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Abstract. The paper investigates the problem of free vibration and buckling of an Euler-

Bernoulli double-microbeam system (EBDMBS) under the compressive axial loading with 

a temperature change effect. The system is composed of two identical, parallel simply-

supported microbeams which are continuously joined by the Pasternak’s elastic layer. 

Analytical expressions for the critical buckling load, critical buckling temperature, natural 

frequencies and frequencies of transverse vibration of the EBDMBS represented by the ratios 

are derived and validated by the results found in the literature. Also analytical expressions 

are obtained for various buckling states and vibration-phase of the EBDMBS. The 

temperature change effect is assumed to have an influence on both the microbeams. The 

length scale parameter, temperature change effect, critical buckling load, thickness/material 

parameter, Pasternak’s parameter and Poisson’s effect are discussed in detail. Also, as a 

clearer display of the thermo-mechanical response of EBDMBS, the paper introduces a 

critical scale load ratio of the modified and the local critical buckling loads in low-

temperature environs. Numerical results show that the critical buckling temperatures for 

classical theories are always higher than the critical buckling temperature for MCST 

systems. 

Key Words: Thermal Effect, Double-microbeam System, Critical Buckling Load, 

Pasternak’s Parameter, Poisson’s Effect 

1. INTRODUCTION   

Micro and nano structures became an object of interest in modern science and technology 

just after their invention. They possess important mechanical, electrical and thermal 

performances that are higher than conventional structural materials. Using micro/nano 
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structures in a high temperature environment leads to certain changes in stiffness. Recently, the 

vibration and buckling studies of beams with the microstructure effect have been increasingly 

present in the scientific community. Researchers are motivated to develop theories such as the 

modified couple stress theory (MCST) which contains the material length scale parameter; also, 

they are able to describe size effects on the micro-scale. On the other hand, the classical 

continuum mechanics theories neither contain any internal material length scale parameter nor 

are they able to describe these effects. The structural elements such as beams, plates, and 

membranes in the micro or nano length scale are frequently used as components in micro/nano 

electromechanical systems (MEMS/NEMS). 

With the rapid development of technology, functionally graded (FG) beams and plates are 

often used in MEMS/NEMS, such as the components in the shape of memory thin films alloy 

with a global thickness in the micro/nano scale, atomic force microscopes (AFMs), and 

electrically actuated MEMS devices [1–8]. As opposed to the strain theories which were 

introduced by Mindlin and Eshel [9], with five constants besides the Lamé constants, Lam et al. 

[1] presented a modified theory consisting of only three non-classical constants. Wang et al. 

[10] used the above theory to analyze the behavior of micro beams considering Euler–Bernoulli 

and Timoshenko beam theories. Analysis of bending and buckling of a thin beam were 

presented by Lazopoulos and Lazopoulos [11]. These results imply that the gradient coefficient 

has a significant effect on the buckling load while the surface effect of the energy is negligible. 

The modified couple stress theory has been used by many authors just as it has been mostly 

applied to micro beams. The non-local Bernoulli–Euler beam model was proposed by 

Peddieson et al. [12], using a constitutive equation after Eringen et al. [13] which contains two 

additional material constants. The non-local theories for the Bernoulli–Euler, Timoshenko, 

Reddy, and Levinson beams were developed by Reddy [14] in a unified way using the 

Hamilton principle and the non-local constitutive relation of Eringen et al. [13]. Park and Gao 

[18] used a modified couple stress theory with an Euler-Bernoulli formulation for the bending 

analysis of cantilever beams. Ma et al. [19] and Reddy et al. [17] developed a modified 

Timoshenko beam theory and investigation of the bending and free vibration of simply-

supported beams using the Navier solution process and finite elements method.  

