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Modern chemical engineering work requires all
the transport ©phenomena to be known which accompany
the physical or chemical changes that occur in
operational units.

" A fev years ago, studies were started which were
aimed at finding a method that would enable the
modelling of the operational wunits, procedures and
apparatus used in the mineral o0il and the petro-
chemical industry. This work -was based on the known
fundamentals of theoretical reactor technigques.

MATHEMATICAL DESCRIPTION OF THE EXTRACTION CF A MULTI—COMPONENT

SYSTEM

It is known from literature [1, 2, 3] that the study of
transport phenomena is ‘based on the continuity rule, whose generai

expression is the following:

IpA-
div J = — = O (1)
it

It follows from Equation (1) that the flux density vector

is an unequivocal function of the density of the component. It is

not possible tc apply this formula in the case of systems in

which the individual composition cannot be determined. This diffi-
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culty can also be overcome in the case of multi-component systems
such as those encountered in the mineral oil and petrochemical
industry in the following way: Equation (1) is divided by the mean
density of the system, and accordingly the concentration will be
characterized by the mass fraction in the equation. The general
continuity equation expressed with mass fractions was described in
literature [1 - 7] and.this was applied for modelling the complex
systems. )

. A - Dv2 ‘
= VXAV DV XA + wBXA * vAP(XA) (2)

The individual components are not known in complex systems.
However, analytically well-defined component groups can always be
separated and the mass fraction of these can be accurately
determined.

The studied systems cannot be modelled with the application
of the Equation (2) since they contain two or more phases. It is
readily understood that with regard to phase distribution the
‘definable component groups do not behave as individual compounds.
Consequently, a second modification was introduced inasmuch as
Equation (2) was not applied to each group of components, instead
we selected the group most characteristic of the complex system.
This group was termed the "basic component group" and the opera-
tional units were modelled only with the variations of this group
in time. 1In this way the system could be described with a sing.e
mathematical expression that could be handled in a simple manner.
Due to the twofold simplification,the mass flow equation expressed
with the original density becomes distorted, since the dimension
of Equation (2) is (hr_l), and consequently the diffusion,mz:eri-
al transfer, and kinetic constants contained in the equati-n can-
not be compared to the constants determined during the basic re-
search. However, the given complex systems can be very adequately

described by these constants which are characteristic of the given
system-.
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With the technique briefly described in the foregoing, we
succeeded in riodelling the asphalt-blowing reactor cascade of the
Zala Mineral 0il Company [5], dimensioning the blowing reactors,
their scaling-up and technological optimalization [6]. Commission-
ed by the International Atomic Energy Commission, it was developed
a new technology based on similar theoretical fundamentals for em-
bedding isotope waste in bitumen; this procedure was realized both
in a batchlike and in a continuous process and dimensioning and
designing problems were also solved [77. '

At present, we are ehgaged in modelling a number of proce-
dures and apparatus for the mineral 0il industry using the above
method. From these, the modelling of the phenolic mineral oil ex-
traction column of the Duna Mineral 0il Company [81 will be de-

scribed in this paper.
A number of methods were proposed in literature for the mod-
It is a unanimuous

elling and calculation of extraction processes.
these meth-

opinion that in the case of more than four components,
ods - which can be regarded as classical today - do not yield
reliable results [9]. Accordingly, Equation (2) was selected as
the basis of the modelling.
Extraction is a continuous, stationary operation in which no
and diffusion inside the phases is nQt
y it is justified to take into considera-

chemical reaction occurs
dominant and, accordingl
tion only two terms of the Equation {2): the convective and the

transfer terms:

-x"-) = 0 (3)

a a a
- B(XAO - XA) + VEktrans(xA A

Equation (3) is a relationship which was applied for the basic com-

ponent group and this allowed to solve the questions connected

with lubricating oil extraction.
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EXPERIMENTS

Calculations were carried out concerning the industrial-scale
extraction column operated at the Duna Mineral 0il Company for a
number of various feedstock—phencl systems. From among these, the
calculations concerning a residue—phenol system will be dealt
with here. The residue was obtained from a mineral oil of Romash-
kino origin by propane deasphalting.However, it should be stressed
that the used method can also be applied to systems built up with

other extraction solvents and other extraction columns.

