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Abstract 

We present the results of an in-depth qualitative study that examined ninth graders’ 
conceptual and procedural knowledge of fractions as well as their approach to 
mathematics learning, in particular fraction learning. We traced individual differences, 
even extreme, in the way that students combine the two kinds of knowledge. We also 
provide preliminary evidence indicating that students with strong conceptual fraction 
knowledge adopt a deep approach to mathematics learning (associated with the intention 
to understand), whereas students with poor conceptual fraction knowledge adopt a 
superficial approach (associated with the intention to reproduce). These findings suggest 
that students differ in the way they reason and learn about fractions in systematic ways 
and could be used to inform future quantitative studies.   
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1.  Theoretical background 

The distinction between procedural and conceptual knowledge has elicited considerable research and 
discussion among researchers in the fields of cognitive-developmental psychology and mathematics 
education. Procedural knowledge is defined as the ability to execute action sequences to solve problems and 
is usually tied to specific problem types, whereas conceptual knowledge is defined as knowledge of concepts 
pertaining to a domain and related principles (Rittle-Johnson and Schneider, in press).    

The relation between the two types of knowledge, particularly with respect to their order of 
acquisition has elicited considerable discussion, and there is evidence in favour of contradictory views – in 
the words of Rittle-Johnson, Siegler, and Alibali (2001), “concepts-first” and “procedures-first” theories. 
According to concepts-first theories, children develop (or are born with) conceptual knowledge in a domain 
and then use this knowledge to select procedures for solving problems. According to procedures-first 
theories, children learn procedures for solving problems in a domain and later extract domain concepts from 
repeated experience in solving problems. In the area of mathematics education research, the two types of 
knowledge (sometimes referred to by other terms) are deemed practically inseparable (Gilmore & 
Papadatou-Pastou, 2009; Hiebert & Wearne, 1996). Nevertheless, it is assumed that procedural knowledge 
plays an important role in the development of conceptual understanding (Dubinsky, 1991; Gray & Tall, 
1994; Sfard, 1991). More specifically, it is suggested that mathematical concepts develop out of related 
mathematical processes.  

Such accounts share two common background assumptions, namely that there is a single 
developmental path and that this path is independent of the particular domain considered. Rittle-Johnson and 
Siegler (1998) challenged the latter providing evidence that the order of acquisition many vary, depending of 
the domain considered. In any case, the two types of knowledge appear closely related. Thus, Rittle-Johnson 
et al. (2001) argued for an iterative model, according to which the two types of knowledge develop in a 
hand-over-hand process and gains in one type of knowledge lead to improvements in the other. This model is 
supported by empirical evidence and seems to provide an adequate description of the relation between 
conceptual and procedural knowledge (Rittle-Johnson & Schneider, in press). Nevertheless, there is evidence 
that sometimes the development of one type of knowledge does not necessarily lead to the development of 
the other. Indeed, in the area of fraction learning it has been shown that some students have the ability to 
perform fraction procedures without exhibiting comparable conceptual understanding or without being able 
to explain why they are using these procedures (Kerslake, 1986; Peck & Jencks, 1981). On the other hand, 
Resnick (1982) presented evidence showing that some children may exhibit conceptual understanding of 
principles underlying subtraction without showing procedural fluency. 

Recently, a different explanation for the contradictory findings has been proposed, namely that not 
enough attention has been paid to the individual differences in the way that students combine the two types 
of knowledge (Gilmore & Bryant, 2008; Gilmore & Papadatou-Pastou, 2009; Hallett, Bryant, & Nunes, 
2010; Hallett, Nunes, Bryant and Thrope, 2012). Hallett and colleagues examined the procedural and 
conceptual fraction knowledge of students at Grade 4 and 5 (2010) as well as at Grade 6 and 8 (2012). They 
identified groups of students who had strong (or weak) procedural as well as conceptual knowledge. 
However, they also consistently traced two substantial groups of students who demonstrated relative strength 
with one form of knowledge and weakness with the other, with differences between the two types of 
knowledge becoming less salient with age. These findings challenge the assumption that all children follow a 
uniform sequence in gaining the two types of knowledge (see also Canobi, Reeve, & Pattison, 2003).  

In their attempts to explain how such individual differences arise, some researchers appealed to 
differences in students’ prior knowledge in the domain in question (Schneider, Rittle Johnson, & Star, 2011); 
differences in students’ cognitive profiles (Gilmore & Bryant, 2008; Hallett et al., 2012) and differences in 
students’ educational experiences (Canobi, 2004; Gilmore & Bryant, 2008; Hallett et al., 2012). However, 
empirical evidence in support of these assumptions is so far lacking. For example, Schneider et al. (2011) 
found no evidence supporting the hypothesis that the correlation between the two kinds of knowledge might 
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vary with different levels of prior knowledge in the area of equation solving. Hallett et al. (2012) 
investigated whether individual differences in procedural and conceptual knowledge of fractions can be 
explained by differences in students’ general procedural and conceptual ability (measured by standardized 
tests); they found no such evidence. In addition, Hallett et al. (2012) examined the role of school experience, 
which they measured as school attendance, that is, they investigated whether attending different schools 
could explain the individual differences in question; they found no such relation. 

Further research, possibly with different measures, is necessary to clarify the role of the above 
factors in individual differences in procedural and conceptual knowledge, in particular of fractions. We argue 
that a factor also worth investigating is the individual student’s learning approach to mathematics.  

