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The occurrence of thermal instability of large
. chemical reactors is a well known fact. Experience has
shown that during the start and shut down periods, the
instability can be considerable and even dangerous. On
more than one occasion it was observed that a relati-
vely small change of the feed rate (B), the concentra-
tion (c_) or the temperature of the feed (T ) caused a
rapid drop of the temperature and conversion of a wor-
king reactor, characterized by high temperature and
high degree of conversion. There are apparent contra-
dictions in the observations of reactors running at
low temperature and with & small degree of conversion,
that an insignificant alteration of the previously
mentioned parameters resulted in a sudden increase of
temperature and conversion. In practice, this latter
phenomenon was called "ignition", independently from
the fact whether burning or an increase of the cata-
lyst temperature only took place. A different type of
instability could be observed and also reproduced at
certain critical parameter <values, when the working
condition of a reactor changed suddenly between the
mentioned limits, and regarding the thermal phenomena,
an oscillation came into existence.

Summing up the experiences, 1t can be stated
that there are narrow unstable domains in the working
conditions of a reactor which cannot be described
merely by the heat balance of the system.

WAGNER [1] first elucidated the causes of this phenomenon
Second World War

in

article was not widely available, and van HEERDEN [2] again
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elaborated the conditions of the stability in 1953. BILOUS and
AMUNDSON’s article [3] published in 1955, examined this thermal
stability, and for this the linearisation of their mathematical
model was used. As a result, numerous researchers have dealt with
the problem. VOLTER and SALNIKOV summarized the publlshed state-
ments in their book [4].

" In the present work it will be shown that in the thermal
sense both the extreme types of reactors, i.e. the adiabatic and
isotherm reactors can be discussed, utilizing the same theory. The
following discussion is based on the well mixed reactors.

Starting with the well known equation (e.g. [51),which de-
scribes the rate of heat generation:

Qg = vy r AH U (1)

It is known that the expression of the reaction rate (v r)

can be divided into the product of two functions, one of these

depends on temperature, the other one is only the function of the
concentration:

vy ) = x(T) 2(e)

In the following, the thermal stability will be examined
only, so the substitution of f{ey = ¢ is introduced, i.e. the de-
rived equations refer +o the reactions of first order, but the
thermal considerations are also valid for reactions of any kind of
order.

The ARRHENIUS’ equation is commonly accepted and valid for
the description of the k{T} function:
S
() =ae F7T {2)
In the case of tank reactors it is known [61 that the actual
concentration ¢ or the degree of conversion x ; is the function
of the initial concentration {u } and the mean residence time (€}

oy

substituting Bg. {2} into this relatlcn'
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1 1
c=c (1 ~-%)=c¢ = ¢ (3)
° 1+ xE © -%—T-
1 + Ae %

i.e. the generated heat given by Eq. (1) is as follows:

E
- %
AQ, = v,AH ¥_ ¢ 2.2 —_
R i R "o E B
> 1 + Le BT ¥

Using - simple transformations, the £ollowing egquation of

suitable form can be written:

- E_
- BT
AQR=viAHVRc%Ate —5 {5)
1 +A%T e T
If in Eguation (5) all the quantities - with the exception
of the temperature - are constants, then the heat generated in an

adiabatic reactor will be proporticnal with the following function:

For isotherm reactors, this seems tc be less of a problem
because the substitution T = constant theoretically hclds. However,
this is valid only in principle, chemical engineers are aware that
isotherm reactors work in a similar manner to heat exchangers, and
there exists a certain inmer temperature (T) which differs from
the temperature of the wall {T4); this forms the boundaries of
their working conditions and determines their dimensicns. There-
fore, in the practice either the amounts of heat generated at the
mentioned temperatures or the quotient cf these heat guantities
have to be taken into account. Regarding Equation {4} at tempera-

tures {T) and {T;}, and taking their guctient:
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£
Ad 1+ -—1_ eRT1
Aé* = “R = At (1)
R AQ E
RT 1+ 1 eRT
A%

If in this case A, E, E and R are constants, then a relation

can be obtained which is similar to Equation (6):

v = 1T + e (&)

Plotting AQR or AQ§ vs. T, the result is a sigmoid heat ge-
neration curve, known from literature. As an example, HODOSSY’s
work [7] can be mentioned. Here the author examined the hydrogena~-
tion of furfural +o furfuryl alcochol and plotted the measured

values. The results were the mentioned sigmoid curves.