The calculation of the extraction process by Equation (3)
~an be carried out only if the mass fraction of the basic compo-
nent group designated by XX in the lubricating oil, containing ten
of thousands of components, can be determined 1in some way. For
this purpose, the complex system had to be simplified to two
groups of components, these two groups being different with regard

to behaviour from the viewpoint of extraction.

Selection and Determination of the Basic Component Group

One of the two above-mentioned component groups = desig-
nated in the following by "A" - 1s immiscible or only partially
miscible with the solvent, whereas the other - designated group
"C" - is totally soluble in the solvent under the conditions of

the extraction. The extracting solvent is component "B".

It is a basic requirement that the component groups follow
the requirements of mass balance under the conditions encountered
in the extraction process.In addition, the evaluation of the equi-

librium states which develop among +these component groups must
unequivocally be possible.

Component group "A" comprises saturated aliphatic and naph-
tenic mineral oil hydrocarbons, whereas "C" is a group composed of

monocyelic and polycyclic aromatic hydrocarbons.
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From among the processes for the separation of saturated and
aromatic hydrocarbons that are at present known, the elution
liquid chromatographic technique was found +to be most suitable.
Aromatic and saturated hydrocarbons can be sharply separated from
each other, provided that the adsorbent and the eluents are suita-

bly chosen.

Chromatographic separation was carried out on a column of
23 mm I.D.and 1500 mm length,filled with wide-pore silica gel made
in the German Democratic Republic. 3 per cent - with reference to
the weight of +the adsorbent - of the oil to be separated,
dissolved in hexane,was placed on the adsorption column. 1,000 mi
analytical-grade n-hexane, 1,000 ml analytical-grade benzene and
1,000 mi analytical-grade acetone were used as eluents.The eluates
obtained with these solvents were séparated from the solvents,
their weights and refractive indices were determined. The first
eluate, mainly comprising saturated hydrocarbons, 1s in the
following described as component group "A", immiscible or only par-
tially miscible with the solvent. The eluates obtained with ben-
zene and acetone were united and designated as component group "C",
mainly containing monocyclic and polycyelic aromatic hydrocarbors
ind resinuous substances.

a number of correspording

The chromatographic analysis ¢f
raffinate-extract pairs and feedstocks was carried out and it was
found that the component balance established for the "A" and "CM
component groups of the raffinate-extract pairs was in most cases
in agreement with the content of the feedstock on the cerrespending

omponent to an accuracy of 1 per cent by weight.

(]

o

The determination of the amounts of ccmponent groups "A" an
.
I

"C" by the chromatographic technique is rather time-consuming. It

Was consequently studied the possibility of the determination of
add

n i e qualitative parameter,

the composition on the basis of an

1

tiv

There is a considerable difference between the refractive indices
eluated with hexans and benzene, respectively; th
s

imple, rapid procedure

°f  fractions

determinaticn of the refractive index is a
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‘and it requires only a small amount of sample; furthermore, the
connegtioh between the refractive indices on the mixtures made of
the pure hexane and benzene fractions, and their composition is a
linear one. Accordingly, this qualitative characteristic was cHo-
sen as the basis of the concentration determination in the follow-
ing. The concentrations of the "A" or "C" components in any of the
feedstocks or extraction products can be calculated by a simple
proportion if the vrefractive indices of the components and in
addition those of the hexane eluate corresponding to the 100 per
cent component "A" content and of the benzene eluate corresponding

to the 100 per cent component "C" content are known.

In order to check whether the "A" and "C" component concen=
tration values thus calculated conform to the requirements of mass
balance, and to what extent they agree with the results of chroma-
tographic analysis, they were compared with the component balances
calculated on the basis of refractive indices. It was found that
the difference between the component balance of the raffinate-
-extract pair and the corresponding component content of the feed-
stock is lower than one per cent.

In order to illustrate the foregoing, the "A" and "C" compo-
nent content determined vrespectively by chromatography and re-
fractive index measurement, the component balance of a feedstock,
prepared from Romashkinc crude oil, and in addition those of raf-
finate-extract pairs prepared from the same under different opera-
tional conditions and with different yields, as calculated with

the two different methods, are summarized as an example in Table 1.

