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The simulation of electrical networks is very important before development and servicing of electrical networks 
and grids can occur. There are software that can simulate the behaviour of electrical grids under different 
operating conditions, but these simulation environments cannot be used in a single cloud-based project, 
because they are not GNU-licensed software products. In this paper, an integrated framework was proposed 
that models and simulates communication networks. The design and operation of the simulation environment 
are investigated and a model of electrical components is proposed. After simulation, the simulation results were 
compared to manual computed results. 
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1. Introduction 

The simulation of electrical networks is important 
before network planning, development, servicing, etc. is 
conducted. There are many planning and simulation 
software solutions on the market, which can simulate 
electrical networks and grids, e.g. MATLAB, EPLAN, 
WSCAD. 

The problem with commercial simulation software 
is that such software packages cannot be ported to a new 
system. For example, if the development of a cloud-
based electrical network and grid simulation system is 
required, standard simulation software products and 
methods cannot be used. To solve this problem, a 
simulation engine was used, which possesses a GNU 
licence. The OMNeT++ Discrete Event Simulator 
(DES) [1] was chosen. Mets et alia [2] have previously 
used the OMNeT++ simulator environment. 

OMNeT++ is an extensible, modular, component-
based C++ simulation library and framework, primarily 
for building network simulators. OMNeT++ is not 
supported directly by the simulation of an electrical 
grid. To solve this incompetency, a model of the most 
important electrical components was constructed and as 
a result, the general simulation engine can be used for 
cloud-based electrical grid simulation. Two methods 
were implemented in our OMNeT++ software, which 
investigated their mathematical foundations, as well.  

                                                             
*Correspondence: fodor.attila@virt.uni-pannon.hu  

2. Simulated Network 

According to load distribution the electrical distribution 
system can be classified as: 

• Fed at one end with one load at the other end; 
• Fed at one end with more loads; 
• Fed at both ends; 
• Radial; 
• Ring; 
• The distribution system. 
To test the OMNeT++ and model of the developed 

components, a network architecture was chosen, which 
is convenient and compatible with normal methods for 
planning of electrical networks. A system has been 
simulated, which is fed at both ends and consists of 
three loads (Fig.1). 

Of course, this OMNeT++ simulation project can 
simulate any distribution systems, though exact values 
will only be calculated in this case. To simplify our 
calculations, the wire parameters shown in Table 1 were 

 
Figure 1. Distribution system fed at both ends with 
three loads. 

Table 1. Wire parameters 

ρ 1.85⋅10-8 Ωm 
q 1 mm2 
l1 27.027 m 
l2 54.027 m 
l3 27.027 m 
l4 27.027 m 

 
 



  SŐRÉS AND FODOR 

Hungarian Journal of Industry and Chemistry 

86 

considered. 
The resistances of all sections of wire are 

computable using Eq.(1). The calculated resistances of 
the sections of wire are R1 = R3 = R4 = 1 Ω and R2 = 2 Ω, 
which were used in the OMNeT++ simulation. 

 R =  2 ρ l / q (1) 

The selected resistance values are far from the 
resistance of wire used in real distribution systems, but 
the calculations are simplified and the illustration of the 
results more obvious. The values of current loads for 
each load were I1 = 10 A, I2 = 16 A, and I3 = 5 A. 

2.1. Classical Method of Calculating the 
Voltage Drop 

First, the voltage drop of a distribution system was 
simulated, in order to calculate the voltage drops using 
the classical method. Our system consists of three loads 
and it is fed from both ends. 

The current of the first and second feeding points 
should be II and III, respectively. By applying 
Kirchhoff’s Law, Eq.(2) is defined as: 

 II + III = I1 + I2 + I3 . (2) 

The total length of the wire is calculated as: 

 Σ l =  l1 + l2 + l3 + l4 . (3) 

If II and III are known and the load currents are 
subtracted from one of them, a load that is fed by both 
ends is identified [4, 5]. Afterwards, the electrical 
network can be separated to obtain two networks fed at 
one end. The method of calculating, for example, II is as 
follows: 

 II Σ l =  I3 l1 + I2 (l2 + l3) + I1 (l4 + l3 + l2) . (4) 

Using Eqs.(2) and (3), the results of the 
calculations of the total current, currents of feeding 
points, and the length of the wire are I1 + I2 + I3 = 31 A, 
II = 15.4 A and III = 15.6 A, and Σ l =  135 m, 
respectively. From II and III, it can be determined that 
the voltage drops accotding to Ohm’s Law. The 
voltages of the loads are U1 = 214.6 V, U2 = 203.8 V, 
and U3 = 214.4 V. 