The buckling analysis of functionally graded micro beams based on the MCST is 

presented in Nateghi et al. [20]. The free vibration of a single-layered graphene sheet resting 

on an elastic matrix as a Pasternak foundation model explored by using the modified couple 

stress theory is presented by Bekir and Civalek [21]. M. Simsek and Reddy [22] developed a 

united higher order beam theory for a functionally graded (FG) microbeam embedded in an 

elastic Pasternak medium using the modified couple stress theory. In the paper of Hendou 

and Mohammadi [23], an Euler–Bernoulli model has been used for vibration analysis of 

micro-beams with large transverse deflection where thermoelastic damping is considered to 

be the main damping mechanism and displayed as imaginary stiffness into the equation of 

motion by evaluating the temperature profile as a function of lateral displacement. Free 

vibration and buckling of microbeams with the temperature change effect is presented by Ke 

et al. [24]. The finding that the thermal effect on the fundamental frequency and critical 

buckling load is very low when the thickness of the microbeam has a similar value to that of 

the material length scale parameter and that it becomes significant when the thickness of the 

microbeam becomes larger, was of particular interest, and the present paper considers what 

may happen with a double microbeam system. 

Scientists are trying to comprehend the vibration behavior of micro/nano structures 

with the effect of temperature changes. Primarily motivated by the last few studies [22, 



 Thermal Effect on the Free Vibration and Buckling of a Double-Microbeam System 47 

23, 24], this paper analyzes the free vibration and buckling behavior with the temperature 

change effect of the Euler-Bernoulli double-microbeam system (EBDMBS). To solve the 

higher-order main equations of the EBDMBS we use the Bernoulli–Fourier method. The 

system is composed of two identical and parallel, simply-supported beams which are 

continuously joined by the Pasternak’s elastic layer. It is assumed that the temperature change 

effect has an impact on both the microbeams. The length scale parameter, temperature change 

effect, critical buckling load, thickness/material parameter, Pasternak’s parameter and Poisson’s 

effect are discussed in detail.  The paper presents the impact of different above-mentioned 

parameters on the natural frequency, frequency under compressive axial loading, critical 

buckling load and critical temperature of EBDMBS with thermal effect. Also, results for 

various buckling state and vibration-phase of the EBDMBS are obtained. The vibration phases 

include out-of-phase and in-phase modes of vibration. In order to verify the present study, a 

comparison of the thermal effect on the dimensionless natural frequency of the system for the 

first three modes with the results found in the literature is given in the tabular form.  

Because of the strong coupling between mechanical and electrical phenomenon in 

electromechanical microdevices, there is a growing need for results with temperature effect 

since they can give contribution to the making of modern microsensors. The ability of the 

MEMS device is precision and sensitivity without the need for any cumbersome electrical 

components. 

2. FORMULATION 

On the basis of the MCST, we discuss the oscillatory system of two parallel Euler–

Bernoulli microbeams which are continuously joined by the Pasternak elastic layer under the 

influence of axial loading including the temperature change effect (see Fig. 1).The Pasternak 

foundation assumes the presence of shear interaction among the spring elements which is 

achieved by connecting the ends of the springs to a beam that only undergoes transverse shear 

deformation, see [25]. The load–deflection relationship is obtained by taking into account the 

vertical equilibrium of a shear layer. The pressure–deflection relationship is given by 

 ,2,1,
2

0

2

0 



 i

x

w
Gkwp i

i  (1) 

where G is the modulus of a shear Pasternak's layer and K is the stiffness modulus of a 

Winkler elastic layer.  Beams are continuously connected with the Winkler elastic layer 

which represents an idealized medium formed of system springs. Both the microbeams are 

rectangular and have the same length L, thickness h, width b.  

 

Fig. 1 Double-microbeam system coupled by the Pasternak's layer 
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The beams are simply supported at the ends and under the effect of the axial compressive 

load with the temperature change effect.  