A comparison of the component amounts and balances deter-
mined by chromatography and those calculated on the basis of the
refractive index measurement reveal that most of the data deter-
mined by these two techniques agree within 2 per cent. It should
be stressed that in the Equation (3), which is the basis of the
calculations, the basic component group designated XX is alwayé
the mass fraction or amount (in percentage by weight), of the

component group "A", calculated in accordance with the foregoing
and referred to the refined phase.
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During the industrial-scale experiments it were determined
the relationship between raffinate qualities, yield data and
technological parameters. As an example, the results obtained in
experiments on the Romashkino residue oil-phenol system are
described.

Industrial-scale experiments

Calculations were carried out in connection with the phenol
refining column of the annual 300,000 to 350,000 tons capacity
operated at the Duna Mineral 0il Company.

The extraction column is 33.1 metres high, 4 metres in
diameter and equipped with 2u plain grids and 2 bubble cap plates.

Its simplified drawing is shown in Fig.l.

In order to increase the sharpness of separation, water
feeding and z temperature gradient were applied. Phenol is intro-
duced over the top plate, <=he feedstock and an azeotropic water-
-phencl mixture, containing approximately 90 per cent by weight

d

water, is introduced at the 21st plate.

The temperature gradient is controlled by circulation-type
reflux. A given porticn of

ol
O

the continuous phase is withdrawn and

,*J

an 2

x

then after cooling i Ternal heat-exchanger is fed back below
r

the plate. The affirnat and the extract solution are removed

e
after adequate settling, at the column head and at the bottom.
The values ¢f the material stream entering intc and leaving
the column in cu. meTres per hour units, and the temperatures at

different points of the column can be read from the instruments.

There are nine sampling places on the column. The solvent-refined

-product is taken from the tor of the cclumn, and the solvent-
~extracted bottom produst  from its lower part. Sampling points
designated I - Y. are <*he sampling nozzles located at the upper
secticn of the ccolumn, be*tween the 5th and 13th plain grids, and
3 £
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Raffinate

Phenol . /N | ]
T !
————— e
_____ D d -
_____ Sampling
————— D tOPS
_ :__ < ,
Residue T T T g
Azeotrop ——— = 3)
T :
IR Reflux
Extroct

Fig.1. The extraction column.
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the point of extract reflux removal, from under the 22nd and 2u4th
plates. Due to technical difficulties, samples were not taken reg-
ularly from the extract reflux removal point under the 2ith plate.
In addition to solvent-containing samples taken from the column,
solvent-free raffinate, extract, feedstock and azeotrope samples

were also taken in each industrial-scale experiment.

In the laboratory processing of the 9 or 8 samples taken
from the extraction column it was endeavoured to separate the
phases in such a way as to obtain a composition identical to that
actually prevailing at the place of sampling in the industrial
extraction column. For this purposas the molten and homogenized
samples were allowed to settle at a temperature equal to that meas-
ured at the sampling point of the extraction column. Separation to
raffinate and extract phases was carried ocut in this way in a

discontinuocus-operation laboratory extractiocn apparatus.

The solven was separated from the raffinate and extract
phases by evaporation and the solvent content of the two phases
was calculated. It was alsc determined the refractive indices of
the solvent-free o©ils and from these were calculated the "A" .4
"TF component content of the oil with the method described in the
previous section. The percentage composition of the ‘three-

n
-component phases was calculated afterwards.

The compositions of the phases alsoc were calculated as re-
ferred to the collective amounts of raffinate and extract phases;
these data, plotted against the length of the extraction column
are shown in TFig.2. The Figure shows, as an example, the results
sbtained in the laboratory processing of samples taken during a
given industrial experiment of the phenolic refining of a Romash-
k<inc residue. The most important parameters were the following:
top temperature SOOC, bottom temperature SOOC, feed 32 m3/hr. oil,
~il to solvent ratic 1/2.1, water content of phencl 3.05 wt.%. The
concentration profile developed along the length of the extractor
was determined in all industrial experiments. It is apparent from
the Tigure that the raffinate-extract phase boundary in this

experiment was very sharp in the extraction column and was located

between the uth and the Sth plate.
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EVALUATION OF THE INDUSTRIAL-SCALE EXPERIMENTS

