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Abstract 

The need for built-up area increases along with a rise in population growth in many regions. 

This phenomenon leads to a tremendous change in agricultural land and decrease in the 

environmental carrying capacity. Therefore, this study aims to determine Land Use and Land 

Cover (LULC) dynamics and the drivers used for its modeling in 2030. This is a quantitative 

study, which uses the dynamic models of Geographic Information System (GIS) and Markov-

CA. Data were obtained from the CNES-Airbus satellite imageries in 2009, 2014, and 2019 

by using Google Earth at East Cirebon. The drivers include road density, distance to CBD, 

total population, distance to settlements, land slope and distance to rivers. The interaction 

between drivers and LULC change was analyzed using binary logistic regression. The results 

showed that the rise of built-up area reached 36.4 percent and causes the loss of 0.78 km2 of 

agricultural land from 2009 to 2019. The LULC simulation in 2030 shows an increase in the 

built-up area by 82.85 percent with probabilities above 0.6. Meanwhile the significant drivers 

for changes include road density and distance to settlements. In conclusion, efforts to reduce 

LULC change in agricultural land into built-up area is by re-strengthening spatial planning-

based environmental awareness for the community. 
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1. Introduction  

Land is a valuable resource formed from biotic and abiotic components on the earth's 

surface (Asselen & Verburg, 2013). Its various forms and uses are referred to as land use and 

land cover (LULC) (Aspinal & Hill, 2008). Land growth rates and human needs have varying 

patterns, although it is a limited resources– its value typically appreciates over time. It has 

both direct and indirect impacts on humans which leads to the dynamic phenomenon of 

LULC, such as the transformation of agricultural land into built-up area (Gashaw et al., 

2017).  

This condition is caused by several factors or drivers, from the physical and social 

environment (Kusratmoko et al., 2017). In Indonesia, the rate of land conversion follows a 

linear pattern from 1.8 percent to 2.1 percent (BPS, 2013). There is an increase in the demand 

for built-up areas such as housing, amenities, infrastructure as well as employment in the 

industrial sector due to the 2030 demographic dividend. This led to the shrinkage of 

productive-agricultural lands that served as food barns. Cirebon is one of the regions which 

has agricultural comparative-advantage, as well as a similar pattern of LULC conversion 

(Dede et al., 2016; Dede et al., 2019). This is evident in the emergence of its Regional 

Planning (RTRW) from 2018 to 2038 and Regional Regulation on Sustainable Agricultural 

Land (LP2B), these two policies have the directives to protect 45,000 hectares of agricultural 

land against LULC change.  

LULC change in the western region of Cirebon occurred due to industrialization, 

while in the Eastern part, it is caused by the development of new residential and industrial 

areas for numerous multinational companies. Another region that experiences this change is 

Gebang Sub-District. Its development is rapidly instigated by the local government because 

this region has poor economic growth than The Western Region of Cirebon. This 

actualization was realized by the residential and industrial projects carried out on lands 

formerly used for agricultural purposes. Assuming, the rate of LULC change is not properly 

controlled, it tends to cause several impacts as well as a decline on environmental carrying 

capacity (Hidajat et al., 2013). The factors that affects this phenomenon is geographically 

determined through an efficient method referred to as spatial modeling . Its dynamic nature is 

predicted using spatial modeling and geographic information system (GIS) subsequently, the 

use of vector and raster data based on remote sensing imageries is ideal for future purposes 

(Dan-Jumbo et al., 2018). An LULC spatial modeling relating to physical and social factors 

is capable of determining (didactic) and illustrating the dynamic process (heuristic) to 

produce useful outcomes for the regional development planning (Sanders, 2007; Kangalawe 
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& Lyimo, 2010). It is also used to evaluate the changes in probability, the influence of the 

factors or drivers, and dynamic scenario based on certain trends in space and time (Kumar et 

al., 2015).  

Markov-Cellular automata (CA) is a dynamic spatial model composed of cells (pixels 

or grids), each of which is systematically arranged. It is also robust in predicting the 

transitions or spatial and temporal dynamics among a number of LULC types…. 2014). This 

model is a computational method for determining dynamic systematic changes that depend on 

certain rules developed temporally (Liu, 2012). It functions in accordance with the principle 

of game play, it is sensitive to cell size, and neighborhood configuration or similar to three or 

more existent parcels (Moreno, 2008). Markov-CA, when compared with other dynamic 

models has advantages such as the ability of individuals to boost information that has under 

the regular principles, regulates their evaluation, and analysis of the spatial (space) 

characteristics, used to easily predict land use in the future (Gambo et al., 2018). 