2.1. Introduction of the modified coupled stress theory  

The MCST was developed from the classical couple stress theory, which was well 

grounded by Mindlin [26], Mindlin and Tiersten [27], Toupin [28] and Koiter [29]. This 

theory, suggested by Yang et al.(2002), holds that energy density is a function of strain as 

well as curvature. According to the modified couple stress theory, Yang [30], Park and 

Gao [18], Ma et al. [19] and Reddy [17], strain energy Us  in an isotropic linear elastic 

material occupying area Ω with a volume element V, and, can be written as  

 
1

( : : ) ,
2

sU dV


    m  (2) 

where σ and ε are the Cauchy stress tensor and strain tensor, respectively, m is the 

deviatory part of the couple stress tensor, and χ is the symmetric part of the curvature 

tensor. These tensors correspond to the geometrical equations: 
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where  is the Nabla operator, u is the displacement vector. The rotation vector and 

constitutive equations are defined by 
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Where material length scale parameter l has the dimension of length which is 

mathematically the square of the ratio of the curvature modulus to the shear modulus and 

is physically regarded as a material property measuring the effect of couple stress, 

Mindlin [26], μ and λ are the Lamé constants that are given as: 
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In order to implement the linear constitutive relations presented in Eq. (6) the microbeam 

material should be made homogeneous, isotropic and linearly elastic. 

2.2. Mathematical model of the double-microbeam system  

Based on the Euler-Bernoulli beam theory, axial displacements u(x,z,t) and transverse 

displacements of any point of the beam, w(x,z,t) are given by Reddy [14] as 
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where W0(x,t) is the midplane displacement. From vector Eqs. (3)-(5) and displacements 

(7) it follows that 
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where E is Young’s modulus, α is the coefficient of thermal expansion, ν is Poisson's ratio 

and ΔT=TT0 is the temperature change with a respect to reference temperature T0 and 

assuming no shear strains are created by temperature change.  

In this study, the equilibrium equations are derived by the principle of total potential 

energy [15, 16]. From Eqs (2) and (8) - (11), the variation of strain energy in the double-

beam system can be determined as 
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where Mxi and Yxyi are the stress resultant moments and couple moments for the first and 

second microbeam, respectively, defined as 
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The stiffness components in Eqs. (13) are defined as [22] 
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Using the displacement field components given in Eq. (7), we obtain the variation of 

kinetic energy in the form 
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where ρi is the mass density for the first and second microbeam. The first variation of the 

additional strain energy caused by the elastic medium is written by 
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where K and G are the spring constants of the Winkler and Pasternak elastic medium, 

respectively. The first variation of the work done by axial forces Fxi=Fmi+FT, (i=1,2) can be 

given as 
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where FT=AxxαΔT is the axial force due to the influence of the temperature change and  

Fmi, (i=1,2) is the axial forces due to the mechanical loading for the first and second 

microbeams. The main equation and the boundary conditions can be derived by the 

Hamilton principles as follows 
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If we substitute the expressions for δUs, δKe, δUad and δWext from Eqs. (12), (15), (16) and 

(17) into Eq. (18) and after integrating by parts and then collecting the coefficients of δW01 and 

δW02, the equations of motion of the double microbeam system are obtained in the form 
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The boundary and initial conditions of the double-microbeam system are assumed to 

be simply supported and considered as 
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3. ANALYTICAL SOLUTION PROCEDURE  

For the sake of simplicity, we assume that the two parallel beams of the elastically 

connected double-beam system have the same bending stiffness EI1=EI2=EI and cross-

sectional area A1=A2=A. Both microbeams have the same length L and same material 

characteristics ρ1=ρ2=ρ. The equations of motion can be expressed in the terms of 

displacements W01 and W02. By substituting Eqs. (14) into Eqs. (19) and (20) the main 

equations of EBDMBS in terms of the displacements are given below 
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In order to simplify the solving of Eqs. (23) and (24), we will introduce the following 

dimensionless parameters: 
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Assuming time harmonic motion and using separation of variables, the solutions of 

Eqs. (23) and (24) with the main boundary conditions (21) can be written in the form 
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where Sin(τ) is the unknown time function, and Xn(ξ) is the known mode shape function 

for a simply supported single microbeam. Introducing the general solutions (26) into Eqs. 