In the literature there is an overarching distinction between the deep approach to learning, associated 
with the individual’s intention to understand; and the surface approach, associated with the individual’s 
intention to reproduce. There are several ways of characterizing each learning approach, mainly adapted to 
tertiary education (Entwistle & McCune, 2004). Stathopoulou and Vosniadou (2007) proposed a model, 
which was tested with secondary students. They included three categories for each learning approach, 
namely Goals, (study) Strategy Use, and Awareness of Understanding. A deep approach to learning involves 
goals of personal making of meaning, deep study strategy use (e.g., integration of ideas), and high awareness 
of understanding. A superficial approach involves performance goals, superficial strategy use (e.g., rote 
learning), and low awareness of understanding. Using these categories, Stathopoulou and Vosniadou showed 
that students with strong conceptual understanding of science concepts adopted a deep approach to science 
learning, whereas students with poor conceptual understanding adopted a superficial approach. A similar 
association might be present in the case of mathematics as well. Indeed, a student that follows a deep 
learning approach to mathematics is more likely to pay attention to the concepts and principles in the domain 
in question, to be aware of conceptual difficulties, and to invest the effort necessary to overcome them. On 
the contrary, a student with a superficial approach is more likely to focus on memorizing procedures, 
especially if procedures are emphasized in instruction, as is often the case (Moss, 2005).  

Before we formulate our hypotheses, we turn to a methodological issue, namely the difficulty to 
measure the two types of knowledge validly and independently of each other (e.g., Gilmore & Bryant, 2006; 
Hiebert & Wearne, 1996; Rittle-Johnson & Schneider, in press; Schneider & Stern, 2010; Silver, 1986). The 
development of a procedural test that would be conceptual free (and vice versa) is a challenging task, since 
this type of tests may be person, content and context sensitive (Haapasalo & Kadijevich, 2000; Schneider et 
al., 2011). Moreover, for tasks administered in paper-and-pencil tests, it is often impossible to decide how 
the student actually solved the task. For such reasons, Hiebert and Wearne (1996) suggested that attention 
should be also paid to students’ solution strategies (see also Faulkenberry, 2013). A distinction between 
procedural and conceptual strategies (Alsawaie, 2011; Clarke & Roche, 2009; Yang, Reys, & Reys, 2007) is 
relevant at this point: Procedural strategies are related to rules and exact computation algorithms learnt from 
instruction. Conceptual strategies, on the other hand, are diverse, and tailored to the specific problem at 
hand; they are mostly invented by (some) students themselves that use them flexibly in order to avoid 
lengthy computations as well as to deal with unfamiliar problems (see also Smith, 1995).   

In this study, we examined ninth graders’ conceptual and procedural fraction knowledge. Taking into 
account the methodological issue mentioned above, we designed a qualitative study in order to also monitor 
students’ strategies. Similarly to Hallett et al. (2010, 2012), we hypothesized that there are individual 
differences in the way students combine the two kinds of knowledge. We were particularly interested in 
extreme cases, namely students with strong conceptual knowledge and weak procedural knowledge, and vice 
versa. Such cases are theoretically interesting, since they are not compatible with the iterative model (Rittle-
Johnson et al., 2001). Moreover, tracing extreme cases at grade 9 would indicate that individual differences 
may persist, although the general tendency is for them to become less salient with age (Hallett et al., 2012). 

In addition, we examined students’ learning approach to mathematics learning, particularly fraction 
learning. Following Stathopoulou and Vosniadou (2007), we explored whether students with strong 
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conceptual knowledge adopt a deep learning approach to mathematics, whereas students with weak 
conceptual knowledge adopt a superficial approach. 

 

2.  Methodology 

2.1  Participants  

The participants were seven Greek students at grade nine (three girls), from seven different schools 
in the area of Athens. The selection of the participants was not random. First, based on their school grades, 
all participants could be characterized as medium level students in mathematics. Second, they all had the 
same mathematics tutor, starting from the last grades of the elementary school. Their tutor provided 
information about their mathematical behaviour. Based on this information, we had reasons to expect some 
variation in their conceptual and procedural knowledge of fractions.  

We note that by grade seven Greek students are taught all the material related to fractions as well as 
decimals, and are introduced to the term “rational numbers”. We stress that at the moment this study took 
place the mathematics curriculum as well as the mathematics textbooks, were “traditional’, in the sense that 
they emphasized general, computation-intensive procedures for dealing with fraction tasks (Smith, 1995). 
Consider, for example, that mental calculations and estimation strategies were not among the curricular 
goals. Based on information provided by our participants’ tutor, who had extensive knowledge about their 
homework assignments as well as their assessment tests on a long-term basis, we had good reasons to believe 
that instruction relied heavily on the textbooks, at least with respect to what students were expected to do.    

2.2  Materials  

We used thirty fraction tasks grouped in four categories (see Appendix A). Category A included five 
procedural tasks, that is, tasks that for which a standard procedure was taught at school: four tasks that 
examined operations with fractions (Q.1.1-Q.1.4); and one task that required conversion to an equivalent 
fraction (Q.1.5).  

Category B, consisting of eight tasks, targeted on conceptual knowledge. Four tasks involved 
fraction representations (Q.1.6-Q.1.9); one task required recognizing fraction as a ratio (Q.1.10); one item 
focused in the role of the unit of reference (Q.1.11); and two tasks targeted on the understanding of the effect 
of multiplication and division with fractions (Q.1.12, Q.1.13). There were no tasks similar to Q.1.10-Q.1.13 
in the textbooks, either at the elementary, or at the secondary level. On the other hand, the area model for the 
representation of fractions was salient in the elementary school textbooks, but unlike Q.1.8., the shape was 
typically given, already equally partitioned; examples of improper fraction representations were scarce 
(Q.1.9), and there was no task similar to Q.1.7.  

Category C consisted of seven comparison (Q.1.14-Q.1.17, Q.1.20-Q.1.22) and two ordering tasks 
(Q.1.18, Q-1.19). Although these tasks could be solved by standard methods taught at school, they could also 
be solved by a variety of conceptual strategies.  