Knowledge of existing LULC changes and the probability of its dynamics in the 

future is important for regional development, particularly in rural areas proposed as growth 

centers such as Gebang District, and Cirebon Regency. Previous studies generally examined 

the LULC changes in critical watershed, peri-urban, metropolitan, and megapolitan regions 

(Lahti, 2008; Chavula et al., 2011; Li et al., 2019). Furthermore, the studies carried out in 

rural areas, primarily focuses on the use of land for agricultural purposes and forestry 

(Sodikin et al., 2018; Voight et al., 2019). According to previous studies, its factors or drivers 

tend to have an effect on the biogeophysical aspects rather than the regional socio-economic 

conditions. Therefore, efforts to examine LULC changes in rural areas with potentially 

significant landscapes are essential for adaptive and sustainable regional development 

policies. This study aims to determine the dynamics of LULC in Gebang District representing  

the Eastern Cirebon and the future application of GIS and Markov-CA models. 

 

2. Methods 

2.1 Study Area 

This research was carried out at Gebang Sub-District, East Cirebon Regency, West 

Java. This area is situated between Cirebon, Kuningan and Brebes Regency. It has a tropical 

climate characterized by an average temperature of 32o Celsius and annual rainfall of 

approximately 2000 to 2500 mm. Gebang has an altitude of 0 to 37 m above sea level and the 

region is suitable for the cultivation of rice, pulses and sugarcane, however it is quite 

susceptible to flood and tidal rising. This study applied saturated sampling in 14 villages 



 

212 
 

Millary Agung Widiawaty et al / GEOSI Vol 5 No 2 (2020) 210-225 

 

(Figure 1). Subsequently, LULC dynamic model is an input for environmental conservation 

as well as efforts to protect productive agricultural land.  

2.2 Data Acquisitions 

Basic information on LULC was obtained using the 2009 CNES-Airbus imagery 

which had a spatial resolution of 0.96 meters. The analysis of land changes were initiated 

based on a temporal span of 10 years which was due to the independent implementation of 

development policies in the region – in the early 2000s, Gebang was separated from Babakan. 

The second temporal (time) data was obtained with the 2014 CNES-Airbus imagery. 

Meanwhile, the first law of geography refers to the dynamics of LULC's spatial modeling -

which stated that everything is related, however those that are closer are more influential than 

distant things (Sui, 2004; de Smith et al., 2007; Foresman & Luscombe, 2017). 

Consequently, all spatial phenomena are formed due to reciprocal relationships with their 

neighboring environment, which leads to geographical closeness that offers stronger and 

more influential interactions. This is common in cross-sectional phenomena such as land use, 

therefore the Markov-CA, is a suitable mathematical model (Hamad, et al., 2018; Hua, 2017). 

 

Figure 1. Study Area 

This study utilized primary data obtained from field surveys carried out as part of 

testing land use in 2019, however secondary data was derived from reliable sources, namely 
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scientific articles, official reports of government and non-governmental institutions (Table 1). 

These data are validated according to geospatial criteria in order to enable LULC dynamic 

spatial modeling. 

         Table 1. Data Acquisition and Research Variables 

Variable or driver Data Data acquisition 

Land slope (X1) Raster ASTER DEM (2019) 

Distance to rivers (X2) Vector Field survey (2019) and buffering HOT-OSM 

BNPB data (2019) 

Distance to CBD (X3) Vector Buffering based on field survey (2019) 

Total population (X4) Atribut Indonesian Statistical Agency (BPS) (2019) 

Road density (X5) Vector BIG Tanah Air-Geoportal (2019) 

Distance to settlements (X6) Vector Buffering based on visual-supervised classification 
of CNES-Airbus (2019) 

Land use and land cover (Y) Vector and raster Visual-supervised classification of CNES-Airbus 
Imageries (2019) and field survey (2019) 

 