After the laboratory analysis - according to the foregoing -
of the samples taken during the industrial-scale experiment%
carried out with different parameters, the values of the combined
mass transfer coefficient Kipans were calculated on the basis of
- the Equation (3). The "B" total feed expressed in cu. meters per
hour represents the amount of feedstock,phenol and azeotropic mix-
ture. VE is the free volume between the feeding point of the feed-
stock and the sampling point of the extraction column. The actual
concentration of component "A" at the sampling point of the raffi-
nate phase is Xzo, whereas the concentration of component "A" in

the feedstock-solvent system is Xi,

expressed in mass fraction.

The value of XZn was determined by laboratory equilibrium
measurements, at a temperature equal to that of the industrial
extraction column and at an identical water content in the phenol
and at the oil/solvent ratio prevailing at the point of sampling.
In these experiments, a half-hour stirring and a  one-hour
settling period were applied. Thris +time is sufficient for the
equilibrium state to be reached. XZx represents the component "A"
content of the raffinate phase obtained in the equilibrium
measurements.

The calculation of the combined mass transfer coefficient
is shown, as an example, in Table 2. The data which were constant
during an industrial experiment were especially emphasized. The
data necessary for the calculations, which are different at each
individual sampling point, were summarized. The first five columné
of the Table contain the basic data necessary for the calculation
of ktpans’ whereas the sixth column contains the calculated
ktrans values.

Theoretically, within one given industrial-scale experiment
and at identical technological parameters, identical ktrans
values should be obtained at any sampling point which is over the

oil feeding 1level on the extractor. This was verified by the
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Table 2. Calculation of the ktrans coefficient on the basis of the

industrial-scale experiment of June, 7.
Constant data:

Feedstock component "A" 0.615
Oil/solvent vol. ratic 1:2.27

Mass fraction of oil at feeding 0.7592
Water content cf phenol 2.55 wt.%

X0 = 0.615 - 0.7592 = 0.467

A
B = 132.4 (m3/nr.)

Raff. "A" Raff. phase
Sample . .
- s X X X,
designation B/VE mass fract- A + C mas N o* ¥ rans
ion fraction
Raffinate 0.5kL0 90.90 80.15 0.729 0.756 5.25
I. 1.029 T6.7€ 76.62 c.588 o0.61z1 5.37
II. 1.176 77.79 75.1k 0.585 0.611 5.22
II1. l1.321 77.43 75.h2 0.584 0.611 5.67
Iv. 1.528 76,47 75.85 0.580 0.611 5.52
V. 1.796 75.6€ 75.93 2.575 0.611 5.25
E. refl. II. -6.724 59.78 75.92 0.454 0.69C .1k
E. refl. 1I. -2.354 £1.76 73.68 0.455 0.690 sk
Extract -1.236 61.35 65.50 ¢.bhu2 0.691 .ok
Upper
section
mean ktrans R
Lower
Section
nean k -

trans
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experiments, since the ktrans values calculated for the six sam-
pling points of the upper section showed a good agreement in each
industrial-scale experiment. The ktrans values calculated for the

individual sampling points differ from the mean value by max.

+ 0.29 units which corresponds to a scattering of *+ 5 per cent.

It is apparent from the Table illustrated as an example, and
it was also observed in all the industrial-scale experiments that
there is a difference between the ktrans coefficients, determined
for a section of the extraction column over the oil feeding point
and those determined for a section below it, which amounts to an
order of magnitude. This is readily understood since enrichment of
component "A" in the raffinate phase occurs in the upper section,
whereas samples taken from the lower section contain very low
amounts of raffinate rphase, and even these contain very low
concentrations of component "A": it is the enrichment of component
"C" which is dominant in the extract phase. The absolute values of
the transfer coefficients are very low in the lower section and

the mean deviation from the mean value is + 0.1 unit.

