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The work presents and discusses the basics of the population balance approach and multi-dimensional population balance 
models for describing different aspects of solution crystallisation. A two dimensional model is presented for describing 
evolution of needle-shape crystals characterised by two size dimensions in cooling crystallisation, and a two-population 
model is developed for describing micromixing of solution, and its effects on the size distribution of crystals and their 
aggregates in reaction crystallization. Moment equation reductions for joint moments of internal variables are developed 
in both cases which are closed by means of cumulant neglect closure models. The properties and behaviour of 
crystallization processes described by the models are investigated by simulation. 
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Introduction 

In Model-Driven Chemical Engineering which refers to 
the systematic use of models as primary engineering 
artefacts throughout the engineering lifecycle models 
are considered as first class entities, and due to their 
cognitive and methodological values serve as fundamental 
tools of understanding, analysis, design, operation, 
control and managing of real engineering processes and 
processing systems. This technique states that any 
specification should be expressed by models, which are 
both human and machine understandable. The Department 
of Process Engineering attempts to organize new efforts 
in these directions by proposing a framework (1) to 
clearly define methodologies, (2) to develop models at 
any level of abstraction, and (3) to organize and 
automate the testing and validation activities.  

Models, depending on what they represent, can reside 
at any level of abstraction, and can be restricted to 
address only certain aspects of the system. Well defined, 
adequate mathematical models usually are of great 
predictive power and together with the corresponding 
computer models have become efficient and useful aspects 
of engineering, especially treating complex engineering 
processes and processing systems. In chemical and 
process engineering such complex systems are, among 
others, those multiphase processes in which at least one 
of the phases take part in dispersed state, i.e. in form of 
solid particles, liquid drops or gas bubbles. These 
systems can not be modelled adequately by means of 
the classical state variables only since the characteristic 
properties of the dispersed elements, among others their 
size, size distribution, habit, shape, structure, or 
configuration in continuous phase, have to be taken into 

consideration as well. For these reasons, population 
balance models in which population balance equations 
describe the properties and behaviour of dispersed 
elements, appear to be adequate mathematical models of 
disperse systems.  

In chemical engineering, Hulburt and Katz [1] 
formulated the population balance equation using the 
ideas of statistical mechanics, while Randolph and Larson 
[2] based their formulation on continuous mechanics 
aiming to describe crystallization processes. These 
formulations have found a lot of applications in modelling 
particulate systems [2-5], systems containing liquid drops 
[6-8], as well as gas bubbles [9]. Ramkrishna [10] 
presented an excellent state of the art of this research 
field.  

While taking part in technological processes disperse 
elements interact intensively with the continuous phases, 
and also with the counterparts of the dispersed one. As 
regards the dispersed phase, here two types of 
interactions can be distinguished: 1) interactions causing 
changes of the dispersed elements themselves, and  
2) interactions inducing changes of entities carried by the 
dispersed elements. Continuous growth and shrinkage, 
breakage and aggregation-agglomeration or coalescence 
of dispersed elements can be mentioned in the first 
group, while exchange of momentum, mass exchange of 
chemical species, exchange of heat and electrical charge 
may be included into the second group. In effective 
modelling of disperse systems, these interactions and 
processes induced by those should to be taken into 
consideration.  

When modelling solid dispersed phase, i.e. particulate 
systems, in most part only those inter-particle interactions 
have been accounted for which cause changes of the 
particles themselves, i.e. their breakage, aggregation 
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and agglomeration. Recently, developing a new, Markov 
process-based formulation of the population balance 
equation [11, 12], direct inter-particle heat exchange 
processes [13-16] and, mostly for modelling direct 
interactions between fluid particles, also mass exchange 
processes [17-20] have been included into the population 
balance models, extending in this way the range of 
effect of the population balance modelling approach.  

The aim of the present work is to present and discuss 
the basics of the population balance approach and multi-
dimensional population balance models for describing 
different aspects of crystallisation from solution. A two 
dimensional model is developed for describing evolution 
of needle-form crystals characterised by two size 
dimensions in cooling crystallisation, and a two-
population model is presented for describing the mixing 
effects of solution on the size distribution of crystals 
and their aggregates in reaction crystallization. Moment 
equation reductions for joint moments of internal 
variables are developed in both cases which, when the 
sets of equations are unclosed, are closed by means of 
cumulant neglect closure models. The properties and 
behaviour of the systems described by the models are 
investigated by simulation. 