2.2. A Method of Calculating the Voltage Drop 
Based on the Node-Potentials 

The previously presented method can be easily used to 
calculate networks consisting of topology fed at one end 
as well as at both ends. However, our electrical grids are 
obviously not that simple, see Fig.2 or they can even be 
more complex. Furthermore, in this kind of method 
implemented using OMNeT++ the presence of a small 
solar plant on a rooftop is hard to handle. 

Another method of calculating the voltage drops 
and currents was identified. Using the node-potential 
method, any parameter of an electrical network can be 
calculated. To apply such a method, the feeding points 
with voltage sources, the loads with current sources, and 
the wires with resistances were modelled (Fig.3).  

With this method the feeding points are modelled 
with voltage sources exhibiting constant voltages, which 
results in a crucial consequence for more complex 
networks. If another feeding point is added to the 
system, some part of it or even the whole network will 
be parallel to the new feeding point, as it is directly 
connected to the ground. That would make the 
investigation of the system and the handling of complex 
grids easier. Of course this is only a theoretical method 
with many limitations and conditions, but it can be a 
good basis on which to start our investigation, plus the 
method can be developed. Later new elements, both 
linear and non-linear, can be added to the network. 
Although the focus of this paper was linear time-
invariant systems. 

The electrical circuit can be transformed into a 
directed graph, where the direction of the edges is the 
same as the direction of the current in calculations. In 
this case our network possesses six potentials. Two 
potentials of the feeding points, three potentials of the 
current sources and the ground potential (Fig. 4). 

The index of the nodes is identical to the index of 
potentials. If we apply Kirchhoff’s First Law to all 
nodes, six equations and in ordinary cases five unknown 
variable potentials from 1 to 5 (the ground potential is 0 

 
Figure 2. A more complex electrical network than 
shown in Fig.1. 

 
Figure 3. The network fed at both ends modelled with 
electrical elements. 

 
Figure 4. Directed graph of the modelled circuit. 
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V) will results so the linear equation system can be 
solved. They can be arranged them into a vector Φ. 

 Φ  = 

𝛷!
𝛷!
⋮
𝛷!

 (5) 

From the potential, voltages can be calculated 
from Eq.(6). 

 U = Φi – Φi+1 (6) 

Obviously the voltages can be arranged into a 
vector U, similarly to vector Φ. From the resistances, a 
resistance matrix R or conductance matrix G can be can 
created. For the node-potential method, a special matrix 
was used. Once again, the central concept is Kirchhoff’s 
First Law. The first row of the matrix contains the 
conductances associated with the first node. The 
direction of the voltage (likewise the direction of the 
current) will determine their sign. 

 𝐆 =  

−𝐺! 𝐺! 0 … 0
𝐺! −(𝐺! + 𝐺!) 𝐺! … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝐺!

 (7) 

The potential vector can be reduced by omitting Φ0 
thus yielding a reduced potential vector Φr. Of course 
the current matrix labeled I can be used. 

 𝐈 =

𝐼!
𝐼!
⋮
𝐼!!

 (8) 

Ohm’s Law helps to calculate the unknown 
values of the network based on Eq.(9).  

 I = G × Φ r (9) 

In the method of node-potentials, the potentials are  
considered to be unknown, while the other parameters 
are given. As a result, matrix Φr contains all parameters 
that should be calculated. In the present situation the 
two potentials of the feeding points are considered to be 
known, 230 V and the ground potential is 0 V. Each 
current value of the loads is known, but the currents of 
the feeding points are unknown. Therefore, the matrices 
should be modified so that all unknown variables will 
be present in one matrix, X, and all known parameters 
in another one, C, a constant matrix. The G matrix must 
be used as well and denoted by Gm. 

 𝑿 =  

𝛷!
𝛷!
𝛷!
𝐼!
𝐼!!

 (10) 

 𝑪 =  

𝐺!𝛷!
−𝐺!𝛷! + 𝐼!

𝐼!
−𝐺!𝛷! + 𝐼!

𝐺!𝛷!