After having come to the conclusion that the XX values can
be calculated to a satisfactory accuracy by means of the combined
material transport coefficient, i.e. that the elaborated method
enables calculation of the XZ values =~ of decisive impcrtance as
regards the quality of the aesired product - to a satisfactory
accuracy, there remained no further task than to determine the
values of ktrans as a function of the technological parameters by
industrial-scale experiments:

Kipane = £(B, wt.% water, T, oil/solvent ratio)

These connections are illustrated in Fig.3. It is apparent
from the Figure that the value of ktrans shows a considerable
- though not 1linear - increase with increasing temperature.
Increasing cil feeding rate causes a slight increase, increasing
oil/scolvent ratic causes a considerable increase in its value;

increasing water content causes the ktrans value tc decrease.
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Knowing the connection between the technological parameters

and the combined material transfer coefficient, the k values,

corresponding to realistic parameter limits, can bet‘zgiablished
by interpolation to adequately varied values of the individual
parameters or by slight extrapolaticn. Knowing these ktrans
values, - the XZ values can be calculated. If a sufficient nimber
of experimental data is .available, the solvent-free raffinate "A"
component concentration values can be calculated by dividing the
: XZ values by the experimentally determined mean solvent content
expressed in mass fraction. These values are brought into corre-
lation by means of a calibration curve with one of the qualitative
parameters of the raffinate which is impor+ant from a practical
point of view.

Each of the starting materials studied by us - heavy paraf-
fin distillates made of various raw mineral oils and residues
mentioned in the foregoing - were processed to motor oil. Conse-
quently, the parameter dimpcrtant from a practical point of view
was the viscosity index of the raffinate which had been deparaf-

finized to a solidification point of -15 to -16°C.

A czlibration curve was prepared representing the connection
between the refractive index of the paraffin-containing o0il and
the viscosity index of the deparaffinized oil for the feedstocks
and the raffinates made from them. This calibration curve is
shown in Fig.4. It is apparent from the Figure that this connection

can be determined only with a certain error.

The connection between the refractive index and the concen-
tration of component "A" is also known, since the value of "A" is
calculated on the basis of the measured refractive index values,
as described in the previous Section. Accordingly, the quality of
the product can unequivocally be characterized by the X: and "A"
component concentration values used for the calculation, and by

the data on the refractive index and viscosity index.

During the industrial-scale experiment the raffinate yield

data were also determined, partly on the basis of instrument
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Refractive indices at TOOC of solvent-free raffinates,
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ized products. o residue, produced in 1966; x residue,
produced in 1968; & residue, produced in 1969~-1970.
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readings and tank levels, and partly on the additive qualitative
characteristics such as e.g. density and refractive index. The
range of the parameters studied in the case of the Romashkino

residue was as follows:

Volume ratio oil/phenol 1/2 ... 1/3.3
Water content of phenol (wt.%) 1.5 ... 5.0
0il feeding rate (m3/hr.) ' 30 ... 50
Top temperature of extractor (°c) 80 ... 90
Bottom temperature of extractor (°cy 60 ... 70

The influence of these parameters upon the raffinate yields and
quality was studied in ten industrial-scale - experiments. The

experimental data and the main results are summarized in Table 3.

In Table 3. the yield data, ktrans values were summarized

as the function of the technological parameters. The 'ktrans and
the vyiels values were determined by graphical interpolation for
all of the following variations: different temperatures at 5°¢
.Steps, 0il feeding rates at 5 (m3/hr.) steps, phenol water content
values at 0.5 wt.% steps and oil-solvent ratios in 1/0.2 and
1/0.4 steps, within the above mentioned ranges of the individual
parameters.

The XZ values were calculated using the transfer coeffi~
cients. With the aid of the above-mentioned connections anc

calibration curve a connection was established between the ccm-

ponent "A" concentration and refractive index, and the viscosity

index of the deparaffinized raffinates.

