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General Circulation Models (GCMs) are the main tools 
used to assess the impacts of climate change. Due to their 
coarse resolution, with cells of 100 km × 100 km, GCMs 
are dynamically downscaled using Regional Climate Models 
(RCMs) that better incorporate the local physical features 
and simulate the climate of a smaller region, e.g. a coun-
try. However, RCMs tend to have systematic biases when 
compared with local observations, such as deviations from 
day-to-day measurements, and from the mean and extreme 
events. As a result, confidence in the model projections de-
creases. One way to address this is to correct the RCM out-
put using statistical methods that relate the simulations with 
the observations, producing bias-corrected (BC) projections.
 Here, we present the first assessment of a previously pub-
lished method to bias-correct 21 RCM projections of daily 
temperature and precipitation for Denmark. We assess the 
projected changes and sources of uncertainty. The study pro-
vides an initial assessment of the bias correction procedure 
applied to this set of model outputs to adjust projections 
of annual temperature, precipitation and potential evapo-
transpiration (PET). This method is expected to provide a 
foundation for further analysis of climate change impacts in 
Denmark.

Material and Methods
Climate models
We analysed 21 RCMs from the Euro-CORDEX initia-
tive (Jacob et al. 2014) driven by GCMs from the Coupled 
Model Intercomparison Project phase 5 (Taylor et al. 2012). 
Of these, 16 combinations are driven by the greenhouse gas 
concentration scenario (Representative Concentration Path-
way) RCP 8.5 and five are driven by RCP 4.5 (Table 1). RCPs 
are based on a review of existing scientific literature consid-
ering different descriptions of future socioeconomic condi-
tions, technological development, the environment, climate 
and emission of greenhouse gases and aerosols (Moss et al. 

2010). RCP 8.5 represents a rising radiative forcing reaching 
8.5 W/m2 by 2100 whereas RCP 4.5 represents a scenario of 
stabilised radiative forcing at 4.5 W/m2, both relative to pre-
industrial levels (van Vuuren et al. 2011). The RCM daily 
outputs were remapped using the Climate Data Operators 
– a collection of command line operators to analyse climate 
model data (Schulzweida 2019) – to match the grids of the 
observed temperature (20 km) and precipitation (10 km) ob-
tained from the Danish Meteorological Institute (DMI). We 
remapped temperature using a bilinear interpolation and a 
conservative interpolation for precipitation.

Bias-correction
Precipitation and temperature data were bias-corrected using 
a distribution-based scaling method, whereby daily simula-
tions were fitted to daily observations, as described by Seaby 
et al. (2013). We used the double gamma distribution with 
a cut-off threshold set to the 90th percentile to bias-correct 
precipitation, and a normal distribution for temperature. 
Bias correction has limitations. For example, the correction 
depends on the  training period used to define the distribu-
tion parameters that will be used to bias-correct the simu-
lated precipitation and temperature (Lafon et al. 2013), bi-
ases associated with the driving data (Maraun 2016) and any 
possible alterations in the signal of change in the projection 
(Maraun 2013). Bias correction also assumes stationarity in 
the trained parameters (Chen et al. 2015). These and other 
limitations have been discussed in detail by Maraun & Wid-
mann (2018). In our method, we used gridded observations 
from 1991 to 2010 as the training dataset. The parameters 
obtained during this training period were used to generate 
BC time series from 1971 to 2100. The correction method 
was cross-validated using a five-fold method (Maraun et al. 
2015), where five non-overlapping periods of equal length are 
defined. Four periods were used to train the parameters and 
then the parameters were used to bias-correct the remaining 
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period. Following this approach, cross-validated time series 
were developed for the entire period. 

Potential evapotranspiration (PET)
PET was estimated using the Oudin formula (Oudin et al. 
2005), which uses temperature as the only climate input. The 
formula accurately reproduces the annual accumulated PET 
over Denmark when compared to observations, but they are 
offset from the observed monthly distributions, and a correc-
tion parameter needs to be applied. Here, we estimated daily 
PET using the climate model temperature (uncorrected and 
BC) as the input and applied the correction parameter. 