 (11) 

 𝑮𝒎 =

 

𝐺! 0 0 1 0
−(𝐺! + 𝐺!) 𝐺! 0 0 0

𝐺! −(𝐺! + 𝐺!) 𝐺! 0 0
0 𝐺! −(𝐺! + 𝐺!) 0 0
0 0 𝐺! 0 1

 (12) 

By arranging the three matrices into one equation, 
we get 

 C = Gm × X (13) 

Eq.(13) was solved using Gauss-Jordan 
elimination method and the same results presented 
earlier for I1 + I2 + I3, II and III, Σ l, U1, U2, and U3 were 
obtained. To make use of the Gauss-Jordan elimination 
method, the modified conductance matrix with the 
constant matrix had to be extended. With the help of a 
newly created matrix Ge,  the elimination process 
yielded the values for vector X directly. 

The extended conductance matrix (Ge) is as 
follows: 

𝐺! 0 0 1 0 𝐺!𝛷!
− 𝐺! + 𝐺! 𝐺! 0 0 0 −𝐺!𝛷! + 𝐼!

𝐺! − 𝐺! + 𝐺! 𝐺! 0 0 𝐼!
0 𝐺! − 𝐺! + 𝐺! 0 0 −𝐺!𝛷! + 𝐼!
0 0 𝐺! 0 1 𝐺!𝛷!

 

  (14) 

2.3. Comparison of the Two Methods 

Although both calculations yield exactly the same 
results, in our opinion the second one is preferred. The 
structure of the matrices indicates that it can be applied 
to even more complex grids, e.g. in radial topology. 
Another advantage of the node-potential-based method 
is that the direction of the load currents is irrelevant. For 
example, even a small solar plant on a rooftop can be 
simulated. 

3. Simulation with OMNeT++ 

The OMNeT++ 4.x Integrated Development 
Environment is based on the Eclipse platform, which 
has been extended with new editors, views, wizards, and 
additional functionality. Although OMNeT++ is not a 
network simulator in itself, it has gained widespread 
recognition as a network simulation platform in the 
scientific community as well as in industrial settings, 
and has built up a large community of users. 

The most common area of application of 
OMNeT++ is the simulation of telecommunication 
networks. The simulator itself is message-based, so our 
electrical distribution system had to “communicate” via 
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messages, which is rather unusual in terms of physics or 
electrical engineering. OMNeT++ provides component 
architecture for models. Components (modules) are 
programmed in C++, then assembled into larger 
components and models using a high-level language 
(NED). 

OMNeT++ simulation comprises three different 
files, which are (i) Source code (CPP), (ii) Network file 
(NED), and (iii) Configuration file (INI). In OMNeT++ 
modules are defined, which can communicate via 
messages. Both modules and messages are special C++ 
objects. In the source code, we can specialize our 
modules, and define their tasks precisely. The network 
file contains the actual topology of the network system, 
and the position and names of the used modules as well 
as their connections. With the aid of the configuration 
file, other network settings can be specified, though 
none were used in our simulations. 

All modules have four functions, which can be 
defined by users. In our simulation, only two of them 
were used; the initialize() and handleMessage() 
functions. In the initialize function the initial parameters 
of the modules can be set, in the handleMessage() 
function the action in case of an incoming message can 
be declared. With these functions, completely different 
modules can be developed.  

The main idea was to show the current or energy 
flow via messages in our system. It worked quite well in 
the case of a system fed at one end. Although because 
of the message and handling of messages inclinations of 
OMNeT++ in systems fed at both ends, the energy flow 
was not so easy to show. 

3.1. Implementing the Distribution System in 
OMNeT++ 

The distribution system shown in Fig.1 had to be 
implemented. It is obvious that we have at least three 
different types of modules exist in this network as 
follows: (i) feeding point, (ii) load, and (iii) connection 
between them. The implemented electrical distribution 
network is shown in Fig.5.  

By analysing the topology more closely, we could 
identify another module could be identified, connecting 
two wires and a load, the node. Nodes are important 
parts not only of grids with their topology, but also of 
radial grids. 

The previously used module is not shown in Fig.1 
but there should be a ground point to make our 
simulation easier and clearer. This ground point module 

is the most important as it carries out the main 
calculations and connects the loads to the producers. 
Table 2 shows the modules and the names used in our 
source code and files. 

3.2. Modules and Messages 

The class of messages possesses several variables, 
including a void-type pointer called contextPtr, which is 
a user-defined pointer. In our simulation, this pointer 
was used to send data to modules. It points to a class, 
which contains the used variables such as voltage, 
current, effective power, reactive power, resistance, etc. 
Of course, some of the variables are used in only one 
module (e.g. the resistance in wire module), and some 
in all of the modules (e.g. voltage, current). In the 
constructor, all variables were set to zero. 