Finally, the tasks of the Category D required deep conceptual understanding or the combination of 
conceptual understanding and procedural fluency. More specifically, there were two tasks regarding locating 
fractions on the number-line (Q.1.23, Q.1.24); one problem that involved an intensive quantity and required 
the comparison of ratios (Q.1.25); one task regarding estimation of a fraction sum (Q.1.26); one task that 
required substituting variables with non-natural numbers (Q.1.27); one task that tested  the use of the inverse 
relationship between addition and subtraction, as well as between multiplication and division with fractions 
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(Q.1.28); and two tasks targeting the dense ordering of rational numbers (Q.1.29, Q.1.30). There were no 
tasks similar to Q.1.27-Q.1.30 in the mathematics textbooks. Locating fractions on the number line was 
presented at the secondary level (Grade 7), albeit not particularly emphasized. 

The selection and categorization of the tasks was based on relevant literature (e.g., Clarke & Roche, 
2009; Hallett et al., 2010, 2012; McIntosh, Reys, & Reys, 1992; Moss & Case, 1999; Smith, 1995). We note 
that we included items targeting students’ awareness of the differences between natural and rational numbers 
(e.g., Q.1.12, Q.1.13, Q.1.29, Q.1.30) which is considered an important aspect of conceptual knowledge 
(Vamvakoussi & Vosniadou, 2010; McMullen, Laakkonen, Hannula-Sormumen, & Lehtinen, 2014). We 
also used a considerable number of tasks related to fraction magnitude (e.g., Category D tasks, Q.1.23, 
Q.1.24) (for the importance of accessing fraction magnitude in students’ developing knowledge see Siegler 
& Pyke, 2013). We stress, however, that this categorization was tentative, since we also looked into students’ 
strategies. This consideration is particularly important for Category C tasks, but relevant for all tasks.  

In addition, we developed twelve items so as to explore students’ learning approach 
(deep/superficial) to fraction and, more generally, to mathematics learning (see Appendix B). The items were 
presented as scenarios describing a situation that the student had to react to.  

2.3  Procedure 

In the first phase of the study each student was asked to solve the fraction tasks, thinking aloud and 
explaining their answers. No time limit was imposed. In the second phase three participants were selected to 
participate in an in-depth, semi-structured individual interview about their learning approach to mathematics. 
Because this was a first attempt to explore a potential relation between individual differences in conceptual 
and procedural fraction knowledge and the individual’s learning approach, we selected one student with 
strong procedural, but weak conceptual knowledge; one student with strong conceptual but weak procedural 
knowledge; and one student who combined both procedural and conceptual knowledge. These students were 
additionally asked to comment on the responses of the first questionnaire (certainty about the solution, 
awareness of their performance in the tasks). The second interview took place about one week later. Each 
interview lasted about one hour. All interviews were recorded and transcribed.  

2.4  Data Analysis 

First, we assessed the accuracy of students’ responses in all tasks. Second, we examined the 
strategies used. We categorized a strategy as procedural, if it was based on instructed rules and procedures 
related to our research tasks. Based on mathematics textbooks, as well as information by our participants’ 
mathematics tutor, we categorized as procedural strategies the standard algorithms for fraction operations; 
and transformation strategies (Smith, 1995), namely converting to equivalent fractions, similar fractions, 
decimals, or mixed numbers. Transformation strategies are relevant to operations as well as comparison, and 
they were over-emphasized in the textbooks. We also categorized as procedural the instructed method for 
Q.1.25, namely the construction of a 2x2 table placing the like quantities one below the other, and forming 
and comparing the ratios. Regarding the placement of fractions on the number line, the instructed method 
involved segmenting the unit in the appropriate number of parts. Finally, given the salience of the area model 
for the representation of fractions, particularly in the elementary grades, we reasoned that it had the status of 
definition for fractions. We thus did not consider that students used a strategy, either conceptual, or 
procedural in the related tasks (Q.1.6–Q.1.9). 

We categorized as conceptual the strategies that were not based on instructed procedures. For 
comparison tasks, such strategies involved, for example, the use or reference numbers, such as the unit and 
one half; and also residual thinking, that is, comparing the complementary fractions (Alsawaie, 2011; Clarke 
& Roche, 2009; Smith, 2005; Yang et al., 2007). In a more general fashion, we categorized as conceptual 
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strategies the ones that relied on estimation of fraction magnitudes, on spontaneous use of representations, 
and on spotting and employing the multiplicative relations present in the task at hand (e.g., in Q.1.25).  

We categorized a strategy as conceptual/procedural if it involved conceptual and procedural features, 
such as adjusting a procedural strategy to deal with a novel task. A prominent example was the use of a 
transformation strategy, namely converting to equivalent fractions, as a first step to deal with Q.1.30, 
combined with the idea that this process can be repeated infinitely many times.   

We also note that in certain cases students provided immediate responses that were not based on a 
specific strategy; rather, they relied on a holistic understanding of the situation at hand. This was the case 
mainly for tasks targeting the differences between natural numbers and fractions (Q.1.12, Q.1.13, Q.1.29, 
Q.1.30). For example, some students answered immediately that there is no other number between 2/5 and 
3/5, directly drawing on their natural number knowledge. We categorized the strategy of relying on natural 
number knowledge as conceptual. 

For the second phase of the study, the categories (i.e., Goals, Strategy Use, and Awareness of 
Understanding) and the related indicators used by Stathopoulou and Vosniadou (2007) were our starting 
point for the analysis. We reviewed all transcripts and coded them when possible. We selected sentences as 
unit of analysis, but in some cases we used paragraphs so as to obtain a sense of the whole. We looked for 
utterances that included keywords pertaining to the indicators of each category (e.g., remember, memorize, 
memory and similar expressions for the indicator ‘‘rote-learning’’ as a superficial Strategy Use). We placed 
the sentences in the coding categories according to the initial indicators and developed new indicators when 
needed. After coding, data that could not be coded were identified and analyzed to determine if they 
represented a new category. One new category emerged, namely Engagement Factors, consisting of two sub-
categories: Preferred Tasks/Strategies (conceptual/procedural), and also Motivation (intellectual 
challenge/coping). In addition, we replaced the category Awareness of Understanding with the more general 
category Awareness with indicators pertaining to awareness of understanding (high/low) as well as to 
awareness of the effectiveness of one’s personal study strategies (high/low). The categories are presented in 
Table 5.  

