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A graph-theoretical method for the structural analysis of dynamic lumped process models described by differential and 
algebraic equations (DAEs) is applied in this paper in order to determine the most important solvability properties 
(degree of freedom, structural solvability, model decomposition, dynamic degree of freedom, differential index, e.g.) of 
these models by using the so-called dynamic representation graph. The structure of the dynamic representation graph is 
suitable for the determination of the mentioned solvability properties. The most common methods in the modelling 
practice for the construction of models of complex systems are the union of submodels and hierarchical modelling. Our 
goal is to investigate the effect of the model union to the solvability properties, especially to the differential index. We 
show how the representation graph of a complex model can be built up from the representation graphs of submodels. The 
effect of the structure of submodels and their joining points to the structure of the complex graph and the conclusions 
drawn from the complex graph structure to the solvability properties are also investigated. The representation graph of 
the complex model can be easily built up from the representation graphs of the simple models according to the linking of 
the technological subsystems. If one of the submodels has greater than one differential index then the under and 
overspecified subgraphs referring to this higher index can be found in the representation graph of the complex model, 
too. The change in the relative position of the underspecified and the overspecified subgraphs has an effect to the value of 
differential index. If these subgraphs move further from their original positions the value of the differential index 
increases. If their relative positions do not change during the built up process then the value of the differential index of 
the complex system is equal to the value of the differential index of the subsystem having the higher value.  
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Introduction 

The structural analysis of dynamic lumped process 
models forms an important step in the model building 
procedure [1] and it is used for the determination of the 
solvability properties of the model, too. This analysis 
includes the determination of the degree of freedom, 
structural solvability, differential index and the dynamic 
degrees of freedom. As a result of the analysis, the 
decomposition of the model is obtained and the 
calculation path can be determined. This way the 
appropriate numerical method for solving the model can 
be chosen efficiently. Moreover, advice on how to 
improve the computational properties of the model by 
modifying its form or its specification can also be given. 

Effective graph-theoretical methods have been 
proposed in the literature [2, 3] based on the analysis 
tools developed by [4], for the determination of the most 
important solvability property of lumped dynamic 
models: the differential index. The properties of the 
dynamic representation graph of process models 
described by semi-explicit DAE-systems have also 

been analysed there in case of index 1 and higher 
index models. Beside the algorithm of determining 
the differential index by using the representation graph, a 
model modification method has also been proposed in 
the literature, which results in a structurally solvable 
model even in the case of higher index models [2]. 

Basic notions 

Structural solvability 

As a first step, we consider a system of linear or non-
linear algebraic equations in its so called standard form 
[4]: 

 yi = fi (x, u),  i = 1, …, M  
 uk = gk (x, u),  k = 1, …, K  

where xj (j = 1,…, N) and uk (k = 1,…, K) are unknowns, 
yi (i = 1,…, M) are known parameters, fi (i = 1,…, M) 
and gk (k = 1,…, K) are assumed to be sufficiently 
smooth real-valued functions. The system of equations 
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above is structurally solvable, if the Jacobian matrix 
J(x, u) referring to the above model is non-singular. 

Consider a system of equations in standard form. We 
construct a directed graph to represent the structure of 
the set of equations in the following way. The vertex-set 
corresponding to unknowns and parameters is partitioned 
as X ∪ U ∪ Y, where X = {x1, …, xN}, U = {u1, …, uK} 
and Y = {y1, …, yM}. The functional dependence 
described by an equation is expressed by arcs coming 
into yi or uk respectively from those xj and ul, which 
appear on its right-hand side. This graph is called the 
representation graph of the system of equations. 

A Menger-type linking from X to Y is a set of pair-
wise vertex-disjoint directed paths from a vertex in X to 
a vertex in Y. The size of a linking is the number of 
directed paths from X to Y contained in the linking. In 
case ⏐X⏐ = ⏐Y⏐, (M = N), a linking of size ⏐X⏐ is 
called a complete linking. The graphical condition of the 
structural solvability is then the following [4]: 

Linkage theorem: Assume that the non-vanishing 
elements of partial derivatives fi and gk in the standard 
form model are algebraically independent over the 
rational number field Q. Then the model is structurally 
solvable if and only if there exists a Menger-type 
complete linking from X to Y on the representation graph. 