The simulation consists of cycles. Each cycle 
begins with the producers sending messages, and ends 
when they receive their messages from ground modules. 
In simulations, the Event Logging (EV) function can be 
used to log the parameters or result(s) of the 
calculations. There are two feeding points in all 
simulations, though loads are user-defined (N) in pre-
processor instruction where both two- and three-point-
loaded networks can also be considered. 

The first module is called Producer. It exhibits a 
constant voltage value set in pre-processor instruction 
#define UT 230. In advanced simulations, it should be a 
user-defined value, and it is not necessarily constant. It 
could be a function as well, but in this simple 
simulation, it will remain constant throughout the whole 
process. At the start of the simulation, only the voltage 
of the producer is known, but the current and power are 
unknown parameters until the end of the turn. Thus, 
these values are set to -1 at the beginning. All three 
parameters are set in the initialize() function. The next 
stage of the module is handling an incoming message. 
The incoming message is actually a pointer to the 
message. At first, in all modules, the values of the 
pointer were stored as local variables were identified. 
This is very useful as during simulation some memory 
allocation problems. The message contains information 
only about the currents (the voltage remains constant). 
The current of the producers is set to the value from the 
message. The power is calculated from the current and 
voltage values. The module is connected to the ground 
and one-wire modules. The producer module logs the 
voltage, current, and power. 

 
Figure 5. The schematic of the network using 
OMNET++. 

Table 2. Summary of modules used in OMNET++ 
simulations. 

Parts of the system Module names 
Feeding point Producer 
Load Consumer 
Connections Wire 
Node Node 
Ground point Ground 
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The second module simulates the load and referred 
to as consumer. It exhibits a constant current and power 
factor. Both users are defined. Current values are the 
same as discussed above in Section 2. From these and 
the voltage from the incoming message, the module 
calculates the power and reactive power. This block 
sends the current value to the ground block for further 
calculations. Consumer modules are connected to one 
node and the ground module, which logs voltage, 
current, power, reactive power, and the power factor. 

In real networks, the connecting wires exhibit 
resistances as well, causing a voltage drop in the 
system. In our example, this is desirable, almost 1 Ohm, 
but our calculations are simple. In the initialize() 
function, the lengths from Table 1 and R1 to  R4 
resistances from Section 2 are set. The wire module 
calculates the voltage drop simply with Ohm’s law. 
Obviously, it shows a useful value from the second 
cycle, as the current is negative until that turn. Wires are 
connected to one producer and one node or between 
two nodes. Wires log the voltage drop, current, 
resistance and length.  

The Node module is especially useful in radial 
topology, but also implemented here as well. The aim of 
this module is to distribute current by applying 
Kirchhoff’s First Law to our network. It works only 
after the first ‘initial stage’. The module is connected to 
two wires and one consumer module. It shows the value 
of currents. 

The ground module conducts the main calculations 
of the simulation. It determines the exact current values 
for each producer module. The calculations are based 
upon Eqs.(2) and (3). The module takes into 
consideration the length of each wire and the currents 
from the consumer modules and distributes them. The 
ground module is connected to all consumer and 
producer modules in addition to logging the sum of 
currents and the currents for each producer. 

3.3. Simulation  

As stated before, this OMNeT++ simulation can be 
divided into three different stages. At first, the 
OMNeT++ simulation engines build the network with 
the user-defined values for each module. This is referred 
to as stage 0, and there is no logging occurs here. In 
other simulations, logging is possible here as well, but 
in this case this opportunity is omitted. 

The next stage, or the first cycle, starts when the 
producers send their first message, and ends when they 
get their message from the ground module. This part is 
not necessary in other kinds of simulations. In this part 
all modules have their own user-defined values, but they 
do not have any effect on the other modules, e.g. 
producers exhibit their own voltages, but their current 
and power are both -1 or the voltage and current of 
wires are both unknown (-1), as shown in Figs.6 and 7.   

At this stage, the voltage of the consumers is 230 
V, and its powers are calculated with this voltage, 
shown in Fig.8. The first cycle of the simulation is 
examined in Fig.9. Currents are “delivered” between the 

modules throughout the whole network system. 
However, at the end of the initializing stage, the ground 
module calculates the sum of currents of the consumers 
and the currents of each feeding point (Fig.10). Thus, 
the producers receive their currents, and the correct 
calculated values, e.g. voltages, powers, etc. will be 
obtained without any unknown parameters (Fig.11). 

 
Figure 8. Consumer logging during the first cycle. 

 
Figure 9. The first cycle of the OMNeT++ simulation. 

 
Figure 10. Current distribution. 

 
Figure 6. Wire logging during the first cycle. 