Two-dimensional population balance models 

Population balance model of a cooling crystallizer for 
needle-shaped crystals 

For describing crystallization from solution, which is a 
widely used cleaning, separation and particle producing 
technique in the chemical, petrochemical and 
pharmaceutical industry, population balance models 
have been proved adequate modelling tools. In this 
enormously important unit operation, the crystal 
population is the main product thus the goal of operating 
crystallizers is to produce crystals of prescribed form, 
habit, size, and size distribution. The task of describing 
this process is to predict the properties and behaviour of 
the whole crystal population from the behaviour of 
single crystals interacting with the solution and crystals 
environment. The population is modelled by the density 
of suitable chosen variables as models of crystals’ 
characteristic properties variation of which is described 
by the population balance equation.  

Most of the modelling studies of crystallisation use 
one-dimensional characterisation of crystals. However, 
crystalline particles often, especially in the pharmaceutical 
industry, exhibit much more complex habit, as it is 
illustrated in Fig. 1. Crystals in Fig. 1b and 1c can be 
described adequately only by multi-dimensional models, 
characterising the crystal and crystal growth separately 
for the main crystallographic faces.  

Here we consider needle-shaped crystals, produced 
in a cooling crystallizer shown schematically in Fig. 2. 
Such needle-shaped crystals can be characterised by 
two size dimensions L1 and L2, while the crystal 

population is described by the population density 
function n(., ., t) by means of which n(L1, L2, t)dL1dL2 
expresses the number of crystals from the size domain 
(L1, L1 + dL1) × (L2, L2 + dL2) in a unit volume of 
suspension at time t.  

Since the volume of crystals is an important property 
a volumetric shape factor kV is also defined by means of 
which the crystal volume can be expressed using only 
these two size dimensions even in case of different 
shapes as it is shown in Fig. 1c.  
 

 
Figure 1: Three different crystal systems 

 

 
Figure 2: Continuous cooling crystallizer 

 
Let us now assume that: 
- the working volume of the crystallizer is constant; 
- all new crystals are formed at a nominal size L1, n ≅ 

L2, n ≅ Ln ≥ 0, so that we can assume: Ln ≈ 0; 
- crystal breakage and agglomeration are negligible; 
- the overall linear growth rates of the two habit faces 

G1 and G2 are size independent, and have the form 
of power law expressions: 

G1 = kg1(c – cs)g1 (1) 

and 

G2 = kg2(c – cs)g2 (2) 

- the primary nucleation rate Bp is described by 
Volmer’s model 
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where ε is the voidage of suspension, expressed as 

ε(t) = 1 – kV μ1, 2(t) (4) 

and μ1, 2 is one of the third order joint moments of 
the crystal sizes L1 and L2.  

 
Here, the joint moments of variables L1 and L2 are 

defined as 
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while the volume of crystals is expressed by means of 
the moment μ1, 2 as 
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- the secondary nucleation rate Bb is described by the 
power law relation 
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In the kinetic expressions (1)-(3) and (7) coefficients 

kg1, kg2, kp and kb and are functions of the temperature, 
expressed as  
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Under such assumptions the population balance 
model of the crystallizer consists of the following balance 
equations. 

The population balance equation governing the crystal 
size dynamics becomes 
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subject to the initial and boundary conditions: 

n(L, 0) = n0(L),   L ≥ Ln (10a) 
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where ep and eb are binary existence variables of the 
nucleation rates, by means of which the alternative 
variations of nucleation can be controlled. Naturally we 
have the constraint 

ep + eb ≥ 1 (11) 

Mass balance of solvent: 
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with the initial condition csv(0) = csv0. 
The mass balance equation of solute: 
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subject to the initial condition c(0) = c0. 
The energy balance equation for the crystal suspension 

takes form 
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subject to the initial condition T(0) = T0. Here, Rmc 
denotes the global rate of production of crystal mass in 
a unit volume of suspension. 