 

3.  Results of the 1st phase of the study 
Tables 1-4 present how students performed in the tasks of Categories A-D, respectively; and the type 

of strategy (conceptual, procedural, or a combination of both) they used in each task.  

As shown in Tables 1-4, students 1, 2, and 3 were rather successful across all task categories. 
Students 4, 5, and 6 were successful in Categories A and C, but not in Categories B and D. Student 7 failed 
in Category A, but was rather successful in Categories B, C, D. We placed the students in three profiles: a) 
Conceptual-Procedural (Students 1, 2, and 3); b) Procedural (Students 4, 5, and 6); and c) Conceptual 
(Student 7). In the following we present these profiles in more detail. 

3.1  Conceptual - Procedural Profile 

The conceptual-procedural students succeeded in all tasks of Category A using procedural strategies, 
that is, standard algorithms (Table 1). Student 1 and Student 3 (hereafter, Kosmas) also succeeded in all tasks 
of Category B (Table 2). All three students relied heavily on conceptual strategies (reference numbers, 
residual thinking) to deal with the tasks of Category C (Table 3). All three performed well in the tasks of this 
category, with Kosmas responding correctly to all tasks. 
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Table 1  

Students’ Performance (Success, Failure) and Type of Strategy Used (Conceptual, Procedural, Or 
Conceptual-Procedural) in the Tasks of Category A 

 

Student Q.1.1 Q.1.2 Q.1.3 Q.1.4 Q.1.5 Profile 

1 S, P S, P S, P S, P S, P Conceptual/Procedural 

2 S, P S, P S, P S, P S, P  

3 (Kosmas) S, P S, P S, P S, P S, P  

4 S, P S, P S, P S, P F, P Procedural 

5 S, P S, P S, P S, P S, P  

6 (Stella) S, P S, P S, P S, P S, P  

7 (Filio) F, P F, P F, P F, P S, P Conceptual 

Kosmas was the only student who responded correctly to all tasks of Category 4. In general, 
however, all three students performed well in Category D tasks, showing a rather strong conceptual 
understanding, combined with procedural fluency. A good indicator of their conceptual understanding is 
their responses to the density tasks (Q.1.29, Q.1.30), in particular to the first that is the most challenging. 
Student 2 and Kosmas provided an impressively sophisticated answer, stating explicitly that there is no such 
number and explained that, given any number, no matter how small, one can always find a smaller one. 
Student 1, on the other hand, assumed that such a number exists, thus typically his answer is incorrect; 
however, he stated that this number cannot be found, not even by a computer; and described it as “zero point 
zero, followed by infinitely many zeroes, and one unit in the end”.   

These students’ tendency to prefer conceptual over procedural strategies manifested itself in the 
tasks of Category D as well. None of them applied the instructed method to solve Q.1.25; instead, they 
focused on the relations between the quantities involved. In the words of Student 2: “Stella’s milk tastes 
sweeter, because George dissolved the double quantity of chocolate in the triple quantity of milk”.  

The data presented in Tables 1-4 show that Kosmas was the only one who succeeded in all tasks. 
Moreover, Kosmas’s responses were more elaborated than his peers’ in terms of completeness as well as of 
the explanations he provided. Consider, for example, Q.1.26 that asked for the estimation of 7/15 and 5/12. 
All three students noticed that each addend was smaller than 1/2 and concluded that the sum was smaller 
than the unit. Kosmas, however, went farther to notice that “This sum equals the unit minus 0.5/15+1/12. 
The missing part is close to 0.1; more precisely, a bit bigger than 0.1”. He reached this close estimate of the 
missing part mainly via mental calculations, writing down some of the intermediate results. 
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Table 2 

Students’ Performance (Success, Failure) and Type of Strategy Used (Conceptual, Procedural, Or 
Conceptual-Procedural) in the Tasks of Category B 

 

Student Q.1.6 Q.1.7 Q.1.8 Q.1.9 Q.1.10 Q.1.11 Q.1.12 Q.1.13 Profile 

1 S S S S S S S, C S, C Conceptual/Procedural 

2 S S S S S F S, C S, C  

3 
(Kosmas) S S S S S S S, C S, C  

4 S F F F F F F, C F, C Procedural 

5 S F F F F F F, C F, C  

6 (Stella) F F F F F F F, C F, C  

7 (Filio) S S S S S S S, C S, C Conceptual 

 
Table 3 

Students’ Performance (Success, Failure) and Type of Strategy Used (Conceptual, Procedural, Or 
Conceptual-Procedural) in the Tasks of Category C 

 

Student Q.1.14 Q.1.15 Q.1.16 Q.1.17 Q.1.18 Q.1.19 Q.1.20 Q.1.21 Q.1.22 Profile 

1 S, C S, C S, C S, C S, C S, C F, C S, C S, C Conceptual/
Procedural 

2 S, C S, C S, C S, C S, C F, C/P S, C S, C S, C  

3 
(Kosmas) 
ssss) 

S, C S, C S, C S, C S, C S, C S, C S, C S, C  

4 S, P S, P S, P S, P S, P S, P S, P S, P S, P Procedural 

5 S, P S, P S, P S, P S, P S, P S, P S, P S, P  

6 (Stella) S, P S, P S, P S, P S, P S, P S, P S, P S, P  

7 (Filio) S, C S, C S, C S, C S, C S, C S, C S, C S, C Conceptual 
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Table 4 

Students’ Performance (Success, Failure) and Type of Strategy Used (Conceptual, Procedural, Or 
Conceptual-Procedural) in the Tasks of Category D 

 