(23) and (24) we obtain the following equations 
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where ωn marks the natural frequency of the double-microbeam system, and Cn and Dn 

present the amplitude coefficients of the two microbeams, respectively. By substituting 

Eqs. (29) into Eqs. (27) and (28) the determinant can be written from which the nontrivial 

solutions for constants Cn and Dn can be obtained only when this determinant of the 

coefficients vanishes. This gives the following frequency equations 
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Finally, when the bi-axial compression forces due to the mechanical loading 1 2m mF F  

= 0 are ignored, the natural frequency of the system is written by the formula 
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where 0

nI  is the lower natural frequency and 0

nII  is the higher natural frequency of the 

EBDMBS. When the bi-axial load applied on the double-beam system reaches a certain critical 
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value, the double-beam system becomes unstable which means that the system begins to buckle. 

Introducing ωn=0 into Eq. (30), and substituting mechanical load ratio ,12 mm FF where 

FFm 1 and ,2 FFm  we obtain the equation for the critical buckling load as follows 
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Based on equation (32), the critical buckling temperature of the EBDMBS for the bi-

axial compression equal to zero 021  mm FF is of the form 
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The illustrated analytical expressions for the natural frequency equation (31), critical 

buckling load equation (32) and the critical buckling temperature (35) are common 

equations for the EBDMBS with thermal influence. 

3.1. Out-of-phase modes of vibration and buckling state 

A detailed analysis for different cases of phase modes of vibration and buckling state 

is shown in the paper of Murmu and Adhikari [33, 34, 35]. 

 

Fig. 2 Out-of-phase vibration of the double-microbeam system  

For the EBDMBS we can use a change in variables by considering W0i(x,t) as the 

relative displacement of the microbeam-1 with respect to the microbeam-2 

                                                     ,02010 WWW                                                           (36) 
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.02001 WWW                                                           (37) 

Subtracting Eq. (23) from Eq. (22) and using Eqs. (36) and (37) we obtain 
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In above Eqs. (38) and (39) for sake of simplicity we assume that Fm1=Fm2=Fm.  

If material length scale parameter l is ignored, the above equations become those of 

the classical Euler–Bernoulli beam theory. 

For the present out-of-phase analysis of the EBDMBS, we see simplicity in using Eq. 

(38). The general solution of Eq. (38) is written as 
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where W0(x) is the corresponding deformation shape of the EBDMBS and ω is  frequency. 

For vibration analysis we know that is Fm=0. By introducing Eq. (40) in Eq. (38) we get 
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Further, the solving of frequency for the out-of-phase vibration is presented in this section. 

The configuration of the EBDMBS with out-of-phase vibration mode (W01  W02  0) is shown 

in Fig. 2. By using the boundary conditions of simply-supported microbeam system from Eq. 

(21) yields C2=0 and C4=0. 

From that we can write 
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For the nontrivial solution of Eq. (46) the determinant is zero, it follows 
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From Eq. (47) the frequency equation is 
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and implies 
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Using Eq. (45) yields 
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Using the dimensionless parameters (25) and Eq. (43), the natural frequency of the 

EBDMBS for out-of-phase vibration mode we get 

2 4 2

0( ) ( ) 2 .n xx xz n T p n wd a l k F k k k                                   (51) 

Using dimensionless parameters (25) and Eq. (38) we get the expression of buckling 

load in out-of-phase sequence as  
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3.2. In-phase modes of vibration and buckling state 

The configuration of the EBDMBS with in-phase modes of vibration is shown in Fig. 

3. The relative displacements between the two microbeams are absent (W01  W02 = 0). For 

the mentioned EBDMBS vibration we solve the Eq. (39).  