The relations between product quality, yield and technol-

on the basis of the ten

ogical parameters were calculated
of the

industrial-scale experiments for 300 different variations
The results of these calculations were

technological parameters.
as an example, in

Plotted on nomographs similar to that shown,
Fig.5. Each nomograph shows the raffinate vyield and refractive
index data pertaiming to constant temperature and
of the oil/solvent ratio for the cases

0il feeding

. °
rate as a function £

various water contents in the phenol.
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In conclusion calculations were carried out in order to
determine the optimum working conditions. For this purpose,
Equation (3) was rearranged to the following form:

: B VE
a  _ ga
ktrans Xy0 Xy
a  _ ya
XA XAx

This form of the Equation corresponds to the functional relation
y = % +  The value of VE i.e. the total volume from the feeding
point to the raffinate removal point of the extraction column is -
constant; in -the case of the industrial-scale column it was
245.2 m3., If it is constructed a system of coordinates on whose

ordinate the values and on whose abscisse the

trans

a a
XAo XA

a a
XA XAx

values are plotted, we obtain a hyperbole. The concentration
values of the quantity in brackets are interrelated according to
the following: ’
Xzo < XZ < XZ!
The above expressions were derived from data pertaining to
Various working conditions and they are illustrated in Fig.6. On
the branch of the hyperbole adjacent to the y axis it were found
Pairs  of values corresponding to higher feeding rates and poorer
Product qualities, whereas on the branch adjacent to the x axis
the corresponding values of small amcunts and good product qual-
ities were found. Accordingly, the y axis is a coordinate propor-
~ Honal to quantity and the x axis is one proportional to quality.
¢ The technological optimum requires the maximum possible yield of
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Fig.6. x and y values calculated from basic data defined for
various experimental parsmeters. Oil/sclvent ratio:
o 1/3.3; A 1/2.9; x 1/2.6; & 1/2.3; O 1/2.0.
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product and simultaneously the best possible quality. However,
these two characteristics are found on the two branches of the
hyperbole in opposite directions, and consequently the optimum is
expressed by the point of intersection of the hyperbole with a
straight line drawn from the origo at a slope of 45 degrees. It is
apparent from Figure 6. that this value is best approximated by
the results of raffinations carried out at higher temperature, at
85 to 90°C.

‘The significance of the method lies in the fact that for one
given feedstock-solvent system it .is sufficient to determine these
connections once and afterwards the production.can continue. The
technological data, which result in a produced of a required
quality at the highest possible yield can be established for any
raffinate quality.

However,the principles and methods described in the foregoing
can not only be applied to extraction-type raffination processes
carried out in industrial-size extraction columns, but also enable
other techniques, used in mineral oil technology for processing
multi-component mineral oil distillates and derivates - simplified
by adequately chosen key fraction to two-component groups -~ 1o

be studied and controlled.

USED SYMBOLS

B total feeding rate (m3/hr)

D diffusion coefficient (m2/hr)

J flux density:(amount/mzhr)

ktrans combined material transport coefficient = w8 (hr-l)
r(x) reaction rate, expressed with mass fraction (he™h)

t time (hr)
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v linear velocity (m/hr)

Vg volume of extractor (m?)

X mass fraction (dimensionless)

B mass transfer coefficient (m/hr)
A sign of difference

v sign of nabla vector (m-l)

v stoichiometrié coefficient

P density (kg/m3)

w transfer surface area (m2/m3)
Indices

lerr:

A refers to component "A"

is the initial value of component "A"

is the equilibrium value of component "A"
upper:

a sign of one phase
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PE3HME

CoBpEMEHHLI TPyl MHHEHEpa XWMWHAE CErOAHA ywe noTpebyeT,4T00s
emMy bW ACHH W TPaGHCNOPTHHE ABABHUA, CONPOBOMAAKUHE XHMUHBCHHE WK

BWIHYECHWE M3MEHEHWA, HOTOPeE MpOTEHawT 8 OTAENbHEX 3N8MEHTAax
npoueccos.

HeCcHONwHO  NET TOoMy Hasaj Ha4Yanute CTYAWH, Uenp HOTOPLIX ABn-
ANaCh payapaGOTHa mMeTogfa, NpHroaHoro aAng MOLENTUpoBaHHUA HegTenpoMmopl - .
NEBHHBX U HEDTEXHMHHYEBCHHX 3nemMeHToB NPCoUeccOB, ﬂpOHSBO,ﬂCTBBHHHX

NPOUECCOB M YCTEHOBOH, WCXDAA M3 YHE M3IBECTHHX TBOPBTHYECHMX OCHOSB
No PEaKTOPHOW TEeXHMWHE.
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