Results and discussion
We validated the bias correction method by comparing how 
well the uncorrected and BC models simulate the observed 
mean annual temperature and precipitation. Then, we as-
sessed the projected changes in temperature, precipitation, 
and PET by the end of this century for the whole ensemble 

and for each individual combination of GCM and RCM.  
We then assessed the contribution of individual sources of 
uncertainty in the projections. Finally, we assessed the spa-
tial distribution of the projected change for mean annual 
precipitation under RCP 8.5 by the end of the century along 
with a measure of its uncertainty. Here, we assess the change 
in precipitation only, as its variation throughout the country 
is larger than that of temperature and PET.

Bias-corrected results
Mean annual temperature biases range from –1.2°C to 
+1.0°C in the uncorrected models and –0.1°C to +0.3°C 
in the BC models (data not shown). The mean annual pre-
cipitation (857 mm) biases range from –26% to +39% for 
the uncorrected models and between –3% and +5% for the 
BC simulations. Even though PET is not a direct output of 
the climate models, we assessed the biases associated with it 
using uncorrected and BC temperature data as the input to 
the Oudin formula. The biases associated with mean annual 

Changes are for 2071–2100, relative to the 1981–2010 reference period for the uncorrected (raw) and bias-corrected (BC) simulations. GCM: General 
Circulation Model. RCM: Regional Climate Model. RCP: Representative Concentration Pathway. NV: natural variability.

Table 1. Projected change in the mean annual temperature (T), precipitation (P) and potential evapotranspiration (PET)

Projected change by 2071–2100 compared to 1981–2010 
 Raw BC

Included in the
uncertainty analysis

 GCM RCM RCP NV GCM RCM Ensemble RCP T P PET T P PET
         (°C) (mm) (mm) (°C) (mm) (mm)
 x    CanESM2 REMO2015 r1i1p1 8.5 3.5 265 115 5.1 310 173
    x EC-EARTH RACMO 2.2 r1i1p1 8.5 3.0 51 97 3.4 126 112
     EC-EARTH HIRHAM5 r3i1p1 8.5 3.1 71 100 3.9 113 135
    x EC-EARTH RACMO 2.2 r12i1p1 8.5 3.2 92 100 3.7 144 124
 x  x  IPSL-CM5A-MR RCA4 r1i1p1 8.5 3.2 215 98 3.6 241 120
 x    MIROC5 REMO2015 r1i1p1 8.5 4.1 156 134 4.9 156 167
   x x MPI-ESM-LR REMO2009 r1i1p1 8.5 2.5 108 70 3.3 133 104
 x    MPI-ESM-LR RCA4 r1i1p1 8.5 2.6 150 78 3.0 173 112
    x MPI-ESM-LR REMO2009 r12i1p1 8.5 2.4 120 73 3.3 154 107
     NorESM1-M HIRHAM5 r1i1p1 8.5 2.8 162 95 3.5 158 129
  x   HadGEM2-ES CCLM 4.8.17 r1i1p1 8.5 4.3 73 140 4.6 75 150
  x   HadGEM2-ES HIRHAM5 r1i1p1 8.5 3.8 176 121 4.7 200 159
 x x   HadGEM2-ES REMO2015 r1i1p1 8.5 4.1 88 130 5.6 110 186
  x x  HadGEM2-ES RACMO 2.2 r1i1p1 8.5 4.1 133 131 4.6 181 149
 x x   HadGEM2-ES RCA4 r1i1p1 8.5 3.9 165 120 4.4 219 143     
     EC-EARTH HIRHAM5 r3i1p1 4.5 1.6 50 55 2.1 70 75
   x  IPSL-CM5A-MR RCA4 r1i1p1 4.5 2.0 86 39 2.3 106 79
   x  MPI-ESM-LR REMO2009 r1i1p1 4.5 1.2 –25 38 1.7 –10 58
     MPI-ESM-LR REMO2009 r12i1p1 4.5 1.2 43 38 1.7 58 57
   x  HadGEM2-ES RACMO 2.2 r1i1p1 4.5 2.5 112 77 2.8 147 91
     
     Ensemble mean change  8.5 3.3 133 105 4 165 135
        4.5 1.7 53 50 2.1 74 72
     
     Ensemble standard deviation  8.5 0.6 56.8 22.4 0.8 56.9 27.4
        4.5 0.5 51.9 16.9 0.5 58.5 14.7
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PET (564 mm) range from –6% to +8% in the uncorrected 
models and +2% to +5% in the BC models. 