 

Fig. 3 Out-of-phase vibration of the double-microbeam system  

By applying the same procedure from the previous chapter the natural frequencies of 

the EBDMBS for in-phase vibration mode can be expressed as 
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0( ) ( ) .n xx xz n T p nd a l k F k k                                          (53) 

The microbeams are buckled in the same direction (synchronous), see Fig. 3.Using 

dimensionless parameters (25) and Eq. (39) we get the expression of buckling load in in-

phase sequence as  

2 2( ) ( ).n xx xz n T pF d a l k F k                                             (54) 

It is shown from Eqs. (53) and (54) that the in-phase vibration mode and buckling state of 

the EBDMBS is independent of the stiffness of the connecting springs while it is 

dependent on Pasternak's layer and temperature effect and hence the EBDMBS can be 

treated as a single microbeam. A similar analysis for nanobeam system is presented in the 

paper of Murmu and Adhikari [33, 35]. 
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4. NUMERICAL RESULTS AND DISCUSSION 

In this section, we have illustrated a comparative study of the analytical results written 

in this paper and the results found in the literature. The microbeams of the system are 

made of epoxy with the following properties: ν=0.38, ρ=1220kg/m
3
, E=1.44GPa, 

l=17.6μm, α=54×10
-6

/
◦
C from [24]. The cross-section shape and length are kept the same by 

letting b/h=2 and L/h=10 respectively. Temperature and material length scale parameter 

effect on the two different cases of phase vibration modes and buckling state will be 

presented. A detailed parametric study is carried out by investigating the influence of 

different parameters on the natural frequency, frequency under the compressive axial 

loading, critical buckling load and critical temperature of the EBDMBS with thermal effect.  

4.1. Temperature and material length scale parameter effect  

on the phase vibration modes and phase buckling of the EBDMBS 

The frequency results of the EBDMBS are presented in terms of the frequency 

parameters for out-of-phase in Eq. (51) and in phase vibration mode in Eq. (53).Variation 

in frequency parameter Ωn with material length scale parameter l0, for different phase 

vibration due to temperature change is shown in Fig. 4. For the Winkler and Pasternak 

parameter we used constant values of kw=10 and kp=0.1, while for the temperature change 

we used two different values ΔT=50
◦
C and ΔT=100

◦
C. It can be noticed from Fig. 4 that 

with increasing material length scale parameter l0, frequency parameter Ωn also increases 

for both considered cases of phase vibration. Frequency parameter Ωn decreases as the 

temperature effect increases for both considered cases of phase vibration. 

The buckling state results of the EBDMBS are presented in terms of the buckling 

parameters for out-of-phase in Eq. (52) and in phase buckling in Eq. (54). Material length 

scale parameter (l0) on buckling parameter Fn for the different phase buckling due to 

temperature change is shown in Fig. 5. Also, it can be seen that as material length scale 

parameter l0 increases, buckling parameter Fn also increases for both considered cases of 

phase buckling. Buckling parameter Fn decreases as the temperature effect increases for 

both considered cases of phase buckling. 

 

Fig. 4 Variation in frequency parameter Ωn with material length scale parameter (l0) 

for different phase vibrations due to temperature change 
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Fig. 5 Material length scale parameter (l0) on buckling parameter Fn  

for the different phase buckling due to temperature change 

4.2. Thermal effect on the natural frequency of the EBDMBS 

It is commonly known that the lowest natural frequency and buckling load of systems of 

a larger number of coupled nano/micro structures correspond to the natural frequency and 

buckling load of one beam or plate, see Karliţiš et al. [31]. In this paper, the results for the 

lowest natural frequency and critical buckling load of the EBDMBS may be compared with 

those obtained for a microbeam one, presented in Ke et al. [24] and Ma et al. [19]. In order 

to confirm the present analytical method, Table 1 shows a comparison of thermal effect on 

the dimensionless natural frequency of the system from Eq. (31) for the first three modes 

with results Ke et al [24]. Perfect agreement between the present frequencies and those of Ke 

et al. [24] can be observed from Table 1. It is shown that the inclusion of the thermal effect 

decreases the frequencies of the microbeam one. It is seen that the effect of Pasternak 

parameter kp=0.01, for a greater mode, leads to an increase in natural frequencies. 

