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Abstract 

Due to the nature of collaborative learning, realising perfectly controlled experiments 

often requires an unreasonable amount of resources and sometimes it is not possible at 

all. Against this background, I propose to augment as good as feasible experimental 

design with a nomological net of relations between instructional support (intervention), 

learning processes and learning outcomes. Nomological networks are known from 

construct validity. In construct validity, the relations between variables (e.g. group 

differences, correlation matrices) are used to provide evidence for the validity of a 

measure. By adding multiple process and outcome variables together with the 

corresponding relations between intervention, process and outcome, the validity of causal 

relations found can be strengthened. I suggest adopting quality criteria from good 

research designs to evaluate the nomological nets. The resulting net needs to be (1) theory 

grounded, (2) situational, (3) feasible, (4) redundant, and (5) efficient. By making these 

nomological nets explicit and by designing them according to the presented criteria, CSCL 

research becomes more potent: the risk of inconclusive results is reduced while results 

that form a consistent nomological net can be interpreted with a stronger confidence, even 

if the experimental design has some flaws. If this becomes standard in CSCL research, it 

can be expected to contribute significantly better to knowledge accumulation in this area 

of research.   

Keywords: Construct Validity; Nomological Net; Research Design; Computer-supported 

Collaborative Learning (CSCL)  
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1.  The role of process analyses in CSCL research 

Approaches to computer-supported collaborative learning (CSCL) are mainly based on three 

assumptions. First, collaborative learning outperforms (under particular circumstances, e.g. with specific 

support) other methods when it comes to learning outcomes. Usually, specific collaborative activities like 

argumentation (e.g. Clark, D'Angelo, & Menekse, 2009), transactive co-construction (e.g. Molinari et al., 

2013; Weinberger & Fischer, 2006), reciprocal teaching (Palincsar & Brown, 1984) and collaborative 

concept mapping (van Boxtel, van der Linden, Roelofs, & Erkens, 2002) are considered to be positively 

related to individual cognitive processes of learning.  

Second, computer support enables both certain learning activities (e.g. simulation-based inquiry 

learning; de Jong & van Joolingen, 1998) and more direct support for certain activities (e.g. scaffolds as an 

inherent, but adaptive, component of the learning environment; cf. Koschmann, 1994). Technology enables 

natural systems and phenomena that would otherwise be invisible and therefore impossible to be experienced 

(e.g. the heart of an engine or magnetism on an atomic level; cf. Fischer, Lowe, & Schwan, 2008). 

Technology also enables us to facilitate learning processes by different means, e.g. by making various 

resources accessible (e.g. Osborne & Hennessey, 2003), scaffolding specific individual processes like the 

construction of single arguments (Stegmann, Wecker, Weinberger, & Fischer, 2012), or offering ways to 

communicate and collaborate (Wegerif, 2002). 

Third, the combination of collaborative learning and technology can have positive interaction effects 

that go beyond the simple combination of main effects. On the one hand, the quality of collaborative learning 

processes is lifted through adaptive scaffolds that positively moderate the positive effects of collaborative 

learning. On the other hand, the effects of technology functions (like access to various resources) on learning 

outcomes are boosted through collaborative learning (cf. Weinberger, Stegmann, & Fischer, 2010). 

Set against this background, CSCL research aims to provide knowledge about how technology can 

support collaborative learning processes (and thereby learning outcomes on an individual as well as a group 

level; cf. Stahl, 2006) most effectively. On the one hand, the problems that may arise through collaboration 

or the use of technology have to be minimised, while, on the other, the use of technology resources and 

collaborative learning processes has to be optimised. The effect of CSCL on learning outcomes is therefore 

mediated by processes that occur during the collaborative learning phase. This general model can be 

described in a triangle of hypotheses (cf. Wecker, Stegmann, & Fischer, 2012; Fig. 1):  

(a) instructional/technological support facilitates learning activities; (b) facilitated learning activities have 

positive effects on learning outcomes; and (c) mediated by learning activities, instructional/technological 

support has a positive effect on learning outcomes. 

 

 

Figure 1: General triangle of hypotheses in CSCL research. 