Energy balance for the cooling medium:  
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subject to the initial condition Th(0) = Th0. 
The dependence of saturation concentration on the 

temperature is described by the expression: 

cs(T) = a0 + a1T + a2T2. (16) 

Often, it is useful to complete the set of balance 
equations (9)-(15) by the equation for the equilibrium 
saturation concentration given as 

( )
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dT
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dt
dc ss

21 2+==  (17) 

subject to the initial condition cs(T0) = a0 + a1T0 + a2T0
2.

Therefore, the state of the crystallizer is given by the 
quintuple [c(t),csv(t),T(t),Th(t),n(.,t)], and its dynamics is 
described by the population balance model formed by 
the mixed set of partial and ordinary differential 
equations (9)-(15). The time evolution of this system 
occurs in the state space R4×N that is the Descartes 
product of the vector space R4 of concentrations and 
temperatures, as well as the function space N of 
population density functions. In the present study, we 
concentrate on a reduced case, approximating the 
distributed parameter system of Eqs (9)-(15) by a finite-
dimensional state space model using the six leading 
joint moments of crystal sizes. 
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Moment equation reduction and scaling 

The moment equation reduction of the population 
balance model (9)-(15) can be written for the joint 
moments of crystal sizes (5) by means of which the 
mean values of sizes are given as  

)(
)(

)(
0,0

0,1
1 t

t
tL

μ
μ

=   and  
)(
)(

)(
0,0

1,0
2 t

t
tL

μ
μ

=  (18) 

The infinite hierarchy of the moment equations 
corresponding to Eq. (9) takes the following form  
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This infinite set of equations can be closed at any 
order but natural closing occurs at the third order joint 
moment μ1, 2 since, because of Eq. (6), this moment is 
required for the mass balance of solute (13). To do that 
equations for moments μ0,0 μ1,0 μ0,1 μ0,2 μ1,1 are also 
required.  

Since the system of moment equations often become 
stiff it is advisable to perform scaling that by defining 
useful scale parameters and dimensionless scaled variables 
to allow controlling conditioning of the system.  
 Introducing the scale parameters 
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the closed set of moment equations takes the form 
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subject to the initial conditions  

xk, m(0) = xk, m0, k, m = 0,0; 0,1; 1,0; 1,1; 0,2; 1,2 
ysv(0) = ysv0, y(0) = y0, z(0) = z0, zh(0) = zh0. 

In Eqs (21-30) 
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According to Eq. (17), the set of Eqs (21-30) can be 
completed using the equation describing the variation of 
the dimensionless saturation concentration 
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Note that when L1 = L2 = L, we can write μk,m = μk+m,  
k, m = 0, 1, 2, 3, ..., and the set of equations (20)-(30) 
reduces to the one dimensional moment equation model 
of cooling crystallizers. 

Simulation results and discussion 

The system of ODEs (21)-(30) was solved in MATLAB 
environment using the process and kinetic parameters 
presented in Table 1. Kinetic parameters were chosen 
followed the works by Ma et al. [27] and Briesen [28]. 
Simulation runs have been carried out to investigate the 
influence of nucleation on the crystal shape under the 
same crystal growth and operation conditions. 
 
Table 1: Process and kinetic parameters used in 
simulation of cooling crystallizer 

V = 10 m3 kp0 = 1.6·1030 g1 = 1.48 
qin = 10-3 m3 s-1 ke = 2.1 Eb = 9.0·104 
cin = 350 kg m3 Ep = 5.0·104 mol kg1 = 12.2·10-6 m s-1 

Tin =90 °C kb0 = 1.0·1016 g2 = 1.75 
Th = 20 °C b = 3.0 

j = 1.5 
kg2 = 10.08·10-7 m s-1

a0 = 0.2087 a1 = –9.76·10-5 a2 = –9.30·10-5 
 

Fig. 3 presents the effects of parameter ke of primary 
nucleation on the steady state mean size values 〈L1〉 and 
〈L2〉. The crystallizer produced practically the same 
mass of crystals in each run, i.e. about 90 kg m-3 of 
suspension.  
 

 
Figure 3: Effects of parameter ke of primary nucleation 

on the steady state mean size of the crystallographic 
faces  

 

Significantly different diagrams were obtained when 
secondary nucleation was the dominant crystal producing 
process. As it is shown in Fig. 4, in this case crystals 
were able to achieve size about 1 mm in length while 
producing almost the same amount of crystalline mass 
as in the case of primary nucleation. Naturally, the 
differences between the numbers of crystals took some 
orders of magnitude. 

