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RIASSUNTO. Le giunzioni saldate sono frequentemente zone di innesco di fessure che possono poi provocare la 
crisi per fatica dell’intera struttura.  Stati tensionali e deformativi biassiali o triassiali sono presenti in prossimità 
delle giunzioni saldate a causa della concentrazione indotta dalla geometria della giunzione stessa, dal processo 
di saldatura e/o dalla presenza di carichi multiassiali.  La determinazione della vita a fatica di giunzioni saldate in 
presenza di carichi multiassiali ciclici proporzionali può essere eseguita adottando criteri locali basati su ipotesi 
convenzionali (Criterio di Mises o Criterio di Tresca).  In presenza di carichi ciclici multiassiali non 
proporzionali, invece, è stato osservato sperimentalmente che, valutando la vita a fatica attraverso ipotesi 
convenzionali, si giunge a previsioni che non sono a favore di sicurezza.  Un criterio è stato proposto dagli 
autori per determinare la vita a fatica di componenti strutturali soggetti a stati tensionali multiassiali.  Il criterio è 
stato inizialmente sviluppato per i componenti lisci e intagliati e poi esteso, con opportune modifiche, ai 
componenti saldati.  La determinazione della vita a fatica viene eseguita considerando una funzione quadratica 
in cui compaiono l'ampiezza della componente tangenziale di tensione (agente sul piano critico) e l’ampiezza e il 
valore medio della componente normale di tensione (agente sul piano critico).  Scopo di questo lavoro è il 
confronto tra la previsione della vita a fatica ottenuta mediante il presente criterio in termini di tensioni nominali 
e la vita a fatica sperimentale per dati relativi a prove biassiali di fatica reperibili in letteratura. 
 
ABSTRACT. Welded joints are frequently locations for cracks initiation and propagation that may cause fatigue 
failure of engineering structures.  Biaxial or triaxial stress-strain states are present in the vicinity of welded joints, 
due to local geometrical constraints, welding processes and/or multiaxial external loadings.  Fatigue life 
evaluation of welded joints under multiaxial proportional (in-phase) cyclic loading can be performed by using 
conventional hypotheses (e.g. see the von Mises criterion or the Tresca criterion) on the basis of local 
approaches.  On the contrary, the fatigue life predictions of welded joints under non-proportional (out-of-
phase) cyclic loading are generally unsafe if these conventional hypotheses are used.  A criterion initially 
proposed by the authors for smooth and notched structural components has been extended to the fatigue 
assessment of welded joints.  In more detail, fatigue life of welded joints under multiaxial stress states can be 
evaluated by considering a nonlinear combination of the shear stress amplitude (acting on the critical plane) and 
the amplitude and the mean value of the normal stress (acting on the critical plane).  In the present paper, 
fatigue lifetimes predicted through the proposed criterion are compared with experimental fatigue life data 
available in the literature, related to fatigue biaxial tests. 
 
KEYWORDS. Welded joints; nominal stresses; lifetime prediction; critical plane approach 
 
 
 
INTRODUCTION 
 

etallic structural components are very often jointed together by welds, and such joints are frequently critical 
locations for fatigue failures.  That has yielded a wealth of research studies aiming at predicting the fatigue 
strength of welded joints. M 
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Several methods are available in the literature to perform fatigue strength and service life assessment of welded joints 
under uniaxial fatigue loading [1].  The most common uniaxial approach, encapsulated by most of the standard codes in 
force for metallic structures [2], proceeds by comparing the nominal stress amplitudes applied to the joint with the 
nominal stress values obtained from S-N curves.  Local approaches based on local parameters have recently attracted 
increasing attention in the research community: for example, structural stress and strain approaches [3,4], notch stress and 
strain approaches [5,6], fracture mechanics approaches [7,8], critical distance approaches [9,10].  The fatigue assessment of 
welded joints employing local parameters becomes more complex when multiaxial fatigue stress-strain states are present in 
the vicinity of welded joints.  When a weld structure is subjected to in-phase multiaxial fatigue loading, the stress-strain 
state can be reduced to an equivalent stress/strain based on conventional hypotheses used for static strength evaluation 
(e.g. see the von Mises criterion or the Tresca criterion).  However, some experimental results [11] on welded steel joints 
show a decrease of fatigue life in presence of out-of-phase multiaxial loadings as compared to fatigue life under in-phase 
multiaxial loadings. 
The critical plane-based multiaxial fatigue criterion proposed by Carpinteri and Spagnoli (the C-S criterion) for smooth 
and notched specimens [12-17] has recently been extended to welded structural components by employing the nominal 
stresses [18].  In the present paper, a comparison between lifetime predictions and experimental data available in the 
literature [11, 19-21] is carried out, for both in-phase and out-of-phase biaxial cyclic loadings with constant amplitude. 
 