To test this triangle of hypotheses and to allow researchers to infer causal-effect relations, three 

conditions must be fulfilled (cf. Cook & Campbell, 1979): (a) when the causing variable varies, the affected 

variable must vary too (covariation); (b) the cause must occur before the effect occurs (temporal 

precedence); and (c) no plausible alternative explanations exist. While the first two conditions can be 

reached in CSCL research rather easily, the third condition is very difficult to reach. CSCL research often 

takes place in field-like settings and even studies with a rather higher level of control (e.g., Weinberger, 

Marttunen, Laurinen, & Stegmann, 2013) are much less controlled than classical psychological experiments. 
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The adherence to instructional advice, for example, is usually not enforced. Testing the effect of an 

intervention on learning activities is, therefore, experimentally a variation check, but semantically the test of 

whether the way the instruction is realised is able to induce the intended behaviour. Due to the nature of 

collaborative learning, realising perfectly controlled experiments requires an unreasonable amount of 

resources and sometimes it is not possible at all.  

Just imagine a jigsaw experiment (for a detailed description of the jigsaw method see Aronson, 

1978). In a jigsaw script, the content to be learnt is split into, for example, four subtopics. Groups of four 

prepare one of the four topics and finally four new groups are formed with one learner from each of the 

previous groups and learners teach their subtopic to the other group members. In this experiment, individual 

learning, unscripted collaborative learning and collaborative learning using the jigsaw method are compared. 

In the individual learning condition, 32 subjects are enough if a large effect with 80% power is expected. In 

the condition with unscripted collaborative learning in groups of four, the number of subjects might be 

optimally, due to nestedness of data, 128 learners in 32 groups. In the jigsaw condition, 512 subjects are 

required due to the fact that 16 subjects learn collaboratively together in 32 groups. According to Maas and 

Hox (2005), a number of more than 50 groups is needed for acceptable statistical multilevel analyses. With 

64 groups across two conditions, this criterion is fulfilled. Finally, this simple one-factorial design with three 

conditions requires 672 subjects to find effects with large effect size. And still it would not be free of 

confounded factors, e.g. the type of support is confounded with group size. While a condition with 

unscripted learners in groups of 16 would be possible, a condition with jigsaw script with groups of four is 

not possible. This example illustrates the inherent problems of CSCL research in excluding plausible 

alternative explanations through experimental design. Against this background, I propose to augment as 

good as feasible experimental design with a nomological net of relations (hypotheses) between instructional 

support (intervention), learning processes and learning outcomes. 

2. Criteria for nomological nets as the basis of high quality CSCL research 

Nomological networks are known from construct validity (cf. Cronbach & Meehl, 1955). In 

construct validity, the relations between variables (e.g. group differences, correlation matrices) are used to 

provide evidence for the validity of a measure. I like to utilise this idea to validate the (causal) relation 

between interventions, mediators and outcome variables. The smallest nomological net possible comprises 

just two variables and one relation, but does not yet additionally validate a causal relation. The net, however, 

becomes stronger the more ties and knots are part of the net. The stronger the net, the stronger the confidence 

in the validity of causal relations between variables. The smallest net that can increase the confidence in a 

causal relation in CSCL research is the triangle of hypotheses described previously with three knots and 

three relations. By adding multiple process and outcome variables together with the corresponding relations 

between intervention, process and outcome, the validity of causal relations found can be strengthened. The 

development of such a nomological net requires some general quality criteria that allow evaluation of the 

net. I suggest adopting quality criteria from good research designs as described, for example, by Trochim 

and Land (1982). According to these authors, the nature of good designs is (1) theory grounded,  

(2) situational, (3) feasible, (4) redundant, and (5) efficient. In the following sections, I provide a short 

explanation of the criteria and some illustrating examples from CSCL research for each criterion. 

2.1  Theory grounded 

The nomological net needs to be theory grounded. For each of the relations, a directional effect 

needs to be explicable by a theory and may be backed up by previous empirical findings. The question, for 

example, concerning the extent to which learners mutually influence one another has attracted considerable 

attention in CSCL research. Particular focus has been placed on the degree to which groups of learners share 

a mutual understanding via social interaction. Accordingly, attempts have been made to quantify this 

process, which is referred to as knowledge convergence, based on analyses of text-based knowledge-building 

processes. Mäkitalo-Siegl and colleagues (2012) traced so-called knowledge pieces through collaboration. 
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The transfer of knowledge pieces from one learner to another was measured by comparing the knowledge 

pieces mentioned by single learners before, during and after collaboration. The relations in the corresponding 

nomological net would be that collaborative learners share more knowledge pieces during collaboration and 

that these shared knowledge pieces are known better by group members after collaboration. 