In addition, for setting up a relation with Equation (6)
valid for adiabatic reactors, the numerator and denominator of
Equation (8) is multiplied by f[exp(- 1/T)]1 and transforming the
result we obtain:

-1 1 _ 1
e T eT1 T
T* = 7 + —T (9)
1T + e T T+ e T

It is now evident that although the conditions are equal,
why the degree of conversion in isotherm reactors is higher compa-
red to the same one of adiabatic reactors. The first term of Equa-
tion (9} is identical with Equation (6} valid for adiabatic reac—
tors, and to this a second term is added. If the latter is marked
with ¥4, thusg:

Y¥ = ¥ + ¥,

{3103
LEL S

The above relation is shown in Fig. 1, Introducing the de-
signation
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so the result is basically the same, but it is expressed diffe-

rently as it is shown below:

p /T

1+ e—1/T

o~
[
=

—

T* = Y +

or
~1/T

Y#* {1 + D} = {1+ D) Y (12}

i

R S
i+ e_1!T

Although there are significant differences between the work-
ing conditions and characteristics of adiabatic and isotherm reac-
tors, the conclusion can be drawn that they can be treated theo-

*etically on the basis of the same principle.
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This result provided ancouragement to proceed further,
transgressing the thecry and methods usually applied in chemical
enginearing science, and to introduce the methods used in process
control for the examination of the thermal stability of chemical
reactors. .

At first it was assumed>that a ‘chemical reactor as a whole
is a dynamic system which can exist in different steady states.
The response of the system was examined: if it is disturbed
whether it returns +to the previous steady state or does not.
LJAPUNOV’'s first method was used in the examination of small dis-
turbances, but if the disturbances were major, the non-linear mo-
del was solved and the plotted phase-plane provided the answer to
the guestion.

The steady states of the system can be determined by the
help of the

1. main isoclinics,
2. heat generation and removal curves,
3. bifurcating diagrams.

The last two methods can ke applied well in practice and
with their assistance the optimum working parameters of a reactor
can be determined. The methods used and the experiments will be

a
discussed in the fellowing caper.
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SYMBOLS

pre-exponential factor (1/sec)

h<

feed rate (cu. metre/second)

td

c concentration (kg moles/cu. metre)

concentration of the feed {kg molesjcu. metre)

xg

E activation energy (kilocalories/kg mol)
AE heat of reaction (kilocalories/kg mol)
k reaction rate constant (1/second)

AQR “~heat generation rate (kilocalories/second)

AQRf heat generation rate at the temperature of the wall

(kilocalories/second)

AQ§ = AQRJAQRf {(dimensionless)

x reaction rate (kg moles/cu. metre)

R gas constant (kilocalories/kg mol °K)

£ mean residence time {second)

T temperature (°K)

T feed temperature (OK)

T4 wall temperature (CK)

Vo reactor volume {cu. metre)

x degree cf conversion {(dimensionless)

v stoichiometric coefficient of the i~-th component

{dimensionless)
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PE3KME

HeycrofiukBoe NMOBEABHME HEMNOCTORHHOCO ThOA G2ABWHX  XHMHYECHHX
GeanTOopOB ABJ/ASTCA XODOWO M3IEECTHHM ABASHMEM. Hak noxaawsaeT npak-
THHA, HEYCTORYNMBOOTL MOMET OWTb AUSCALHO 2HEZYHTEALHDY M Aawe opac-
HOM, OCOGEHHO B CAy4ae NyCHa WAM ucTaHoma peaxTopa. YHYacTo 3amevanu
470 Yy DBaKTOpos, padoTamiux B DaMMMaX C BHCOMOH TeMnepaTypod u Be-
COHDH CTENEBHbY NPEEPANEHME, HIMBHEHHES cHepocTy nogaqu sewectsa {(B)
HonyeHTpayu  {cg) unm Temnepartypy (Tp) NpKHBOAYA0 H HEOHHOSHHOMY
SHUEEHHIS TEMIEPaTYpH ¥ HOHBEDPCHM. HameTowH NOOTHBODBYMBHM TOT O3HT,
HTC HE3HAUMTE/b! 06 W3MEHEHME VHE3aHHWUX NEpPaMETEOB NPHECIMT K GHay-
HOOSRAS3HOMY YBENMYEHUE TeMepaTyps W CTenedu npespauieHua. B npan-
TuHe of 3TOM nocRegHEM ABASHUM TOBOPAT, Y470 peadTop "saropencsa”,
HE3EBHCHMO OT TOro S2i0TEMTENLHO K NPOWCXOSHT TOpeHHe WMWiK  TOARHO
HBOKWAAHHEN pasorpes Hatanusatopa. B oTAMYHE 0T BHWEeSNUCAHHOCG,
BBTORE HAalAKZanNM v HEBOARAKPATHO BOCADOWIEEAK M ONPRASABHHLX HDH-
THHBOHAX MapameTpax TEHYE HEyoToRYMEOSSTh, HOCga AoBe4eHUEe peanTopa
5 DMPBLENSHHEX MDaHMLAX HEeOMWIAHHG WSMSHgRQoL, peaKTop  ooueaaupo-
Ban,

Qénémua PES¥NLTATH FOMHC OHa38Th, 4T0 CYHBCTAYKT TaHue  yaxde
HEYGToWYUERE yoags paloTH pEERTOpPa, HOTOpME HEALIR ORUCATE ypas-
HEHMEM TEenagsers SHEE CHOTSHMH, .
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