2.3 Data Analysis 

This research applied a quantitative approach for making interpretation and drawing 

inferences from changes in the dynamic system which occurs due to its drivers and the LULC 

predictions by the Markov-CA model. Supposing the outcome is combined with non-

parametric statistical analysis, the determinants or drivers influencing this phenomenon are 

discerned (Quan et al., 2006; Deng et al., 2009). Therefore, the results from Markov-CA 

were combined with the logistic regression method to obtain the probability value in the 

modeling of LULC in Gebang (Equation 1). Logistic regression is defined as a type of non-

parametric statistics, which involves the interaction between variables relating to an actual 

situation in the absence of classical assumption test. The modelsproduce potential LULC 

dynamics in the future. The probability of spatial dynamics is determined by the 

transformation of standardized Z values (Hosmer, 2013). Through this model, the 

intervention of independent variables that are highly significant produces several scenarios of 

LULC probabilities. 

ln (
p

1-p
) = α + β1 X1 +β2 X2 + …. + βn Xn 

(

(1) 

where ln is the natural logaritmic, p probability value, α regression constant, and β 

predictor coefficient.  

The results from the validation of spatial modeling were obtained using data from 

ground truth which involves 30 LULC samples from all villages in Gebang Sub-District. This 
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effort  is evident in the overall accuracy and kappa values (as shown in Equation 2 and 3) 

(Widiawaty et al., 2018). 

overall accuracy =
L1 + L2 + …. + Ln

n
 

(

(2) 

  

overall kappa =
OA - EA

1 - EA
 

(

(3) 

Where L is LULC types, n total samples, OA observed, and EA expected agreement.  

3. Results and Discussion  

The analysis of LULC dynamics started in 2009 because the study area showed the 

independent implementation of development policies after it was separated from Babakan 

Sub-District in the early 2000s. During this period LULC was dominated by agricultural land 

and salt-fisheries with an area of approximately 29.11 km2 (82.38 percent), other large 

proportion consist of built-up areas (2.93 km2) and plantations (2.60 km2). In 2014, the built-

up area gained a significant increase of approximately 0.93 km2, five years later. However, 

various conditions caused a decline at the plantations and agricultural lands to relatively 0.26 

– 0.58 km2 (as shown in Figure 2). In accordance with the aquacultural sector, there was a 

decline in areas utilized as salt-fisheries and they were transformed into mangrove forests due 

to lack of management.  

It is assumed that the prediction of LULC information during the final periods are 

based on the interpretation and classification of imageries, obtained in 2019 and 2030 using 

GIS and Markov-CA model. The model used a redundant temporal dynamics with pixel 

resolution 5 m x 5 according to the geospatial regulation in Indonesia (Law 4/2011 of 

Geospatial Information). The LULC model has an overall accuracy of 93.33 percent and 

kappa of 0.92, therefore it is valid and needs to be recommended for future purposes. The 

high-level of accuracy is considered prevalent due to the detection of LULC using high 

satellite imagery resolution with an accuracy of relatively 0.80 (Ustuner et al., 2017). The 

LULC model in 2019 showed several changes in built-up areas, furthermore its increase 

caused a decline in agricultural lands, plantation, etc (Figure 3). The occurrence of accretion 

led to the development of mangrove vegetation of approximately 0.02 km2. Sediment 

materials from Ci Beres and Ci Sanggarung accumulated in the shoreline of Gebang.  

In 2030, Gebang Sub-District is expected to be highly-dynamic because the built-up 

areas was approximately 20.67 percent, tend to increase to 3.99 km2 due to the function of 

non-vegetated land and plantations with a probability of 0.43 – 0.45. Changes in LULC were 
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also  detected in agricultural land and shrubs with a probability of relatively 0.10 as shown in 

Table 2. The direction of the dynamics in this region starts with the exhaustion of agricultural 

land which is converted to non-vegetated land till it is covered with marshes and woody 

plants. Initially, it was made up of agricultural land which gradually became compact and 

used to build settlements as well as other infrastructures to support human needs. This is 

common in various parts of the world to prevent subsidence thereby resulting in the 

conversion and utilization of inappropriate human activities to manage the environment 

(Minderhoud et al., 2018). Therefore, the agricultural land is directly converted to built-up 

areas. Figure 2 shows that agricultural land decrease every time.

