/android-async-http

Table 6. The size of the database on the client device
using SQLite and CouchBase Lite databases for
different record counts.

Number
of rows

SQLite database
size (KB)

Couchbase Lite
database size (KB)

1 3,993.600 7,168.000
10 4,003.840 7,372.800

100 4,044.800 7,536.640
1,000 4,167.680 8,325.120

10,000 5,457.920 15,656.960
50,000 14,704.640 47,462.400

Figure 8. Comparison of the size of the data packages
between the XML and JSON format on a logarithmic
scale.

Figure 9. Comparison of the size of the databases
between the SQLite and CouchBase databases.