Weinberger, Stegmann and Fischer (2007) presented an approach with additional quantitative 

measures of the convergence of prior knowledge, collaborative processes and acquired knowledge based on 

fine-grained (i.e. at the level of inferences) analyses of text-based data sources (pretest, text-based online 

discussion, post-test). The authors suggest using the variation coefficient of the number of different 

inferences within a group of learners (analogous to knowledge pieces) as an indicator of knowledge 

divergence. Applying these measures provided insight into the relationship between the processes and 

outcomes of collaborative knowledge construction (e.g., Weinberger, Stegmann, & Fischer, 2005; Zottmann, 

et al., 2013). The nomological net may comprise, for example, the relation that learners with high divergence 

during online discussions (i.e. contributing different as opposed to identical inferences) are more likely to 

share knowledge after collaboration than learners with high convergence during online discussions. 

In real life, however, not all assumed relations show up as expected in empirical research. The 

strength of the net is, of course, stronger if all hypotheses made a priori test successfully. In practice, a net 

needs to be adopted post hoc to explain the results at hand. In these cases, additional explanatory variables 

and relations may be added to achieve a consistent net. The new relations need, of course, to be theory 

grounded as well. By adding further mediators, moderators and/or suppressors, the results can form a 

consistent net again. As a by-product, the adaption of a net is a further development of the initial theory. 

2.2  Situational 

The manipulated/measured variables as well as the relations between them need to be situational 

defined. The interventions, the process variables and, to a large extent, the outcome variables in CSCL 

research are highly situational, i.e. depend on the situation, content and context at hand. The intervention is 

usually one realisation out of an endless number of possible realisations of a specific theoretical principle 

(e.g. an implementation of the jigsaw method; cf. Wecker, 2013). The process and outcome variables may be 

termed rather general (such as “content quality”, “quality of argumentation”; cf. Stegmann, Weinberger, & 

Fischer, 2007), but the concrete operationalisation requires the inclusion of bottom-up criteria that derive 

from the (learning) material and raw process data. In most cases, especially in the case of process variables, 

general (i.e. less situational) measures of skills or competences (like those applied in PISA studies;  

cf. Kobarg, Prenzel, & Seidel, 2011) are not suitable, because they measure features (abilities) of persons, 

not activities. It is, therefore, necessary to apply measures with a high content validity. Such measures 

usually need to be developed individually for each situation. It is necessary to quantify the qualities of 

collaborative activities with respect to multiple quality dimensions. A detailed description of such a 

Multidimensional Approach for the Qualitative Coding of Online Discussions (MAQCOD) can be found in 

Stegmann and Fischer (2011). 

Collaborative (learning) activities are, for example, often analysed in terms of the content quality or 

quality of the argumentation (e.g. Weinberger & Fischer, 2006). Depending on the dimension, the grain size 

of the analysis needs to be defined (cf. Strijbos, Martens, Prins, & Jochems, 2006). The quality of the 

argumentation, for example, could be defined for the entire discourse, single messages or even single 

arguments. Which grain size is most suitable depends on the theoretically defined relationship between the 

quality dimension to be analysed and the intended learning outcome. If, for example, the theoretical model 

assumes that formulating arguments with grounds and warrants is a core collaborative learning activity, 

single arguments rather than complete conversations need to be the focus. Along with grain size, the 

categories need to be defined. Single arguments can, for instance, be coded in terms of whether they are 

grounded or not. The definitions of the dimensions, grain size and categories per dimension need to be 

carefully documented. This may comprise: segmentation rules and examples for the application of these 

rules; the names of dimensions and categories; rules about when to assign a specific category; and examples 

when a category applies and when it does not. This documentation forms the basis for an objective, reliable 
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and content-valid coding of learning activities and, thereby, for the inclusion of process variables in a 

nomological net. 