 

Figure 2. LULC Change in Gebang and Prediction in the Future  

Table 2. LULC Change Probabilities 

LULC Type 
Probability 

WB MA Pt NV BA AL Mr SF 

Water bodies (WB) 0.322 0.049 0.171 0.002 0.114 0.089 0.023 0.231 

Mangroves (MA) 0.182 0.029 0.047 0.003 0.038 0.029 0.008 0.666 

Plantations (Pt) 0.029 0.002 0.346 0.001 0.447 0.167 0.002 0.007 

Non-vegetated (NV) 0.015 0.005 0.042 0.009 0.437 0.162 0.001 0.331 

Built-up area (BA) 0.021 0.001 0.090 0.000 0.870 0.015 0.001 0.002 

Agricultural land (AL) 0.003 0.000 0.063 0.009 0.122 0.789 0.000 0.014 

Marsh (Mr) 0.042 0.007 0.158 0.002 0.126 0.149 0.078 0.439 

Salt area & Fisheries (SF) 0.047 0.022 0.011 0.007 0.053 0.054 0.001 0.804 

Mean 0.083 0.014 0.116 0.004 0.276 0.181 0.014 0.312 
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LULC transition shows that human intervention in agricultural activities has the tendency to 

change the land into a built-up area. This condition is driven by lack and the pragmatic 

attitude of young people to become farmers – due to the fact that poverty aided in 

accelerating the rate of land conversion in the Cirebon Regency, particularly in Gebang 

District. The results from the gain and loss analysis show that the developed area was 

approximately 4.38 km2, while the agricultural land was reduced to 4.22 km2 as shown in 

Table 3. The LULC dynamics shows that a significant interaction exists between the decline 

in agricultural land and increase of built-up area. This pattern leads to food inequality 

because the human population continues to grow while there is a decline in agricultural lands, 

particularly in developing countries due to modernization and industrialization (Ouedraogo et 

al., 2010; Mhawish & Saba, 2016). Figure 3 shows the expansion of built-up area in previous 

periods tends to be close to the road. 

Figure 3. LULC Dynamic Map of Gebang 

3.1 Driven Factors of LULC Change 

LULC change in a dynamic system occurs due to various factors. The CA model 

produces predictions which combines with non-parametric statistical analysis useful in 
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determining the various factors that influences this phenomenon referred to as drivers 

(Kamwi et al., 2018; Munthali et al., 2019). Therefore, the LULC modeling in Gebang Sub-

District is combined with the Markov-CA logistic regression methods to obtain the 

probability value of the dynamics. The testing involved 6 (six) factors or drivers known as 

independent variables namely land slope, distance to rivers, distance to CBD, population, 

road density, and distance to the built-up area which were analyzed and reclassified as shown 

in Figure 4. LULC change is a dependent variable which consists of both changed and non-

changed lands. 

 

Figure 4. Drivers of LULC Changes 
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Table 3. Gain and Loss All Types of LULC in Gebang 

LULC Type 
Area (km2) Gain & Loss (%) 

2009 2014 2019 2030 2009 2014 2019 2030 

Water bodies (WB) 0.52 0.51 0.49 0.50 - -0.89 -3.93 2.10 

Mangroves (MA) 0.05 0.12 0.10 0.04 - 129.5 -18.02 -62.78 

Plantations (Pt) 2.60 2.34 2.41 2.19 - -9.96 3.01 -8.99 

Non-vegetated (NV) 0.08 0.13 0.11 0.06 - 74.27 -16.83 -43.62 

Built-up area (BA) 2.93 3.86 3.99 7.30 - 31.79 3.52 82.94 

Agricultural land (AL) 20.6 20.0 19.9 16.8 - -2.78 -0.92 -15.36 

Marsh (Mr) 0.05 0.04 0.03 0.03 - -25.46 -14.99 -3.59 

Salt area & Fisheries (SF) 8.49 8.29 8.34 8.41 - -2.36 0.54 0.86 

 

Table 4. Interaction between Drivers and LULC 

Variable or driver Β Exp(B) Sig. Status 

Land slope (X1) 0.021 1.021 0.746 Not significant 

Distance to rivers (X2) 0.032 1.033 0.442 Not significant 

Distance to CBD (X3) -0.090 0.914 0.254 Not significant 

Total population (X4) -0.061 0.941 0.415 Not significant 

Road density (X5) 0.228 1.256 0.001 Significant 

Distance to settlements (X6) 1.776 5.907 0.000 Significant 

Constant -8.647 0.000 0.000 Significant 

 

Table 5. LULC Dynamic Model Validity 

Model accuracy and drivers influence 

Accuracy (percent) Nagelkerke test 
(r and r2) 