 
THE C-S CRITERION 
 

 multiaxial fatigue criterion based on the so-called critical plane approach has been proposed by Carpinteri and 
Spagnoli to estimate the high-cycle fatigue strength (either endurance limit or fatigue lifetime) of both smooth 
and notched structural components [12-17].  The main steps of the C-S criterion are as follows: 

(i) Averaged directions of the principal stress axes are determined on the basis of their instantaneous directions; 
(ii) The orientation of the initial (hereafter termed critical) crack plane and that of the final fracture plane are linked to 

the averaged directions of the principal stress axes (two material parameters are required at this step: fatigue limit 

1,af  under fully reversed normal stress, and fatigue limit 1,af  under fully reversed shear stress); 

(iii) The mean value and the amplitude (in a loading cycle) of the normal stress and shear stress, respectively, acting on 
the critical plane are computed; 

(iv) The fatigue strength estimation is performed via a quadratic combination of normal and shear stress components 
acting on the above critical plane (in the case of finite-life fatigue evaluation, two further material parameters are 
required at this step: the slope m  of the S-N curve in the high-cycle regime under fully reversed normal stress, and 
the slope *m  of the S-N curve in the high-cycle regime under fully reversed shear stress). 

In the following sub-sections, the C-S criterion is briefly reviewed, and an extension to the fatigue assessment of welded 
structural components under in- and out-of-phase loadings is discussed [18]. 
 
Averaged directions of the principal stress axes 
At a given material point P , the direction cosines of the instantaneous principal stress directions 1, 2  and 3  (being 
     ttt 321  ) with respect to a fixed PXYZ  frame can be worked out from the time-varying stress tensor  tσ .  

Then the orthogonal coordinate system P123  with origin at point P  and axes coincident with the principal stress 
directions (Fig.1) can be defined through the ‘principal Euler angles’,   , , , which represent three counter-clockwise 

sequential rotations around the Z -axis, Y -axis and 3 -axis, respectively (  20  ;  0 ;  20  ).  The 
procedure to obtain the principal Euler angles from the direction cosines of the principal stress directions consists of two 
stages, described in Ref.[12]. 

The averaged directions of the principal stress axes 2̂,1̂  and 3̂  are obtained from the averaged values  ˆ ,ˆ ,ˆ  of the 

principal Euler angles.  Such values are computed by independently averaging the instantaneous values      ttt   , ,  as 
follows [12,13]: 
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with T  = period of the loading cycle  and   tW  = weight function given by: 
 

 max,11 )()(   tHtW  (2) 

 
where  H  is the Heaviside function (   1xH  for 0x ,   0xH  for 0x ), and max,1  is the maximum value 

(in the loading cycle) of the maximum principal stress 1 .  The proposed weight function is such that no averaging 
procedure is actually required (this makes the implementation of the criterion rather simple), since the averaged principal 
stress axes coincide with the instantaneous principal directions corresponding to the time instant at which the maximum 
principal stress 1  achieves its maximum value in the loading cycle. 
 

 
Figure 1: Principal stress directions 1, 2 , 3  described through the Euler angles  , , . 

 
Critical plane and final fatigue fracture plane 
Fatigue crack propagation can be distinguished into two stages [22]: a first stage in which a crack nucleates along a shear 
slip plane (Stage 1, fatigue crack initiation plane or critical plane) and a second stage in which crack propagates in a plane 
normal to the direction of the maximum principal stress (Stage 2, final fatigue fracture plane). 
According to the present criterion, the normal to the estimated final fatigue fracture plane (Stage 2), which is the one 

observed post mortem at the macro level, is assumed to be coincident with the averaged direction 1̂  of the maximum 
principal stress 1  [14].  On the other hand, the critical plane (Stage 1) is the verification material plane, where fatigue 
strength assessment is to be performed. 
The orientation of the critical plane has been proposed to be correlated with the averaged directions of the principal stress 
axes [15] and the empirical expression of the off angle  between the normal w  to the critical plane (where w  belongs 

to the averaged principal plane 3̂1̂ ) and the averaged direction 1̂  of the maximum principal stress 1  is given by: 
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Equation (3) is valid for hard metals, which are characterised by values of the ratio 1,1,   afaf  ranging from 31  

to 1.  The off angle   is assumed to be equal to 0 for 11,1,  afaf  , whereas  is taken to be equal to 4/  for 

311,1,  afaf  . 

 
Mean value and amplitude of normal stress and shear stress 
The critical plane   passing through a given point P  in a solid and the attached orthogonal coordinate system Puvw  
are considered (Fig.2), where the u-axis belongs to the plane formed by the w-axis (normal to the critical plane) and the Z-
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axis.  The direction cosines of u -, v - and w -axis can be computed with respect to the PXYZ  frame, as a function of 
the two angles   and  . 

 
Figura 2: PXYZ  and Puvw  coordinate systems, with the w -axis normal to the critical plane  . 

 

The stress vector wS  acting at point P , the normal stress vector N  and the shear stress vector C  acting on the critical 
plane are given by: 
 

wσSw     wSwN w  NSC w   (4)

   
 
For multiaxial constant amplitude cyclic loading, the direction of the normal stress vector  tN  is fixed with respect to 

time and consequently, the mean value mN  and the amplitude aN  of the vector modulus  tN  can readily be calculated.  