2.3  Feasible 

The inclusion of process variables in a nomological net requires that it is feasible to extract the 

variable from the recorded activities during CSCL. It is, for example, problematic to measure the depth of 

cognitive processing just by analysing written CSCL discourse data. Researchers may argue that a 

sophisticated, well-elaborated argument can be regarded as an indicator of deep cognitive processing. The 

argument, however, might be just “copied” from a different source (e.g. a learning partner or prior 

knowledge) without deep cognitive processing. Such a measure, therefore, does not have sufficient content 

validity to be included in a nomological net with the intended function. This is not an argument against the 

variable “depth of cognitive processing” in general. The requirement is to measure the variable in a content-

valid way, i.e. as directly as possible. If data sources such as think-aloud protocols are available  

(e.g. Stegmann, Wecker, Weinberger, & Fischer, 2012), it might be adequate to include such a variable in a 

nomological net. 

2.4  Redundant 

Like in a cockpit of an aeroplane, central components of the nomological net might be redundant,  

i.e. implemented several times. In CSCL research, this redundancy is often regarded as a methodological 

challenge rather than a strength of the research design. An inherent feature of collaborative learning is the 

nestedness of learners in groups and in time. Learners are part of a group and thereby features of the group 

affect learning. In addition, the knowledge and skills of the single learner as well as of the group change over 

time (Wise & Chiu, 2011). The activities of learners in a group are affected not only by the initial features of 

the single learners and the collaborative learning phase, but also by the activities that the single learner and 

the group performed previously. Furthermore, instructional support such as collaboration scripts affects the 

relationship between previous and current activities. 

The nestedness of learners in groups and in time is not only an issue if researchers aim to understand 

why learners learn in a certain way; learners and groups also change over time. The Script Theory of 

Guidance (SToG; Fischer, Kollar, Stegmann, & Wecker, 2013), for example, assumes that instructional 

support for collaborative learning needs to be adapted consecutively to ensure the optimal fit between the 

skills of the single learners/the group and the instructional support. As a result, a nomological net may 

include relations that reflect such ideas but add time as a moderator of the effect of an intervention on the 

process of collaborative learning. 

As already raised in the jigsaw study example, (quantitative) research on CSCL often requires many 

more participants due to the issue that learners who learned in groups cannot be regarded as independent 

observations. From the viewpoint of the nomological net, the relation, for example, of an intervention at 

group level on a specific process is redundant within a group. For an intervention that aims to facilitate, for 

example, argumentation sequences (e.g., Stegmann, Weinberger, & Fischer, 2011; Jeong, Clark, Sampson & 

Menekse, 2010), a positive relation between the intervention and the number of argument-counterargument-

syntheses sequences may be added to the nomological net at group level. On an individual level (i.e. the 

level of group members), positive relations between the intervention and the number of contributed 

counterarguments and syntheses may be added to the net. Furthermore, scaffolds examined in CSCL 

research often focus on specific processes that occur multiple times during collaborative learning. If an 

intervention such as a collaboration script aims to support the quality of each single argument (cf. Stegmann, 

Wecker, Weinberger, & Fischer, 2012) with respect to grounds and warrants, the effect is expected to show 

up on the level of each argument (as the probability that a claim is supported by ground and/or warrant), on 

the level of each individual learner (as the share of grounded/warranted claims contributed by an individual), 

and on the group level (as a higher argumentative quality of the discussion). 
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2.5  Efficient 

An important aspect, finally, is the efficiency of the testing of the relations specified in the 

nomological net. Efficiency is in general determined by two factors: the usefulness of a result and the extent 

of resources required to reach the result. This criterion seems to be contradictory to the examples for the 

previously described criteria. These criteria require rather qualitative analyses of processes on multiple levels 

including time series. Many more resources (i.e. technology to record data, space to archive the data, 

manpower to develop coding manuals and to analyse data) need to be spent. In CSCL research, however, the 

digital learning environment in which learning activities under examination usually take place can reduce the 

amount of resources. Especially assessing and analysing data are supported by technology. Technologies like 

iBeacon or active RFID chips allow learners to be traced as well as the interaction between them and 

artefacts to learn from in the context, for example, of museums. Eberle and colleagues (2013), for example, 

traced the activities of conference participants using active RFID chips to examine the relation between 

interaction between conference participants, planned future collaboration right after the conference and 

collaborative publications two years after the conference. In scenarios with computer-mediated 

communication, the communication can easily be recorded.  