Student Q.1.23 Q.1.24 Q.1.25 Q.1.26 Q.1.27 Q.1.28 Q.1.29 Q.1.30 Profile 

1 F, C F, C S, C/P F, C S, C S, C/P F, C S, C/P Conceptual/Procedural 

2 S, C/P S, C/P S, C S, C S, C F, C S, C S, C/P  

3 
(Kosmas) S, C/P S, C/P S, C/P S, C S, C/P S, C/P S, C S, C/P  

4 F, P F, P F, P F, C F, P F, P F, C F, C Procedural 

5 F, P F, P F, P F, C F, P F, P F, C F, C  

6 (Stella) F, P F, P F, C F, C F, P F, P F, C F, C  

7 (Filio) S, C S, C S, C/P S, C S, C F, C/P F, C S, C Conceptual 

3.2  Procedural Profile 

As shown in Table 1, the students of this profile performed very well in the tasks of Category A 
(Table 1). On the contrary, their performance was very law in the tasks of Category B (Table 2). In 
particular, Student 3 (hereafter, Stella) failed in all the tasks of this category. She stated that “the nominator 
shows how many pieces to take” to justify her answer in Q.1.6, and she drew a circle and partitioned it in 
three unequal parts in Q.1.8 (Figure 1). None of these students exhibited any understanding of the 
fundamental principle that the fractional parts of the unit should be equal, as also evidenced by their 
performance in Q.1.7 (Table 2). 

 

 Figure 1. Stella’s response to Q.1.6, Q.1.8: Representations for the Fractions 1/4 and 2/3, respectively. 

All three students failed to represent the improper fraction 5/3 (Q.1.9). Figure 2 presents S5 and 
Stella’s attempts to deal with this task. S4 gave no answer to the problem. 

 
Figure 2. Procedural Profile: Student 5 and Stella’s’ Attempt to Represent the Fraction 5/3.  
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In addition, all three students failed in Q.1.10, explaining that the denominator shows how many 
pieces the pizza had, and the nominator how many pieces were eaten. They also failed in Q.1.11, since they 
did not consider that the units of reference might be different. Moreover, they all insisted on executing the 
calculations in Q.1.12 and Q.1.13. When they were explicitly instructed not to do it, they came up with the 
rule “multiplication makes bigger, whereas division makes smaller”.  

All students of this profile were flawless in the tasks of Category C, using only procedural strategies. 
They were, however, very reluctant to try without using paper and pencil, when they were asked to. In case 
they tried, their responses reflected severe lack of understanding. For example, Stella claimed that 123/220 is 
greater than 6/5 because the numbers 123 and 220 are greater than 6 and 5, respectively. 

The students of this profile failed in all tasks of Category D (Table 4). Again, they relied heavily on 
procedural strategies, in particular transformation strategies. For example, they all converted fractions into 
decimals in Q.1.23 and Q.1.24. They also attempted to use this strategy or to perform the calculation in the 
estimation task Q.1.26, although they were specifically asked not to. Stella, in particular, explicitly stated 
that it is impossible to solve the task without converting to similar fractions or to decimals first.  

Students 4 and 5 applied the instructed method Q.1.25. However, they were not able to interpret the 
result. Consider, for example, the answer and the explanation provided by Student 5: “George’ s milk tastes 
sweeter, because his proportion 600/100=6 is better than Stella’s 200/50=4”. On the other hand, Stella’s 
answer indicated that she neglected the multiplicative relations defining the relative quantities that are 
involved in the situation: “The girl’s quantities are rather small compared to the boy’s. So I believe that her 
milk tasted sweeter”. 

These students’ responses to the tasks on dense ordering (Q.1.29, Q.1.30) were immediate and 
reflected the idea that fractions (or decimals, in case they had converted them) are discrete, like the natural 
numbers. Stella stated that “there are no other numbers between 2/5 and 3/5, because 3 comes right after 2”.  
According to Stella, one was the smallest positive number, while Students 4 and 5 proposed 0.1.  

3.3  Conceptual Profile 

As mentioned above, there was only one student placed in this profile, namely Filio. As shown in 
Table 1, Filio failed in all tasks of Category A, except for Q.1.5, since she was quite competent with 
equivalent fractions (see also her solution in Q1.25 below). On the contrary, she succeeded in all tasks of 
Category B (Table 2). She was able to explain adequately her responses. For example, to explain her 
disagreement with Maria in Q.1.10, Filio said that “I don’t know how many pieces this pizza had. Kostas 
could have eaten 3 pieces, only if the pizza was cut in four”. Similarly, in Q.1.11, she exclaimed: “Where are 
the pizzas? I need to see the pizzas. Are they the same or not?” While dealing with Q.1.12 and Q.1.13, she 
explicitly stated that the outcome is not necessarily bigger, just because there is multiplication involved. She 
tried with several numbers, and eventually came up with a generalization: “when we multiply a number a by 
a fraction smaller than the unit, the product is smaller than the number a”. 

Filio succeeded in all tasks of Category C (Table 3) using consistently only conceptual strategies. 
Interestingly, she also succeeded in most of the tasks of Category D (Table 4). Her responses in Q.1.23, 
Q.1.24, were based on estimation of the fraction magnitudes and a rough approximation of their location on 
the numbers line. Unlike the students of the Conceptual-Procedural Profile, she didn’t attempt to find the 
exact locations by partitioning the line segments. Quite similar to these students, however, she focused on 
the relations between the quantities in Q.1.25, employed a transformation strategy, and came up with a 
solution that is not taught at school: “The 50gr of chocolate powder that Stella put in 200gr milk is half the 
quantity that George put in 600gr. So I double the quantities 50/200 and I get 100/400. Then, 100 in 400 
means more chocolate powder in the milk than 100 in 600! So, Stella’s milk tastes sweeter.” 

Similarly to Kosmas, Filio explicitly stated that there are infinitely many pairs whose product is 3 
(Q.1.27). Moreover, she also stated that there are infinitely many numbers between 2/5 and 3/5 (Q.1.30). 
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Unlike all other participants, she justified her answer using spontaneously a rather sophisticated 
representation: “If we locate them on the number-line, there is definitely a gap in between. In this gap, there 
are infinitely many numbers”. 