We can adapt the graphical techniques to DAE-
systems, as well. An ordinary differential equation of a 
DAE-system can be described by the following equation: 

x’ = f(x1,…, xn) 

Here x denotes an arbitrary variable depending on time, 
x’ denotes the derivative of x with respect to time and 
x1, …, xn are those variables which have effect on 
variable x’ according to the differential equation. 

In DAE-systems there are two types of variables. 
Differential variables are the variables with their time 
derivative present in the model. Variables, which do not 
have their time derivative present, are called algebraic 
variables. The derivative x’ is called derivative (velocity) 
variable. 

Dynamic representation graph 

The value of differential variables is usually computed 
by using a numerical integration method. Therefore a 
system of equations including also differential equations 
can be represented by a dynamic graph. A dynamic 
graph is a sequence of static graphs corresponding to 
each time step of the integration. On a dynamic graph 
there are directed arcs attached from the previous static 
graph to the succeeding static graph that are determined 
by the method applied for solving the ordinary 
differential equations. In case of a single step explicit 
method, the value of a differential variable at time t+h is 
computed using the corresponding differential value and 
its value at a previous time t. For example, when the 
explicit Euler method is used: 

x(t+h) = x(t) + h⋅x’(t) 

where h denotes the step length during the numerical 
integration. The structure of a dynamic graph assuming 
explicit Euler method for solving differential equations 
is shown in Fig. 1. 
 

 
Figure 1: Dynamic representation graph assuming first 

order explicit solution method 
 

The structural analysis based on graph theoretical 
technique is carried out in steps performed sequentially. 
The first step is to rewrite the model into its standard 
form. The second step is the assignment of types to 
vertices in the representation graph. The important types 
of vertices determined by the model specification are 
the following [2, 5]: 
• <S>(set)-type variables: These represent variables, 

which are assigned to the specified given values. In 
the case of a dynamic representation graph assuming 
explicit method for solving the differential equations, 
the differential variables will be labelled by type 
<S*> because their initial value can be obtained 
from the initial values, and then their values can be 
calculated step by step by numerical integration. 
Labels <S> and <S*> are treated the same way 
during the analysis. 

• <G>(given)-type variables: A variable assigned to a 
specific value of a left hand side is a <G>-type 
variable. Unlike the <S>-type variables, the values 
of the right hand side variables will be suitably 
adjusted so as to preserve the equality of the two 
sides. 
 
According to the representation graph, the value of 

every variable which has incoming arcs only from 
vertices labelled by type <S> can be calculated by 
simple substitution into the corresponding equation. 
These variables become secondarily labelled by type 
<S>, and this process can be repeated if necessary. 
Omitting all vertices labelled primarily, secondarily, etc. 
by type <S> and all arcs starting from them from the 
representation graph we obtain the reduced graph. The 
classification of vertices of a reduced graph is as follows: 
• all initial vertices form the unknown variable set X, 
• all terminal vertices labelled by type <G> constitute 

the known variable (parameter) set Y, 
• all other vertices constitute the unkown variable set U. 
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Differential index 

Dynamic process models can be described by semi-
explicit DAEs as follows: 

 z1
‘’= f(z1, z2, t),   z1(t0) = z10 (1) 

 0 = g(z1, z2, t) (2) 

The most important structural computational property 
of DAE models is the differential index [6]. By 
definition [7] the differential index of the semi-explicit 
DAE (Equations (1)-(2)) is one if one differentiation is 
sufficient to express z2

‘’ as a continuous function of z1, z2 
and t. One differentiation is sufficient if and only if the 
Jacobian matrix gz2 is non-singular. 

In our earlier work we have proved that the 
differential index of the models investigated in [2] is 
equal to 1 if and only if there exists a Menger-type 
complete linking on the reduced graph at any time step t. 

If the differential index of the investigated model is 
greater than 1 then there is no Menger-type complete 
linking on the static graph at any time step t. The 
properties of a static graph of a dynamic model, which 
has differential index >1 are as follows. 
1. The fact that the initial values of differential variables 

cannot be chosen independently results in an over-
specified part on the graph. This situation can be 
easy shown by assignment of types to vertices 
corresponding to the model specification. There is an 
overspecified part on the graph if a vertex labelled by 
type <S*> or <G> can also be labelled preliminary, 
secondarily, tertiarily or etc. by type <S>. 