The operation mode used in simulation assured good 
cooling conditions as it is illustrated in Figs 5 and 6. 
Projections of trajectories of crystallizer into the 3-D 

 

 
Figure 4: Effects of parameter b of secondary 
nucleation on the steady state mean size of the 

crystallographic faces  
 
T–c–μ0 subspace are presented in Fig. 5 for primary 
nucleation and in Fig. 6 for secondary one. It is seen 
well that the transients differ significantly depending on 
the nature of nucleation.  
 

 
Figure 5: Trajectories of the crystallizer in the 3-D T-c-

μ0, 0 subspace in the case of primary nucleation 
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Figure 6: Trajectories of the crystallizer in the 3-D T-c-
μ0,0  subspace in the case of secondary nucleation 

Two population models 

Generalized coalescence/redispersion model for 
micromixing 

The physical phenomena occurring in solution crystallizers 
are very complex, involving the interactions between 
large-scale fluid mixing, fine-scale micromixing and 
complex crystallization kinetics as well as, in reaction 
crystallizers, chemical reaction kinetics. The macroscopic 
models of the fluid elements adequately describe 
macromixing but a quantitative description of the 
influence of micromixing presents a more challenging 
problem. 

Most of the works dealing with the influence of 
micromixing on crystallisation processes was focused on 
reaction precipitation [21-24]. In crystallisation, however, 
fine-scale fluid mixing may also affect the crystal size 
distribution because of the mixing of fresh feed stream 
with the bulk solution of crystallizer. Then, direct 
interactions between the supersaturation inhomogeneities 
coupled with highly nonlinear nucleation and crystal 
growth kinetics may influence the process significantly, 
as it was demonstrated by means of a probability density 
function model [25], and, recently, by developing two-
population models with the usage of coalescence-
redispersion micromixing closures [17-19,26]. Here, an 
improved two-population model is presented in which the 
generalised coalescence-redispersion micromixing model 
[20] is utilized for describing micromixing of solution.  

Let us now assume the in a continuous crystallizer 
the supersaturation is generated by a chemical reaction 
according to the scheme ↑⎯→⎯+ CBA k . Further, we 
assume that the fluid phase in the crystallizer can be 
visualised as consisting of a large number of fluid ele 
ments in which concentrations and supersaturation can be 
treated as deterministic quantities. The fluid elements, 
moving stochastically in the crystallizer, interact 
intensively with the counterparts and the existing crystals. 
Fluid elements exhibiting different concentrations of 
species A, B and C change some amounts of mass 
between each other during their coalescence-redispersion 
interactions, inducing in this way equalization of 
concentration differences.  

The population of fluid elements is characterised by 
the density function p(.,.), where p(c, t)dc expresses the 
number of fluid elements having concentration in 
domain (c, c+dc) in a unit volume of suspension at time 
t. Here, c = (ca, cb, cc) denotes the concentration vector 
of species A, B and C. The density function p(.,.) 
describes, in essence, the distribution of concentrations 
of species in the fluid elements so that the average 
concentration observable on macrolevel is expressed as  
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provides the total number of fluid elements in a unit 
volume of suspension. In Eq. (38) expression 
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is interpreted as the probability of there exists a fluid 
element having concentration in domain (c, c+dc) in a 
unit volume of suspension at time t.  

In the crystallizer, between the stochastically moving 
fluid elements and crystals the following interactions 
are assumed to occur: 1) fluid-fluid element, 2) fluid 
element-crystal, 3) crystal-crystal interactions. 

Interactions between the fluid elements are manifest 
as micromixing of solution that is described by the 
generalized coalescence-redispersion model [20]: 
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 Here, ωk ∈ [0,1] is a random parameter with 
distribution function Fωk, characterizing the exchange 
process of the kth, k = a, b, c component of c between 
the fluid elements, while Scol stands for the frequency of 
binary collisions. When Fωk = 1(ωk), i.e. the mean value 

of ωk is zero, then no mixing of the kth species occurs on 
microlevel, but Fωk = 1(ωk – 1), i.e. the mean value of 
ωk equals 1, denotes maximal micromixing under the 
given macrolevel conditions.  