Table 1 Thermal effect on the dimensionless natural frequencies  

for the three modes of the microbeams with h/l=2 

  Mode  

( )T C  
      n=1       n=2       n=3 n=1       n=2        n=3 n=1         n=2         n=3 

Ke et al.[24]     Present study for 0pk  Present study for 01.0pk  

0 

20 

40 

60 

80 

100 

0.3478 

0.3322 

0.3159 

0.2986 

0.2804 

0.2608 

1.2890 

1.2727 

1.2562 

1.2394 

1.2225 

1.2053 

2.6277 

2.6099 

2.5920 

2.5739 

2.5558 

2.5374 

0.3582 

0.3429 

0.3271 

0.3104 

0.2927 

0.2739 

1.4328 

1.4178 

1.4027 

1.3875 

1.3719 

1.3563 

3.2238 

3.2089 

3.1939 

3.1788 

3.1637 

3.1485 

0.4764 

0.4651 

0.4535 

0.4416 

0.4294 

0.4168 

1.5645 

1.5508 

1.5370 

1.5231 

1.5090 

1.4948 

3.3588 

3.3444 

3.3300 

3.3156 

3.3011 

3.2866 

It can be seen from Fig. 6 that the natural frequency with Poisson’s ratio (i.e. ν=0.38), 

suggested by the present Euler-Bernoulli beam model is always higher than that by 

Poisson’s ratio ν=0. The similar results, merely for a Timoshenko beam, are presented by 

Ma et al. [19]. We can conclude that there is perfect agreement between the present 

frequencies and those of Ma et al. [19], when we ignore an effect of the elastic medium, 

i.e. kp=0 and kw=0. 
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The temperature effect and the Pasternak’s parameter on the natural frequency can also 

be noticed in Fig. 6. The natural frequency decreases with temperature effect, in this case 

100°C, for a given value of h/l. It is noticed that the inclusion of the constant values of 

Pasternak’s parameter (kp=0.01) increases the natural frequency of the EBDMBS. As a 

significant result, Fig. 6 shows that the increase in bending rigidity is suggested by the 

present model. Also important is that the difference between the natural frequency with the 

Poisson’s ratio and the one without it is important only when the beam thickness is too small. 

 

Fig. 6 The natural frequency of the EBDMBS varying with microbeam thickness, 

temperature effect and Pasternak’s parameter 

4.3. The effect of the compression axial load and temperature effect on the EBDMBS 

To investigate the influence of the compressive axial loading on the natural frequencies of 

EBDMBS transverse vibration, we can compare the results of natural frequencies under the 

compressive axial loading and those without axial loading.  
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with vibration mode number n=1 the impact of the compressive axial loading on the 

natural frequencies of transverse vibration of the EBDMBS presented by ratios of ψ1 and 
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ψ2 are shown in Fig. 7. Fig. 7 shows that the ratios of frequencies ψ1 and ψ2 decrease with 

increasing axial compressive load . It can be noticed that the effect of the compressive 

axial loading on lower natural frequency ωnI is practically independent of axial compression 

ratio ϑ, whereas on higher natural frequency ωnII it is dependent on it. For the Winkler and 

Pasternak parameter we used constant values of kw=10 and kp=0.1, while for the temperature 

change ΔT=50
◦
C. It can be noticed from Fig. 7(b) that as the axial compression ratio ϑ 

increases, the ratio of frequency ψ2 decreases. Also, it can be seen that the axial compression 

ratio on the ratio of frequency ψ2 is independent of axial compression ratio ϑ for small axial 

compressive load , while it is significant for a large axial compressive load. 

Fig. 8 shows the thermal effect and effect of the Pasternak parameter on critical 

buckling load Fcr for the EBDMBS as a function of axial load ratio ϑ . With the axial load 

ratio ϑ increase, the critical buckling load decreases. For a taken value of axial load ratio 

ϑ, the critical buckling load of the EBDMBS decreases with an increase in temperature 

change. As can be seen, for the higher value of the Pasternak parameter of kp=0.1, the 

critical buckling load has a noticeably higher value.  