We note that Filio explicitly expressed her discomfort with tasks in which she could not avoid using 
procedures (e.g., Category A tasks, Q.1.28). We also note that Filio was monitoring her performance during 
the solution process. She explicitly expressed doubt about responses that were actually incorrect; she also 
revised certain answers herself. For example, when solving Q.1.18, she initially answered that the fractions 
3/4 and 6/7 are equal, because for both one fractional unit is needed to complete the unit. She revised this 
answer after locating the two fractions on the number line.  

3.4  Conclusions 

The first phase of the study revealed three different student profiles: The Conceptual-Procedural 
Profile consisted of three students with quite strong conceptual knowledge of fractions, combined with 
procedural fluency. These students appeared to prefer conceptual strategies over procedural strategies, when 
this was possible. One of these students, namely Kosmas (Student 3), was exceptionally strong: not only did 
he succeed in all tasks, but he also gave the most complete and elaborated answers. 

The Procedural Profile consisted of three students who were capable of applying instructed 
procedures. This capability allowed them to deal very successfully with the tasks that could actually be 
solved by an instructed procedure. However, these students failed in most tasks that required conceptual 
knowledge, exhibiting lack of understanding for even the most fundamental fraction ideas. Stella, in 
particular, failed in the simplest conceptual tasks. These students relied heavily on procedural strategies and 
avoided consistently to try otherwise. When they did try, they typically failed. 

Finally, the Conceptual Profile consisted of one student, namely Filio (Student 7). Filio consistently 
avoided applying procedures throughout the interview, and she failed when she had to do it. She nevertheless 
exhibited a firm understanding of fundamental fraction ideas; and thus she managed to deal quite 
successfully with many tasks by applying consistently conceptual strategies.   

Thus, in line with recent discussions regarding the relation between conceptual and procedural 
knowledge of fractions (e.g., Hallett et al., 2010, 2012), we found individual differences in the way that 
students combine the two kinds of knowledge. Moreover, we showed that these differences can be extreme – 
consider, for example, Stella and Filio.   

 

4.  Results of the 2nd phase of the study 
Table 5 presents the categories that describe the Deep Learning Approach and the Superficial 

Learning Approach to mathematics, and their indicators. In the following we present excerpts from 
transcribed interviews of Kosmas, Filio, and Stella, in order to highlight the similarities and the differences 
in their learning approaches to mathematics, along these categories. 

4.1  Goals   

Kosmas and Filio repeatedly referred to the importance of learning with understanding in 
mathematics, which they both juxtaposed with rote learning. For them, learning with understanding meant 
personal making of meaning. This point is illustrated in the following excerpts, in which Kosmas and Filio 
explain how they would help a hypothetical younger student that is challenged by the comparison of 
fractions: 
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“Perhaps I could try to explain fractions as I understand them. He has to find a personal 
way of thinking though. He could study the rules. In fact, there are two ways: In the case 
of fractions, the first one is to memorize the rules and apply them. For example, between 
two fractions with the same numerator 3/5 and 3/7 the bigger is this one with the smaller 
denominator. Alternatively, he would compare the two fractions to the unit, that is, notice 
that 3/7 is closer to 1 than 3/5. There is a difference: In the second case you have 
understood exactly what happens with fractions-the first is rote learning. You can reach a 
conclusion regarding which of two fractions is bigger but you don’t understand why. 
Personally, if I saw these two fractions, I would compare the fractions to the unit so as to 
check the validity of the rule.” (Kosmas, Q.2.11)  

“I would help him understand the concept of fraction. But, you know, everyone has their 
own way of thinking. Mathematics is not rote learning, you have to put your mind to the 
work. […] I could explain to him how to compare fractions based on the rules, but if he 
wants be really able to compare fractions, I think that he should understand the concept 
of fraction. He must understand what fractions are and then he will do well in fractions.” 
(Filio, Q.2.11) 

Consider also the following excerpts: 

“The most important thing is to understand. Knowing the rules will also help you, there is 
no doubt about it. But understanding is the most important thing.” (Kosmas, Q.2.11) 

“If I understand the meaning of what I do, then I can solve the exercises.” (Filio, Q.2.2) 

 

Table 5 

Deep vs. Superficial Learning Approach to Mathematics: Categories and Indicators 

 
Categories  Sub-Categories Indicators 
  Deep Approach Superficial Approach 

Goals  Understanding / Personal 
making of meaning 

Focus on what is required 
/assessed at school 

Study 
Strategies 

 Combining theory and practice 
Systematic, long-term time 
investment 

Memorizing and Rehearsing 
More rehearsing 

Awareness of Understanding High Low 

Effectiveness of Own 
Study Strategies 

High Low 

Engagement 
factors 

Task/Strategy 
Preferences 

Conceptual Procedural 

Motivation  Intellectual challenge Coping 

On the contrary, Stella repeatedly referred, explicitly or implicitly, to the importance of complying 
with what is assessed at school and appeared to focus exclusively on the material taught at school. This is 
summarized nicely in the following excerpt: 

“What I would advise a younger student is to look at the exercises solved at school, to 
focus on what is likely to be asked in the exams, and to pay attention to what the teacher 
has emphasized on.” (Stella, Q.2.1) 
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4.2  Study Strategies 

Kosmas and Filio both stressed that in order to study efficiently in mathematics one needs to 
combine studying theory in depth and extensive practice with exercises. They also expressed their conviction 
that solving unfamiliar problems is important as a study strategy as well as an indicator of understanding.  