μ 0,0c 

T 



 

 

13

As a consequence, beside the crystal population the 
solution in crystallizer is treated as a second population 
of the fluid elements, forming in this way a two-
population system of interacting populations of two 
different dispersed elements. 

Crystallization kinetics of under non-perfect 
micromixing conditions 

In the crystallizer, simultaneously with the chemical 
reaction of species A and B producing the precipitating 
species C, nucleation of crystals and their subsequent 
growth occur, due to the direct fluid element-fluid 
element and fluid element-crystal interactions, whilst 
the possible crystal-crystal collision interactions may 
induce also aggregation of crystals. 

Under such conditions, it seems to be better to 
characterise crystals on the volume coordinate v, and 
the population of crystals by the population density 
function n(., t) by means of which n(v, t)dv expresses 
the number of crystals from the crystal volume interval 
(v, v+dv) in a unit volume of suspension at time t. As a 
consequence, now the motion of the two populations occur 
in a four-dimensional space of internal properties from 
which the first one is the volume coordinate of crystals, 
while the remaining three internal properties are formed 
by the concentration coordinates of fluid elements. 

Assuming that 
- all new crystals are formed with a nominal volume 

vn ≈ 0 and vn > 0, 
then the kinetic expressions for nucleation, growth and 
aggregation of crystals are as follows. 

Primary nucleation is considered as a result of fluid 
element interactions while secondary nucleation is a 
result of those between the fluid elements and crystals. 
If the intrinsic rate of nucleation is given by expression 
Bt(cc, cs, v) its macrolevel rate is expressed as 

( ) ( )

bpdvdtvntp

vccBtB
nv

sc

,,),(),(

,,1

0

=×

×= ∫ ∫
∞

ι

μπ ιι

cc

mc

00  (42) 

In similar way, since crystals moving stochastically in 
the vessel are surrounded and suffer contacts with fluid 
elements of different composition, the macrolevel crystal 
growth rate is also expressed as 

( ) ( )∫==
mc

cc
00

dtpvccG
t

tG
dt
dv

sc ),(,,
)(

1
π

 (43) 

 Finally, the rate of aggregation of crystals by means 
of the frequency of collisions and the aggregation 
efficiency is given as 

( ) ( )
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Two-population model of reaction crystallization 

If the reaction crystallizer 1) is operated under isothermal 
conditions, 2) the frequency of coalescence-redispersion 

events is constant, and 3) the reaction between species  
A and B is quasi-linear the rate of which is given as  
Ra = –kcacb, Rc = kcacb, then the population balance 
equation for the fluid elements takes the form  
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 (45) 

 
In Eq. (45), expression 〈R〉 represents the rate of 

decrease of concentration of solute in a fluid element due 
to crystallization which, because of the rate expressions 
(42) and (43), can be expressed as an average over all 
crystals being in its environment: 

n
ccc vB

c
G

c
R

dt
cd

ιε
ρ

μ
ε

ρ −
−

−
−== 0  (46) 

Boundary conditions for concentration variables 
specify closed system along the concentration coordinates 
except the input where any combination of feasible 
conconcentration values can appear in the inlet density 
function. This means that for any k ∈ {a, b, c} and any 
values of the remaining concentration variables 

0),()( 0 ==kck tpR cc    and   0),()(
,
=

= mkk cck tpR cc . 

The second population balance equation of the model 
describes the crystals is formulated here as  
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The boundary and initial conditions to Eq. (47) can 
be written, respectively, as follows:  

( ) ( ) 0,,lim =
+→

tvnvtG
nvv

 and ( ) 0,lim =
∞→

tvn
v

 (48) 

and 

p(c, 0) = p0(c)  and  n(v, 0) = n0(v) (49) 

Writing Eq. (47) it was assumed that the volume vn 
of nuclei is small but vn > 0, thus the nucleation rate 
here arises in Eq. (47) as a source term inside the 
support interval [0, ∞) of crystal volumes. The second 
consequence of this assumption is the first of the 
boundary conditions (48). 