 

Fig. 7 The thermal effect on the relationships between ratios ψ1 and ψ2 and dimensionless 

parameter  with increasing axial compressive load ratio ϑ  

 

Fig. 8 The thermal effect and effect of Pasternak parameter on the critical buckling load 

Fcr for the EBDMBS as a function of axial load ratio ϑ  
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The critical scale load ratio of the modified and the local critical buckling loads at a 

low temperature environs is presented as 

 .
lcrClassica

crMCST
cr









  (59) 

 

Fig. 9 Length scale parameter Tcr at low temperature environs 

In order to make a better illustration of the thermo-mechanical response of the EBDMBS, 

we introduced a scale parameter. Fig. 9 shows the influence of length scale parameter Tcr at the 

low temperature environs. The influence of nonlocal parameter at low temperature environs 

is shown in Karliţiš et al. [32]. It can be observed from Fig. 9 that this parameter increases 

for a length scale parameter increase.  

5. CONCLUSIONS 

The thermal effect on the free vibration and buckling of the Euler-Bernoulli double-

microbeam system is examined in this paper based on the modified couple stress theory. 

The system is composed of two identical, parallel, simply-supported beams which are 

continuously joined by the Pasternak’s elastic layer. The temperature change effect is 

assumed to have an influence on both microbeams.  The higher-order main equations and 

boundary conditions are derived using the Hamilton principle. The separation of variables 

method (known as the Fourier method) is used for the main equations to obtain free 

vibration frequencies and critical buckling loads of the EBDMBS. The length scale 

parameter, temperature change effect, critical buckling load, thickness/material parameter, 

Pasternak’s parameter and Poisson’s effect are discussed in detail. Also, the effect of 

different mentioned parameters on the natural frequency, frequency under the compressive 

axial loading, critical buckling load and critical temperature of the EBDMBS with thermal 

effect are presented. Effect of the material length scale parameter and thermal effect on the 

two different cases of phase modes of vibration and buckling state are discussed. Based 

on the presented analysis we conclude that the in-phase vibration mode and buckling state 

of the EBDMBS is independent of the stiffness of the connecting springs while it is 
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dependent on Pasternak's layer and temperature effect and hence the EBDMBS can be 

treated as a single microbeam. 

In order to confirm the present study, we have shown in tabular form a comparison of 

thermal effect on the dimensionless natural frequency of the system for three modes with 

the results found in the literature.  

It is concluded that the presented results are in perfect agreement with the results 

observed in Ke et al. [24]. It is shown that the inclusion of the thermal effect decreases the 

frequencies of the microbeam one. Also, the effect of Pasternak parameter kp for a greater 

mode leads to an increase in natural frequencies, but including the temperature change, 

the frequency is decreased and leads to the decreased stiffness of the system. The numerical 

results obtained for the natural frequency with Poisson’s effect and suggested by the present 

Euler-Bernoulli beam model are always higher than those without Poisson’s effect. The 

thermal effect on the natural frequency is very low for the microbeam one of the EBDMBS 

and with a small ratio of h/l, while it is significant for the microbeam with a large ratio of h/l. 

The impact of the compressive axial loading on the natural frequencies of the EBDMBS 

transverse vibration leads to the following observations: 

 The temperature change effect has an impact on both microbeams. 

 The lower and higher natural frequency under the compressive axial loading decrease 

with increasing axial compressive load and also decrease with a temperature change 

increase. The reason for that is that the thermal effect leads to the reduction in stiffness 

and such a behavior leads to the softening of the materials of the EBDMBS. 

 The effect of the compressive axial loading on the lower natural frequency is 

almost independent of the axial compression ratio, whereas on the higher natural 

frequency it depends on it. 

 For a higher value of the Pasternak parameter, the critical buckling load has a 

higher value which decreases with increasing temperature change.   

 The critical buckling temperature for the presented systems is always lower than 

for the classical theories.  

 The critical scale load ratio of the modified and the local critical buckling loads at 

the low temperature environs increases with the increasing length scale parameter. 

All these observations can be useful for modern electromechanical systems. Physical 

views of this paper may be useful for the design and vibration analysis of microresonators 

and microsensors applications. We have shown that using the presented system with the 

temperature change leads to considerable changes in stiffness, i.e. the thermal effect leads 

to the reduction in stiffness and such a behavior leads to the softening of the materials of 

the EBDMBS. 
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