The opportunity to log data in technology-enhanced learning environments can easily produce a 

large amount of data that exceeds the limits for meaningful human analyses. The development in the area of 

machine learning technology, however, enables researchers to train algorithms to – supervised or 

unsupervised – analyse digital data according to multiple dimensions such as quality of argumentation, 

content quality or emotions. To apply these algorithms to data at hand, in a first step, features of the learning 

processes need to be extracted. In the case of written discourse data, for example, the number of specific 

words or word pairs, the punctuation or the line length are extracted. This step can be easily performed using 

tools such as TagHelper (Rosé et al., 2008) or lightSIDE (Mayfield & Rosé, 2012). In a second step, these 

features are used in conjunction with a human coding that serves as training material to build models that are 

able to measure the respective quality. Recently, Mu and colleagues (2012) presented the ACODEA 

framework, which may serve as a blueprint on how to apply this technology in CSCL research. The 

empirical results presented by Mu and colleagues (2012) show that this procedure enables objective analyses 

of texts that were not previously used for training to be conducted. The results obtained were at the same 

level as those produced by human coding, and were in some cases even better than those produced by inter-

human objectivity. 

While the described application of technology in the research process contributes to a reduction of 

required resources, I further argue that the usefulness of the results is increased by testing a comprehensive 

nomological net in comparison to results not embedded in a net. Testing the three types of hypotheses of the 

general triangle of hypotheses (cf. Fig. 1) increases the probability that a study will produce useful results 

(and not just because three times more hypotheses are tested). If all of the three hypotheses are significant, 

this can be regarded as a validation of the underlying theoretical model. However, if one or two of the three 

hypotheses fail (e.g. the relationship between learning activities and learning outcomes), but the others are 

significant, the findings provide a starting point for explanations that may improve the initial theoretical 

model. It is only if all of the hypotheses fail to be significant that the empirical results will be completely 

inconclusive regarding generalisability and causal relations. Nevertheless, a more in-depth analysis of 

learning activities and post hoc adaption of the nomological net still provides insights into the mechanisms of 

learning, regardless of significant effects on learning outcomes. 

3.  Conclusion 

The general structure of CSCL research can be described using the introduced triangle of 

hypotheses. Therefore, nomological nets are an inherent feature of CSCL research. By making these 

nomological nets explicit and by designing them according to the presented criteria, the research becomes 

more potent: the risk of inconclusive results is reduced while results that form a coherent nomological net 

can be interpreted with a stronger confidence even if the experimental design has some flaws. This, however, 
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is by no means an argument to conduct studies with an easily improvable experimental design or to skip 

experimental variation completely. An as good as possible experimental design is the basic prerequisite for 

the nomological net to contribute to strengthening the confidence in causal interpretations of effects. The 

suggestion to use a nomological net as described is, nevertheless, not limited to quantitative research 

approaches. Some if not all relations might be examined with qualitative methods. The effect on the 

confidence in the interpretation is the same as in quantitative methods: it increases. Actually, I would expect 

quantitative and qualitative methods to be used in a complementary way to form nomological nets in CSCL 

research. The explication of the nomological net, therefore, should become obligatory in reports and 

presentations on research in CSCL. Studies that aim to provide evidence for causal relations need to report 

effects on processes and outcomes, not either or. The processes have to be analysed in a way that ensures 

content validity. The (statistical) analyses have to make use of the multilevel structure of the process data. 

New technologies have to be applied to cope with the vast amount of data. If this becomes standard in CSCL 

research, it can be expected to contribute significantly better to knowledge accumulation in this area of 

research.  

Keypoints 

 Realising perfectly controlled experiments often requires unreasonable amount of resources and 

sometimes it is not possible at all. 

 By adding multiple process and outcome variables together with the according relations between 

intervention, process and outcome into a nomological net, the validity of causal relations found 

can be strengthened. 

 The resulting nomological net needs to be (1) theory grounded, (2) situational, (3) feasible,  

(4) redundant, and (5) efficient 

 Incorporating nomological nets reduce the risk of inconclusive results while results that form a 

consistent nomological net can be interpreted with a stronger confidence, even if the experimental 

design has some flaws. 
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