Moment equation model 

The two-population model of the reaction crystallizer is 
formed by the population balance equations (45) and 
(47), respectively, for the fluid elements and crystals. 
Eq. (45), however, is a three-dimensional equation by 
itself so that a moment equation reduction requires the 
joint moments of concentrations, defined as 
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The infinite hierarchy of the moment equations 
corresponding to Eq. (45) takes the form 
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 (51) 

where the coefficients of micromixing terms are 
expressed as  
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Eqs (51) and (52) show that the micromixing terms 
are always closed so that the joint moment equations 
may be unclosed only due to the reaction terms as it 
seen in Eq. (51). As a consequence, the mean values of 
concentrations (38) are written as π1, 0, 0/π0, π0, 1, 0/π0 and 
π0, 0, 1/π0.  

The second part of the moment equation reduction 
of the two-population model of reaction crystallizer is 
based on the moments of the crystal volume, given as 
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Assuming now hat aggregation of crystals is 
characterised by sum kernel in which the efficiency is 
equal 1, then  

Sa(v, v')Seff(cc, cs) = Sa·(v + v') (54) 

and the resulting hierarchy of moment equations takes 
the form 
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 (55) 

Note that the zero order moment of the set (53) 
provides the total number of crystals, the first order 
moment expresses the total volume of crystals in a unit 
volume of suspension, while the second order one 
makes possible of predicting the dispersion of the 
crystal population. In this case the first three moments 
seem to be sufficient to characterise the crystal 
population. As a consequence, taking into account Eq. 
(51), the order of moment equations necessary to have a 
closed system depends on the kinetics of nucleation and 
crystal growth. For studying the properties and 
behaviour of the system a second order moment 
equation reduction is used in simulation.  
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Simulation results and discussion 

Applying the power law forms of kinetic expressions, 
we assume that the exponents are: g=1, b=2 and j=1. 
Then  
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i.e. nucleation describes also the possible dependence 
on the crystalline magma. As regards the crystal growth 
we have 
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while the expressions are give nin Eq. (55). 
Since the support of random parameters ωk is the 

compact interval [0,1] the micromixing parameters is 
characterised by the beta distribution 
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including the limiting degenerate distributions given by 
Dirac-delta density functions as well.  

Note that, since we focus our attention on the effects 
of micromixing, in the model (47) crystals and 
agglomerates are treated as similar particles what is, in 
principle, a simplification.  

The mixing state of the feed consisting of species A 
and B can also be described by the beta distribution. We 
assume that the feed contains also species C having 
uniform concentration cc, in = cs where cs denotes the 
solubility of C. If species A and B in the feed are totally 
segregated with concentrations ca, in and cb, in and 
volumetric ratio φ, then the inlet population density 
function takes the form 
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so that the inlet joint moments are given as 

π1, 0, 0, in = π0, inφca, in, 

π0, 1, 0, in = (1 – φ)π0, incb, in  

π0, 0, 1, in = π0, incc, in, 2
,,,0,0,2 inainin cφππ 0=  

( ) 2
,,,0,2,0 1 inbinin cφππ −= 0 , 2

,,,2,0,0 incinin c0ππ =  
π1, 1, 0, in = 0, π1, 0, 1, in = π0, inφca, in cc, in  

π0, 1, 1, in = (1 – φ)π0, incb, in cc, in. 

The system of ODEs of the second order model 
equation reduction was solved in MATLAB environment 
using the process and kinetic parameters presented in 
Table 2. Simulation runs have been carried out to 

investigate the influence of micromixing and the 
interactions of micromixing and chemical reaction on 
the properties of crystal population produced.  

 
Table 2: Process and kinetic parameters used in 
simulation of reaction crystallizer 

10=t s kb=1.0·108 
Scol=10 s-1  kg=5.0·10-11 

cAin=2.2 mol dm-3  ρ=1500 g dm-3  
cBin=2.2 mol dm-3 g=1.0 
cCin=0.5 mol dm-3 b=2.0 
cs=0.1mol dm-3 j=1.0 

Sa=106 s-1 kr=4.0 101 mol dm-3 s-1 
vf=1.0·10-15 vn=1.0·10-15 

 
Effects of micromixing on the number of particles 

and the total mass produced in the crystallizer for three 
different reaction rates are presented in Figs 7 and 8. 
Here, the mixing state on microlevel is characterised by 
the expected values of parameters ωa, ωb and ωc defined 
as 

∫ ==
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,,,)( cbakdfm kkk kk
ωωω ωω  (60) 

Increasing rate of mixing on microlevel induces 
increased number of particles, crystals and aggregates, 
but at the same time the amount of solid mass is also 
increased. Under such circumstances the mean size of 
particles becomes 10-6-10-5 m of orders of magnitude. 