2. Non-singularity of gz2 results in an underspecified 
part on the graph. In this part those algebraic 
variables appear, which cannot be calculated from 
algebraic equations and those derivative variables, 
which we want to calculate from them. 

We have also proposed an algorithm using the 
structure of the representation graph for determination 
of the differential index of the underlying model. The 
main steps of this algorithm are the following: 
1. Let us form the following variable sets. 

I0 is the set of the differential variables belonging to 
the overspecified subgraph, 

D0 is the set of the derivative variables referring to 
the differential variables of set I0, 

I1 is the set of differential variables from which 
directed paths lead to the derivative variables in 
the set D0, 

D1 is the set of derivative variables referring to the 
differential variables of set I1, … , 

Ik is the set of differential variables from which 
directed paths lead to the derivative variables in 
the set Dk-1, 

Dk is the set of derivative variables referring to the 
differential variables of set Ik, … 

2. Let n be the smallest natural number for which the 
set Dn contains some derivative variables of the 
underspecified subgraph. Then the differential index 
of the model is 

νd = n+2 

If there is no such number n then the model is not 
structurally solvable. 

In our earlier work we have shown that the important 
properties of the representation graph including the 
differential index of the models are independent of the 
assumption whether a single-step, explicit or implicit 
numerical method is used for the solution of the 
differential equations [8].  

Structural analysis of simple models using their 
representation graphs 

In this section, simple, small sized, dynamic models are 
investigated using their representation graphs. We show 
the influence of the change of the modelling goal (and 
so the model specification) and the modelling conditions 
to the differential index. The examples used in this and 
next sections are based on examples of [9].  

Example 1 – Perfectly stirred tank reactor 

Suppose a perfectly stirred tank reactor and let the 
concentration of its inlet flow be denoted by c0. The 
change of concentration in the tank can be described by 
the following equation: 

 ( )cc
V
qc −=′ 0

 (3) 

where c is the concentration in the tank, q is the outlet 
flow rate and V is the volume of the tank. 

Case a) Let us assume that we know the 
concentration of the inlet flow in the function of time: 
c0 = c(t), and we want to determine the concentration of 
the outlet flow. The standard form model consists of the 
following equations: 

c = ∫ c’ 

( )cc
V
qc −=′ 0

 

c0 = c0(t) 
Given:  c(t0), c0(t); 
Constant:  q, V; 
To be calculated: c as a function of time. 

Since the structural properties of the model described 
by representation graph can be investigated based on the 
structure of the static graphs, and these properties are 
independent from the arcs connecting individual static 
graphs to each other, we illustrate only one static graph 
as a representation graph of models for the sake of 
simplicity. 

The representation graph of this simple model is 
shown in Fig. 2a. The reduced graph is an empty graph 
in this case indicating the differential index is equal to 1.  

We remark that the substitution of the condition 
c0 = c0(t) into the Equation (3) results in a model of 
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technological system with only one differential equation, 
so the differential index would be equal to 0. 

Case b) Let us assume now that the modelling goal 
is the dynamic design of the same system, i.e. the 
determination of the necessary inlet flow concentration in 
order to ensure the required outlet concentration c = c(t). 
The standard form model is the following: 

 

 
 a) b) 

Figure 2: The representation graphs of the Example 1 
 

 c = ∫ c’ 
 ( )cc

V
qc −=′ 0

 

 c = c(t) 
Given:  c(t0), c(t); 
Constant:  q, V; 
To be calculated:c0 as a function of time. 

In this case, there are an underspecified and an 
overspecified subgraphs on the representation graph 
(see Fig. 2b) referring to the differential index greater 
than 1 value. The differential index can be calculated 
based on the structure of the representation graph: 

 I0 = {c} 
 D0 = {c’} 

Since the vertex referring to the derivative variable c’ 
can be found in the underspecified subgraph, therefore 
n = 0 and νd = n + 2 = 2. 