“You have to know the theory very well so as to understand mathematics. If you only 
solve exercises, your competence is very limited. One has to understand the theory in 
depth before trying to solve exercises.” (Kosmas, Q.2.2) 

“If you give me any problem and I can solve it, then it means I have understood well.” 
(Kosmas, Q.2.9) 

“One should understand the theory very well and practice a lot as well; and solve 
exercises beyond the ones in the textbook.” (Filio, Q.2.2)  

In contrast, Stella’s study strategies were limited to memorizing and rehearsing:  

“Studying what is needed for solving the exercises is pretty much sufficient.” (Stella, 
Q.2.2) 

“Studying the theory is good, because you have to know some theory to be able to solve 
the exercises. But I think that it is better to focus on exercises. Personally, I look at what 
we have done at school, so as to remember how the exercises are solved. I solve them 
again and again, and then I check if they are correct.” (Stella, Q.2.3) 

In addition, unlike Stella, Kosmas and Filio appeared to value the hypothetical students’ study 
strategies in Q.2.3, although they both admitted that they don’t study like this. 

“There is no doubt that this is the appropriate way of studying the theory. […] This is 
how I should study but, unfortunately, I don’t. That’s why I am not strong in 
mathematics.” (Kosmas, Q.2.3) 

“What she does is just fine. I don’t study like this, but I wish I did.” (Filio, Q.2.3)  

Moreover, Kosmas and Filio referred to the importance of investing time on mathematics studying. 
They distinguished between merely spending time on studying, and studying systematically and in depth.   

“Mathematics is a course that has to do a lot with understanding, so you have to study a 
lot. You have to start systematically in mathematics from the beginning. Gaps are difficult 
to cover, one needs to dedicate lots of time for both theory and exercises.” (Kosmas, 
Q.2.2) 

“I was preparing for a mathematics test and I spent lots of time, but only during the last 
two days before the exam. I believe that studying in depth results to success. If you study 
superficially, you are not prepared appropriately. When we talk about mathematics, you 
can’t prepare at the last minute. If you do it, you will fail. It is impossible to learn 
mathematics two days before the exams.” (Kosmas, Q.2.4)  

“It’s not only the time spent on studying, it’s also the way you study. […] You may feel 
well-prepared for a test because you have spent lots of time on solving exercises and fail 
in the end. For example, what has happened to me is to face unfamiliar problems in a test 
and fail. In that test, our teacher tested whether we can think for ourselves, so he 
examined us in different tasks than the ones we had solved in the classroom. […] In order 
to succeed, you must have understood the concepts and have practiced a lot.” (Filio, 
Q.2.4) 

Stella also mentioned time as an important factor of success in mathematics. For Stella, however, 
spending more time on studying meant more rehearsing:  
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“[One of my classmates] is a very good at math. I believe that I am good too, but not 
exactly at the same level. […] I think he spends more hours studying than I do. […] 
Perhaps he solves the exercises more times than I do.” (Stella, Q.2.5) 

4.3  Awareness  

4.3.1 Awareness of understanding 

Kosmas felt confident that he was able to assess his performance in mathematical tasks in general. In 
fact, he was very accurate in assessing his performance regarding the fraction tasks.  

As already mentioned, Filio was monitoring her performance in the fraction tasks and corrected 
several mistakes herself in the process. She also detected practically all the tasks that she had answered 
incorrectly. In addition, she was aware that she lacked procedural fluency: 

“I don’t remember rules and procedures regarding fractions. However, if someone 
reminded me of them, I could apply them.” (Filio, Q.2.9) 

Filio acknowledged that fractions require “a lot of thinking” and recalled that she was challenged by 
fractions at the elementary school. Interestingly, she mentioned that she managed to grasp the meaning of 
fractions, by connecting the “school fractions” with the fractions she met at her music courses. (Filio, Q.2.6) 

Stella, on the other hand, was confident that she had answered pretty much all fraction tasks 
correctly. She appeared to detect her mistake in Q.1.9, and she revised her answer. However, her second 
attempt was again incorrect, since it was based on the assumption that 5/3 is “a bit bigger than 0.5”. 
Nevertheless, Stella believed that she had a firm understanding of fractions in general: 

“I believe that I understand everything about fractions. I never had any difficulty with 
fractions. I found them very easy at the elementary school, too. In general, I have never 
had any problems with mathematics, as far as I can remember.” (Stella, Q.2.8) 

4.3.2 Awareness of the effectiveness of own study strategies 

As mentioned before, Kosmas and Filio both admitted that they did not follow effective study 
strategies in mathematics, although they recognized and appreciated them. In addition, they both attributed 
the fact that they didn’t excel in mathematics to their own way of studying. 

“[One my classmates] is really strong in mathematics. I am at a considerably lower 
level. This is because I don’t invest enough time to study seriously in mathematics. [...] 
Often I only solve the exercises that I have as homework and stop there. [...] I could be as 
strong as my fellow student, provided that I would be determined to study seriously 
(Kosmas, Q.2.5)  

“I could be as good as him [my fellow student]. How? The old-fashioned way: Putting 
time and effort in studying as I should.” (Filio, Q.2.5)  

On the contrary, not once did Stella question her study strategies:   

“Every time something went wrong, this happened because I was not so careful. […] Or I 
thought I knew the material and that there was no need to look at it again, but in fact I 
did not remember it well. But in cases that I had studied as I should, I believe that stress 
was responsible for my failure.” (Stella, Q.2.4)  
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4.4  Engagement Factors 

4.4.1 Task/Strategy Preferences 

As already mentioned, during the first phase of the study it was more than obvious that Filio resented 
the tasks that she perceived as procedural. For instance, she grew impatient with Q.1.28 and quitted trying, 
exclaiming “I’ve had enough! I spent too much time on this already. I can’t do it, I won’t do it!”. 