Projected changes 
The BC simulations project higher temperatures and PET 
compared to the uncorrected simulations (Fig. 1). In con-
trast, the uncorrected models project higher precipitation 
than the BC models. The change in temperature and PET 

by the end of the century is larger when driven by RCP 8.5 
compared to RCP 4.5. The same is true for precipitation, but 
the difference between the two RCPs is small. 
When driven by RCP 4.5, the mean of the uncorrected mod-
els projects an increase in temperature of 1.7°C by the end 
of the century, while the BC simulations project an increase 
of 2.1°C. Under RCP 8.5, the uncorrected ensemble mean 
projects an increase of 3.3°C and the BC models project an 
increase of 4°C (Table 1). 
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A.  Temperature, RCP 4.5 B.  Temperature, RCP 8.5

C.  Precipitation, RCP 4.5 D.  Precipitation, RCP 8.5

E.  Potential evapotranspiration, RCP 4.5 F.  Potential evapotranspiration, RCP 8.5

Fig 1. Observations and uncorrected (raw) and bias-corrected (BC) projections under two RCP scenarios. Mean annual temperature under A: RCP 4.5 and 
B: RCP 8.5. Mean annual precipitation under C: RCP 4.5 and D: RCP 8.5. Mean annual potential evapotranspiration under E: RCP 4.5 and F: RCP 8.5.
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 Under RCP 4.5, uncorrected models project an increase 
in inland precipitation of 53 mm/yr by the end of the cen-
tury, in contrast to the 76 mm/yr projected by the BC  
models. Under RCP 8.5, the uncorrected ensemble projects 
an increase of 133 mm/yr by the end of the century whilst 
the BC ensemble projects an increase of 165 mm/yr. The 
bias-correction method applied here, clearly changes the cli-
mate signal from the combined GCM-RCM. This contrasts 
with other bias-correction methods, such as the delta change 
bias-correction, which has no such effect. 
 PET projections follow a similar pattern as temperature, 
with larger increases projected by the BC models compared to 
the uncorrected projections, and with the largest increase by 
the end of the century. Notably, the ensemble change for PET 
is always lower than the change projected for precipitation.
Table 1 shows the projected changes in mean annual tem-
perature, PET and precipitation for individual models by 
the end of the century. Clusters are observed, such as models 
that project a warmer (e.g. CanESM2-REMO2015 and all 
RCMs driven by HadGEM2-ES under RCP 8.5) or a wetter 
climate (CanESM2-REMO2015, IPSL-CM5A-MR-RCA4, 
HadGEM2-ES-HIRHAM5 under RCP 8.5) compared to 
the ensemble mean. Further clusters emerge among models 
that project an increase in water stress (where the increase in 
PET is larger than the increase in precipitation), such as Had-
GEM2-ES-CCLM and HadGEM2-ES-REMO2015 when 
driven by RCP 8.5. These clusters can provide insights into 
the impacts of climate change on Danish water resources.

Uncertainty of the projections
The ensemble spread from the BC simulations is smaller 
than the spread of the uncorrected models for temperature 
and PET when driven by RCP 8.5. For precipitation, the 
ensemble spread decreases for both RCPs. The standard de-
viation of the mean annual precipitation from 2071 to 2100 
is reduced by bias-correction from 166 mm to 122 mm for 
RCP 4.5 and from 211 mm to 139 mm for RCP 8.5.