Example 2a – Liquid mixer model 

Suppose a liquid mixer tank having one inlet and one 
outlet flow (see Fig. 3) The inlet flow consists of two 
components A and B. The two components have different 
density. There is a certain amount of liquid in tank at 
t = t0. The feed is perfectly mixed with the tank liquid. 
The density of the liquid in tank, the flow rates and the 
mol fractions of the components are functions of time. 
The number of moles (Ni) of components A and B can 
be described by the following equation: 

 Ni
’ = F0xi0 – Fxi where i = {A, B} 

where F0 and F are the inlet and outlet flow rate, and xi0 
and xi are the mol fraction of the component i in the 
inlet and outlet flows, resp. Let pL denote the pressure of 
the liquid at the bottom of the tank, a the area of the 
tank and MWi the molar weight of the component i. The 

outlet flow rate depends on the liquid pressure (pL) and 
the valve constant (k). 
 

 
Figure 3: Liquid mixer tank with variable volume 
 
The modelling goal is to calculate the liquid 

composition in the tank. The standard form model 
consists of the following equations: 

 NA = ∫ NA’ NB = ∫ NB’ 
 NA

’ = F0xA0 – FxA NB
’ = F0xB0 – FxB 

 N = NA + NB  
 xA = NA/N xB = NB/N 
 Mw = MwAxA + MwBxB 

 pL = p0 +(Mw ⋅ N)/a 
 F = k⋅(pL – p0)1/2 
Given:  NA(t0), NB(t0), xA0, xB0, F0; 
Constant:  MwA, MwB, a, k, p0; 
To be calculated: NA, NB, F as functions of time. 

The representation graph of the model is shown in 
Fig. 4. The reduced graph is an empty graph because 
there is no implicit equation in the model, therefore the 
differential index (νd) is equal to 1. 

 

 
Figure 4: The representation graph of the Example 2a 

 

Example 2b – Liquid mixer model with constant tank 
volume 

Suppose a liquid mixer tank as in Example 2a but let 
the volume of the liquid in the tank V be constant in this 
case (Fig. 5). Let vA and vB be the molar specific volumes 
of components A and B, resp. The other assumptions are 
the same as in Example 2a. The modelling goal is to 
calculate the liquid composition in the tank, again, but the 
modified volume condition must be taken into account.  

The standard form model consists of the following 
equations: 

 NA = ∫ NA’ NB = ∫ NB’ 
 NA’ = F0xA0 – FxA NB’ = F0xB0 – FxB  
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 N = NA + NB  
 xA = NA/N xB = NB/N 
 v = vAxA + vBxB 

 V = N⋅v 
Given:  NA(t0), NB(t0), xA0, xB0, F0, V; 
Constant:  vA, vB; 
To be calculated: NA, NB, F as functions of time. 

 

 
Figure 5: Liquid mixer tank with constant volume 

 
An overspecified and an underspecified subgraph 

can be found on the representation graph (see Fig. 6) 
and the differential index can be determined based on 
their structures: 

I0 = {NA, NB } 
D0 = {NA’, NB’} 

Since the vertices referring to derivative variables 
NA’, NB’ can be found in the underspecified subgraph, 
n = 0 and νd = n + 2 = 2. 

 

 
Figure 6: The representation graph of the Example 2b 

Structural analysis of composite models 

In this section, more complex composite models are 
built from the simple dynamic models of the previous 
section. The goal is to investigate the effect of this 
“build up process” of simple, small sized models, i.e the 
effect of the model composition to the structural 
properties of the composite models. 

Example 3 – Cascade of perfectly stirred tank reactors 

Suppose a system consists of k perfectly stirred tank 
reactors. A feed of concentration c0 is fed into the first 
tank. The concentrations in the tanks are described by 

the following equation: 

( ) k,,,icc
V
qc ii

i
i K211 =−=′ −

 

where ci is the concentration in the tank i, q is the flow 
rates from tank to tank and Vi is the volume of the tank i. 

Two different specifications can be added to these 
equations according to modelling goal: 
a) in dynamic simulation studies the feed concentration 

c0 is given by c0 = c0(t); 
b) in dynamic design the product concentration ck is 

given by ck = ck(t). 