Kosmas, on the other hand, never expressed any discomfort when he had or chose to apply 
procedural strategies. In spite of this important difference, these students both expressed their preference for 
conceptual over procedural tasks, when they were explicitly asked to chose: 

“This is an easy choice! I would choose the second one, because I do not like using 
methods. I do know, however, that the first one is easier. At any moment you can open 
your book and remember how it is solved.” (Kosmas, Q.2.10) 

“Not the first one, for sure. It’s better to think something new, instead of constantly doing 
the same. I find no meaning in the application or rules and procedures. It is not 
interesting. It is like rote learning, you know, a method to solve exercises.” (Filio, 
Q.2.10) 

Unlike Kosmas and Filio, Stella showed a clear preference for procedural strategies during the first 
phase of the studies; and she explicitly stated that she would prefer the standard, procedural task in Q.2.10.  

4.4.2 Motivation 

As it may be evident by their responses to Q.2.10, Kosmas and Filio were motivated by novel and 
challenging tasks. There were clear such indications about Kosmas already in the first phase of the study. For 
instance, when he first saw Q.1.29, his immediate reaction was the following: “The smallest positive 
number! This is a nice question, isn’t it?” In fact, Kosmas was the only participant who chose to deal with 
the most demanding and unfamiliar tasks first. When asked why, he replied: 

“I like challenging tasks much more. I find no interest in solving exercises similar to the 
ones I have met before. The point is to think of something new.” 

Similarly, Filio explained her choice of the unfamiliar task in Q.2.10 as follows:  

“When you try to solve an exercise and you finally discover that something that you 
thought for yourself is correct, you get a very nice feeling.” (Filio, Q.2.10). 

On the contrary, Stella’s main concern was to stay on the safe side. As may be evident by her 
responses presented above, she was mainly interested in good school performance. When she explained why 
she would prefer the “standard”, procedural, task in Q.2.10, she indicated that she was minding the possible 
failure that guided her choice:  

“I would choose the first one because it involves operations, which I already know. So I 
would be sure that I can respond correctly. The second one may involve something I 
don’t know or never met before.” 

Finally, we note that for Kosmas and Filio learning with understanding, besides being an important 
goal in mathematics learning, also had a motivational aspect. Consider, for example, the following excerpts: 

“If you are to study mathematics, you should understand what you’re doing. You should 
find meaning in what you do.” (Filio, Q.2.2) 

“[My classmate who excels in mathematics] has a special interest in math, he loves it. He 
finds meaning in what he does. That’s why he dedicates so many hours to studying.” 
(Filio, Q.2.5) 
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Both students mentioned that they felt they understood mathematics at the elementary level, but not 
so at the secondary level. This was due to the fact that procedures are over-emphasized at the secondary level 
and this appeared to be demotivating for them. 

“Instruction on fractions is based on algorithms and students do not understand the 
concept of fraction. For example, in the addition of fractions we learn a priori that 
fractions must have the same denominator without understanding why. Something similar 
happens to mathematics teaching in general. We should understand mathematics deeper 
and I think that teachers must help us. How? I don’t know.” (Kosmas, Q.2.7). 

4.5  Conclusions 

As evidenced by their interview excerpts, Kosmas and Filio exhibited similar features along the 
categories Goals, (Study) Strategy use, Awareness, and Engagement Factors. Specifically, they both 
appeared to value understanding and personal making of meaning in mathematics learning; they were 
convinced that the study of mathematics requires combining deep understanding of theory as well as 
extensive practice; systematic and long-term time investment was a key issue for them, as they appeared 
aware that merely spending time on mathematics studying is not enough to succeed in mathematics. Kosmas 
and Filio showed high awareness of understanding in the domain of fractions; they were also highly aware of 
their limitations as students in mathematics. Finally, they showed a clear preference for tasks that require 
conceptual understanding and present an intellectual challenge, which appeared to be motivating for them.  

On the contrary, Filio differed across all categories. Specifically, Filio’s goal was to cope 
successfully with what was required at school; her study strategies were limited to memorizing rules and 
procedures as well as solving similar or even the same exercises repeatedly; she preferred procedural tasks 
because she was confident that she would succeed. Finally, she showed practically no awareness of her 
(extremely limited) conceptual understanding of fractions, and no awareness of the limitations of her study 
strategies.  

 

5.  Discussion 
Our results support the hypothesis that there are individual differences in the way that students 

develop conceptual and procedural knowledge of fractions. Similarly to Hallett et al. (2010, 2012), we 
identified students who were strong with respect to one type of knowledge, but weak with respect to the 
other. Although the findings of Hallet et al. (2012) indicate that such individual differences become less 
salient with age, we showed that for some students they remain extreme, even at Grade 9. Consider, for 
example, Stella and Filio: It appears that for these students conceptual and procedural knowledge of fractions 
have not developed in a hand-over-hand process, as predicted by the iterative model (Rittle-Johnson et al., 
2001). 

In addition, our study provides preliminary evidence indicating that the individual student’s learning 
approach to mathematics is worth investigating in relation to individual differences in conceptual and 
procedural knowledge. Similarly to Stathopoulou and Vosniadou (2007), we found that Kosmas and Filio, 
who exhibited strong conceptual knowledge of fractions, both valued a deep approach to mathematics 
learning; whereas Stella, who exhibited poor conceptual knowledge of fractions, appeared to follow a 
superficial approach. This finding cannot, of course, be generalized, given that it comes from a qualitative 
study, with small sample. Moreover, it is based on “extreme” cases of individuals. Nevertheless, this 
qualitative evidence can inform the hypotheses and the design of future quantitative studies.  

Investigating individual differences in conceptual and procedural knowledge is important for 
understanding mathematical development (Canobi, 2004; Hallett et al., 2010, 2012). From an educational 
perspective, however, encouraging the symmetrical development of the two kinds of knowledge is an 
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important goal, since they are both considered essential for students’ mathematical competence (Rittle-
Johnson & Schneider, in press). To this end, probably the first step would be to foster learning environments 
in which both conceptual and procedural knowledge are valued – and also assessed.

Keypoints 

 There are individual differences, even extreme, in the way students combine conceptual and 
procedural knowledge of fractions. 

 The individual student’s learning approach to mathematics is a factor worth investigating with 
respect to individual differences in conceptual and procedural fraction knowledge. 
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