 The spread or ‘uncertainty’ in projections comes from the 
choice of GCM, RCM or RCP and the natural variability 
expressed in the models. To assess the contribution of each 
source of uncertainty to the overall spread of projections, we 
analysed the signal-to-noise ratio (SNR) of the precipitation 
and temperature projections driven by RCP 8.5 for the mid-
dle and end of the century (Table 2). The SNR of an ensem-
ble is defined as the projected mean divided by the standard 
deviation of the ensemble. Thus, a low SNR implies that the 
uncertainty of the projection is high. 
 Our analysis has some limitations, which we acknowl-
edge here. First, the full range of all possible combinations 
of GCMs and RCMs were not available for the uncertainty 
analysis. Second, some of the available GCM-RCM combi-
nations were run with different initial conditions and third, 
not all RCMs are driven by the same GCMs. Considering 
these limitations, we used the GCM-RCM combinations 
driven by HadGEM2-ES to assess RCM uncertainty. GCM 
uncertainty was estimated by averaging the output of the 
REMO2015 and RCA4 RCMs (each one driven by three 
different GCMs). RCP uncertainty was evaluated using 
the GCM-RCM combinations available for both scenarios.  
Uncertainty associated with natural variability was assessed 
using simulations with two different initial conditions  
(Table 1). 
 For temperature, the largest source of uncertainty in the 
uncorrected models is the choice of RCP scenario used. The 
uncertainty associated with natural variability is largest by 
the middle of the century and then reduces. Finally, the un-
certainty associated with the GCM is larger than that of the 
RCM, which represents the smallest source of uncertainty, 
overall. These results are similar to the findings of Hawkins 
& Sutton (2011) for projections of global mean temperature.
 For precipitation, the choice of GCM and RCP provides 
the largest sources of uncertainty by the middle of the  cen-
tury and the end of the century, respectively. The next largest 
source of uncertainty is the RCM followed by natural vari-
ability. Hawkins & Sutton (2011) estimated that the model 
uncertainty is larger than the uncertainty associated with 

Table 2. Signal to noise ratio for temperature (T) and precipitation (P)

Uncertainty source 2041–2070 2071–2100 2041–2070 2071–2100 2041–2070 2071–2100 2041–2070 2071–2100
GCM 5.7 5.7 1.2 2.0 6.3 6.3 2.0 2.7
RCM 15.3 19.9 2.4 2.8 9.9 10.1 1.8 2.5
RCP 2.6 2.6 1.7 1.4 3.2 3.0 2.1 1.6 
NV 5.0 42.0 12.9 4.5 6.3 16.1 3.7 11.4

 Raw BC
 T (°C) P (mm) T (°C) P (mm)

GCM: General Circulation Model. RCM: Regional Climate Model. RCP: Representative Concentration Pathway. NV: natural variability.
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the emission scenario, with little influence from natural vari-
ability. This agrees with our results, but in Denmark, RCP 
becomes the largest source of uncertainty by the end of the 
century.
 Bias-correction does not alter the uncertainty associated 
with the temperature projections. However, bias correction 
of the precipitation data causes the choice of RCM to become 
the largest source of uncertainty by the middle of the   century, 
and the second largest source of uncertainty by 2100. 

Spatial distribution of the projections
Precipitation is projected to increase throughout Denmark, 
but the relative magnitude of this change varies according 
to location. The projected change in the uncorrected models 
ranges from +10% to +22% by the end of the century, com-
pared to the 1981–2010 reference period (Fig. 2A), whereas 
the BC projections range from +12% to +31% (Fig. 2B). Sim-
ilarly, the standard deviation of the uncorrected projections 

varies between +3% and +19% and between +4% and +21% 
for the BC models. Bias correction generally leads to even 
higher projections of precipitation by the end of the century. 
The standard deviation is less effected. 
 The spatial distribution of change is relatively homoge-
neous over inland Denmark. Variations in the projections 
are mostly observed on the coast cells in both the uncor-
rected and BC models. However, after bias-correction this 
variation along the coast increases as indicated by the large 
standard deviation. This could be due to the interpolation 
method in the observation dataset, which lacks point data in 
the coast cells. 

Outlook
This study provides an overview of the bias-corrected pro-
jections from current state-of-the-art climate models, which 
were not previously available for Denmark. By identifying 
the contribution of each uncertainty source and providing 

Fig. 2. RCP 8.5 annual precipitation change (%) by the end of the century (2071–2100) relative to the 1981–2010 reference period for the A: uncorrected 
and B: bias-corrected ensemble. Standard deviation for the C: uncorrected and D: bias-corrected ensemble.
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the projected change from the ensemble and from each indi-
vidual model, we provide a basis upon which to plan future 
assessments of the impacts of climate change on Danish wa-
ter resources. The data represent a useful input to the Danish 
National Water Resources Model (DK-Model) for the analy-
sis of climate change impacts. However, this initial analysis 
is aggregated for the whole of Denmark and projections vary 
across the country. Further research will focus on assessing 
monthly and seasonal changes in the projections as well as 
using these post-processed models to evaluate the projected 
impacts on Danish hydrology.
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