The representation graphs referring to these 
specifications can be seen in Figs 7a and b. These graphs 
can be considered as multiplications of the representation 
graphs in Figs 2a and b. In the first case, the reduced 
graph is an empty graph, therefore the differential index 
is equal to 1. In the second case, there are under and 
overspecified subgraphs on the representation graph and 
based on their structures: 

I0 = {ck} 
D0 = {ck’} 

I1 = {ck-1} 
D1 = {c’k-1} 

� 
Ik-1 = {c1} 
Dk-1 = {c1’} 

Since the vertex referring to the derivative variable 
c1’ can be found in the underspecified subgraph, n = k – 1 
and νd = n + 2 = k + 1. 

 

 
 a) b) 

Figure 7: The representation graphs of the Example 3 
 

The effect of the increasing differential index of the 
cascade model can be followed on the representation 
graph: the underspecified and the overspecified 
subgraphs move increasingly further from each other as 
the cascade elements are inserted. The path between the 
derivative variable c1’ of the underspecified subgraph and 
the differential variable ck of the overspecified subgraph 
is increasingly longer (the direction is not taken into 
account) and along this path the differential and 
derivative variables are located alternately. 
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Example 4 – Sequence of mixing tanks 

Suppose that a system consist of a sequence of k mixer 
tanks (see Fig. 8). Let the volume of liquid in the tank j 
be constant while in the other tanks the liquid volumes 
are variables. The model of the constant volume tank is 
described in Example 2b, while the models of the other 
tanks are the same as the model in Example 2a. The 
following assumptions are held: A liquid feed stream is 
fed into the first tank. The feed consists of two 
components A and B. The liquid flows from the first 
tank through the system. The other assumptions are the 
same as in Example 2a and 2b. 

The model of this cascade system using the models 
of Example 2. is the following: 

 NAi = ∫ NAi’ NBi = ∫ NBi’ 
 NAi’ = Fi-1xAi-1 – FixAi NBi’ = Fi-1xBi-1 – FixBi 
 Ni = NAi + NBi  where i = 1, …, k 
 xAi = NAi/Ni xBi = NBi/Ni 
 Mwi = MwAxAi + MwBxBi 

 pLi = p0 +(Mwi ⋅ N)/a 
 Fi = k (pLi – p0)1/2 where i = 1, …, k,   i ≠ j 
 

 
Figure 8: Sequence of liquid tanks 

 
vj = vAxAj + vBxBj 

Vj = Nj⋅vj 
Given:  NAi(t0), NBi (t0),  i = 1, …, k 
 xA0, xB0, F0, Vj; 
Constant:  MwA, MwB, a, k, p0, vA, vB; 
To be calculated: NAi, NBi, Fk as functions of time. 

 
This model is built up from k–1 differential index 1 

models and one differential index 2 model according to 
the liquid mixing system. The representation graph of 
the whole system can be constructed easily from the 
representation graphs of the simple models (see Figs 4 
and 6). The resulted graph can be seen in Fig. 9.  

An overspecified and an underspecified subgraph can 
be found on the representation graph and the differential 
index can be determined based on their structures: 

 
Figure 9: The representation graph of the Example 4 

 
I0 = {NAj, NBj} 

D0 = {NAj’, NBj’} 

Since the vertices referring to differential variables NAj’, 
NBj’ can be found in the underspecified subgraph, n = 0 
and νd = n + 2 = 2. 

In this example the union of the representation 
graphs of submodels has been created in such a way that 
the position of the underspecified and overspecified 
subgraphs referring to the higher differential index in 
the extended graph is unvaried to their original position, 
therefore the differential index of the complex model is 
the same as of the model of Example 3b. 

Conclusion 

In this paper we investigated the solvability properties 
of complex dynamic systems when they are built up from 
simple models. We have shown that the representation 
graph can be used efficiently for the investigation of the 
differential index during the model composition process, 



 

 

151

too. The representation graph of the complex model can 
be easily built up from the representation graphs of the 
simple models according to the linking of the technological 
subsystems. If one of the submodels has greater than 
one differential index then the under and overspecified 
subgraphs referring to this higher index can be found in 
the representation graph of the complex model, too. The 
change in the relative position of the underspecified and 
the overspecified subgraphs has an effect to the value of 
differential index. 
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