 
Figure 7. Node logging during the first cycle. 

 
Figure 11. Voltage, current and power of the first 
feeding point. 

 

 

 
Figure 12. Logging of wire, node, and consumer 
modules in the second cycle. 
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The previously shown modules can be examined and it 
can be concluded that our voltage and current values are 
known (Fig.12). It could be interesting to see how our 
nodes work after the first stage, when applying 
Kirchhoff’s First Law (Fig.13). We have to mention 
that in the case of node modules Iout means the current 
of the consumer subtracted from Iin. 

3.4. Validation of the Simulation Results 
It has been seen that the results of the OMNeT++ 
simulation and the results of the classical method of 
calculating are the same. As an example, the results of 
the voltage drops are shown in Fig.14.  

3.5. Topology 
All electric systems have unique topologies the position 
of the components or element(s) and the wires that 
connect them. By considering a network fed at both 
ends with only one node, it conatins one node module 
and two connecting modules between the feeding points 
and the node. In the case of a similar network with two 
loads there are two nodes and three connecting 
channels, as in the previous case. From this point of 
view the simulated network can be checked, this one 
contaists of three loads and four channels. If a gred fed 
at both ends with N loads (where N is a positive integer) 
exists then  the number of wire modules, w (also a 
positive integer) can be calculated as follows: 

 w = N + 1 (15) 

Eq.(15) is only true for this type of topology. For 
example for a topology in which there is only one 
feeding point, the number of loads obviously is equal to 
the number of wires (and nodes). A proven formula can 
be applied to more complex topology variations. The 
advantage of these formulae are that they automate the 
creation of NED files either from another piece of 
software or implemented from OMNeT++. 

4. Summary of Simulation Experiences 

It can be concluded that our DES program works 
properly as shown in Section 3.4. Obviously there are 
some advantages and disadvantages of this method. 

4.1. Advantages 
First of all it is an open-source platform, thus it can be 
modified and developed easily. The use of other 
auxiliary pieces of software can be added, too. As the 
program includes a graphical viewer, individual 

simulation results can be followed. The message 
direction is the same as the current direction, thus a 
negative current means failure in the program, or 
negative values can be defined as unknown parameters. 
Our system can be observed for values of interest. With 
this definition the model later may be used in transient 
analysis to consider the reinitialization cycles each time. 

4.2. Disadvantages 

On the other hand, as an open-source platform it is still 
in the development phase. Sometimes the program gave 
us crash reports during the development phase. The 
message direction is the same as the current direction; 
however, according to the message sending system of 
OMNeT++ extra message(s) can be obtained. 

Another issue is the network description file 
(NED). Each time our network system is modified, the 
whole code needs to be modified, including the 
connection definition part, as well as the gate 
declaration. Topology statements are omitted. Although 
the time of the simulation is user-defined, all the steps 
are to be followed the simulation may be rather lengthy. 
In this case, the simulation of another type of electrical 
distribution system was attempted, e.g. for a system fed 
at only one end, a totally new program has to be written. 
This program can be solved only if a formula is created 
for each different type of topology. Real electrical grids 
may be more complex than the situations our DES can 
handle at the present. 

5. Conclusion  

The models of the electrical components have been 
developed in this paper based on engineering principles 
that are able to describe the behaviour of an electrical 
grid. It seems that the OMNeT++ discrete event 
simulator is suitable for the simulation of electrical 
grids. At first we need to fix some problems mentioned 
in Section 4.2. 

A future task would be to implement new 
electrical network components, e.g. photovoltaic power 
plants, wind turbines, and different loads, etc. to the 
simulation environment and subsequently the 
OMNeT++ would be suitable to simulate smart grid 
networks.  

 
Figure 14. Voltage drop of the loads. 

 

 
Figure 13. Applying Kirchhoff’s First Law to the 
Node modules. 
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SYMBOLS  

DES Discrete Event Simulatoion 
EV Event Logger 
I1, I2, I3 currents of the loads 
II, III currents of the feeding points 
l1, l2, l3, l4 length of the wires connecting loads and 

feeding points 
N number of loads 
w number of wires 
q diameter of the wire 
U1, U2, U3 voltages of the loads 
UT voltage of the feeding point 
ρ resistivity 
NED Network Description File 
INI Initialization file 
Φ potential 
Φ potential vector 
Φr reduced potential vector 
R resistance matrix 
G conductance matrix 
Gm modified conductance matrix 
Ge extended conductance matrix 
I current vector 
X vector of variables 
C vector of constants 
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