The diagrams in Figs 7 and 8 indicate also that the 
sensitivity of variation is increased with increasing rate 
of the chemical reaction. Indeed, these trends are 
justified by Figs 9 and 10 showing variations of the 
number of particles, as well as of the total volume of 
solid phase as a function of the rate of chemical reaction 
at different levels of micromixing. In these simulation 
runs the expected values of the micromixing parameters 
were constant mωa = mωb = mωc = 0.5. 

 

 
Figure 7: Influence of the expected value of 

micromixing parameters on the  
number of particles produced 
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Figure 8: Influence of the expected value of 

micromixing parameters on the  
mass of particles produced 

 

 
Figure 9: Influence of the rate of chemical reaction on 

the number of particles produced 
 

Figs 9 and 10 show that interactions between the 
chemical reaction and micromixing appear to be 
significant in the interval kr ∈ [10-2, 102]. When kr > 102 
then micromixing is the rate limiting process while in 
the case of kr < 102 the chemical reaction turns to be the 
rate limiting process.  

Conclusions 

The population balance approach provides a good 
framework for modelling crystallization systems. In 
extended form [12, 15, 20], it takes into consideration 
not only changes of the particles themselves, i.e. 
nucleation, growth, breakage and aggregation, but also 
changes of different entities carried by the particles, i.e. 
mass of chemical species and heat, induced by direct 
interparticle interactions. This extension often requires 
formulating multi-dimensional population balance 
models, and allows to model also interactive multi-
populations involving different kinds of disperse 
elements. 
 

 
Figure 10: Influence of the rate of chemical reaction on 

the mass of particles produced 
 
The method of moments that seems to be an 

adventageous tool of handling one-dimensional population 
balance models can be applied also for multi-dimensional 
models defining the joint moments of variables describing 
simultaneously more internal properties of the dispersed 
elements.  

For the sake of illustration, a two-dimensional model 
was presented for describing a cooling crystallizer 
producing needle-shape crystals, and a two-population 
model was developed for describing micromixing of 
solution in reaction crystallisation. In the latter case, the 
population balance equation of fluid elements turned to 
be three-dimensional by itself. The second order moment 
equation reductions for joint moments of internal 
variables, which were closed by means of cumulant 
neglect closures, proved to be very useful in handling 
the rather complex models.  

NOTATION 

〈c〉 mean (macrolevel) concentration, kg/m3 
〈G〉 mean crystal growth rate, m/s 
〈L〉 mean crystal size, m 
〈B〉 mean nucleation rate, no/m3s 
t  mean residence time, s 
a heat transfer surface in a unit volume of suspension 
ak coefficients of solubility (k = 0,1,2) 
b exponent of nucleation rate 
B nucleation rate, no/m3h 
c concentration, kg/m3, kmol/m3 

Dab dimensionless parameter for secondary  
Dap dimensionless parameter for primary nucleation  
G crystal growth rate, m/s 
g exponent of crystal growth rate 
j exponent of nucleation rate 
kb coefficient of nucleation rate, (no/m3s)⋅(m3/kg)-b 
kg coefficient of crystal growth rate, (m/s)⋅(m3/kg)-g 
kr reaction rate coefficient, l/mol s 
kV volumetric shape factor 
L crystal size, m 
n population density function of crystals nucleation  

kr=40 

kr=0.4

kr=1.0

μ 0 

μ 1 μ 1
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p population density function of fluid elements 
R rate of chemical reaction, kmol/m3s 
s scale factor  
U heat transfer coefficient, W/m2K 
T temperature, C, K 
t time, s 
V volume, m3 
vf volume of fluid elements, m3 
x dimensionless moments  
y dimensionless concentration  

GREEK LETTERS 

α  dimensionless parameter  
ρ density of crystals [kgm-3] 
θ dimensionless nucleation rate 
ξ dimensionless time  
ε void fraction 
μm,k (m,k)th joint moment of crystal sizes 
πm,k m,k)th joint moment of concntrations 

INDICES 

a,b,c chemical species A,B,C 
b secondary nucleation 
in input 
out output 
p primary nucleation 
s equilibrium saturation concentration 
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