Significance 

Without drivers Using drivers p-value Α 

50.2 66.0 0.493 and 0.243 0.00 0.05 

Goodness of fit (GoF) Hosmer-Lameshow 

Chi-square value Chi-square table DoF p-vaue α Status 

10.61 15.51 8 0.225 0.05 Fit 

Relative operative characteristics (ROC) 0.73 

 

ln (
p

1-p
) = - 8.65 + 0.02 X1+ 0.03 X2 - 0.09 X3- 0.06 X4 + 0.23 X5 + 1.18 X6 (4) 

The result from logistic regression test implies that road density and distance to built-

up area have a significant influence of approximately 95 percent confidence level (Table 4). 

This condition shows that the pattern of LULC changes tends to be close to the existing built-

up area which has quality accessibility (Saputra & Lee, 2019). In addition, six drivers 

simultaneously have a significant influence on LULC change, the r-value obtained from the 
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Nagelkerke test is0.493, and an increase was detected in the value of Markov-CA based on 

GoF and ROC (as shown in Table 5). However, LULC changes also occur without 

influencing the drivers. This is evident in the 0.757 value of the epsilon which shows that 

other factors such as socio-economic conditions and political policies also influences the 

LULC preferences (Yirsaw et al., 2017). The interaction value between the drivers and 

LULC change in the regression model is shown in Equation 4.  

The statistical results also known as the drivers of socio-economic aspects are more 

influential than the biogeophysical aspects in Gebang.  These are certainly different from 

previous studies which stated that slope and distant water bodies are significant drivers 

(Hassen & Assen, 2017; Dibaba et al., 2020). This shows that abrupt knowledge of the socio-

economic condition is necessary in the analysis of LULC change, although the nature of these 

drivers tends to be dynamic and difficult because they are the two main causes of 

urbanization – in the context of the development of rural and urban landscape (Han et al., 

2015). 

3.2 Probability LULC in 2030 

The values of the input independent variable (drivers) stated in Equation 4 predicts the 

probability of LULC change in 2030. Out of the six drivers, four of them are constant namely 

slope, distances to the river, built-up area, and CBD. Therefore, the spatial probability of 

LULC in Gebang is only affected by two dynamic drivers namely population number and 

road density which are both significant variables. Population number in 2030 is obtained 

from the prediction of the population growth from 2009 to 2019. Gebang Sub-District has a 

population growth of 1.42 percent per year, therefore in 2030 it is predicted to be 67,449 

people (approximately 10.77 percent). The increasing road density in 2030 is derived from 

the national average road development which is relatively 0.12 percent per year (Istiono, 

2014). The results from processing and inputting data for the drivers into a logistic regression 

equation produced a probability scenario of LULC change as shown in Figure 5. This pattern 

of change is similar to the research carried out by Mienmany (2018) which predicts that 

almost all types of LULC have a potential change towards the built-up area. 

In 2030, the probability of LULC change is predicted to be high in four villages – 

Gebang Kulon, Gebang Ilir, Gebang Mekar, and Gebang Udik. These areas are close to the 

Gebang CBD and have high density, due to the influence of national arterial roads (pantura). 

Its existence offers a variety of socio-economic benefits for the population due to the role of 
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interregional interaction, and the presence of built-up areas (McAndrews et al., 2017; Yesuph 

& Dagnew, 2019). The total area of 0.55 km2 has a probability of approximately 0.4. This 

value is smaller when compared to the land probability of 0.001 – 0.1 with an area of 3.06 

km2, irrespective of the changes. 

 

Figure 5. a) Pattern of LULC Change Transition and b) Probability Change of  

LULC Gebang in 2030 

4. Conclusion  

The integration of GIS and Markov-CA led to the emergence of a dynamic LULC 

model and information on various factors which influenced its changes in the Gebang Sub-

District. This research discovered that from 2009 to 2030 there tends to be an increase in 

built-up area accompanied by a decline in agricultural land and plantations. The predictions 

of 2030 also showed that the developed area was expanded to approximately 20.67 percent, 

while the largest land loss of relatively 18.5 percent occurred in agricultural land. Two 

drivers that have significant influence on LULC change is road density and distance to built -
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up area. In addition, the total chances of LULC occurrence in this region was approximately 

4.31 km2. 
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