On the other hand, the definitions of the mean value mC  and amplitude aC  are not unique owing to the generally time-

varying direction of the shear stress vector )(tC .  The procedure proposed by Papadopoulos [23] to determine mC  and 

aC  is adopted [14]. 
 
Fatigue strength estimation 
The multiaxial fatigue limit condition presented in Ref.[15] corresponds to a nonlinear combination of the maximum 
normal stress ( am NNN max ) and the shear stress amplitude ( aC ) acting on the critical plane: 
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As is well-known, the effect of a tensile mean normal stress superimposed upon an alternating normal stress strongly 
reduces the fatigue resistance of metals, while a mean shear stress superimposed upon an alternating shear stress does not 
affect the fatigue life [24].  Therefore, the following multiaxial fatigue limit condition is here adopted [18]: 
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with u  = ultimate tensile strength.  Equation (7) is based on the well-known linear interaction between normal stress 

amplitude and normal stress mean value (diagram of Goodman). 
In order to transform the actual periodic multiaxial stress state into an equivalent uniaxial normal stress state (with 
amplitude eqa, ), Equation (6) can be rewritten as follows: 
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1,

1,2
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For fatigue strength assessment at finite life, the fatigue limits 1,af  and 1,af  appearing in Eqs (6) and (8) should be 

replaced by the corresponding fatigue strengths.  Hence, using a Basquin-like relationship for both fully reversed normal 

stress (  m
fafaf NN 01,1,   , with  1,af  fatigue strength for fully reversed normal stress at finite life fN , 

and 0N  = reference number of loading cycles, e.g. 2  106) and fully reversed shear stress (   *
01,1,

m
fafaf NN  , 

with  1,af  fatigue strength for fully reversed shear stress at finite life fN ),  Equation (8)  becomes: 
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where the equivalent normal stress amplitude, eqaN , , at finite life fN  is given by: 
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Now substituting Eq.(10) into Eq.(9), the number fN  of loading cycles to failure can be determined by solving the non-

linear equation obtained. 
 
 
EXPERIMENTAL APPLICATIONS AND DISCUSSION 
 

n the present section, the above fatigue criterion is applied to some experimental results, obtained from finite-life 
fatigue tests, related to welded joints subjected to bending (or tension), torsion, in-phase or out-of-phase combined 
bending (or tension) and torsion [11, 19-21].  Some mechanical characteristics of the materials examined are reported 

in Ref. [18]. 
The values of the following material parameters: 1,af , 1,af , m  and *m , required by the proposed criterion to 

evaluate fatigue life, are those determined in Ref.[25] by Susmel and Tovo, who analysed the experimental data reported in 
Refs [11, 19-21].  Note that such parameters have been deduced by Susmel and Tovo [25] analysing the above 
experimental data found in the literature, except for the data set reported in Ref.[19], since the S-N curve related to 
bending cannot be determined due to the limited number of experimental results.  Therefore, the values given by 
Eurocode 3 [2] are herein adopted for the above parameters. 
The geometries of the specimens examined are circular tube-to-plate joints, box beams with longitudinal attachments and 
square tube-to-plate joints. 
The most critical point (point P) for fatigue crack initiation is assumed to be at the weld toe, since cracks in welded 
structural components often initiate along the weld toes, where high stress concentrations and local geometric 
irregularities exist. 

I 
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The C-S criterion is hereafter applied in terms of nominal stresses.  The nominal loading paths analysed are reported in 
Fig.3, where normal stress x  and shear stress xy  at point P  are the stress perpendicular and that tangent to the weld 

bead, respectively. 

 
Figure 3: Summary of nominal loading paths.

 
In order to determine the mean directions of the principal stress axes at point P , the instantaneous values of the principal 

Euler angles are averaged by employing the weight function  tW  proposed in Eq.(2).  Then, the angle   between 1̂  and 
w  is determined by using Eq.(3).  As is mentioned above, such an equation was originally proposed in Ref.[15] for hard 

metals which are characterised by values of the ratio 1,1,   afaf  ranging from 31  to 1.  For data set reported in 

Ref.[21] the ratio 1,1,   afaf  is greater than 1.  This is to be expected because the fatigue limits 1,af  and 1,af  

are derived by testing welded specimens [11, 19-21] and, therefore, the values of such parameters are influenced by the 
presence of fillet welds.  As is stated in Section 2.2, the off angle   is assumed to be equal to 0 when 11,1,   afaf . 

Fig. 4 shows a comparison between experimental fatigue life ( expN ) and calculated fatigue life ( calN ) for each 

experimental data set considered above, where the solid line indicates expcal NN  , the dashed lines correspond to 

expcal NN /  equal to 1/2 and 2 (scatter band with coefficient 2) and the dashed-dotted lines correspond to expcal NN /  

equal to 1/3 and 3 (scatter band with coefficient 3).  Note that the run-out tests are excluded from the present analysis. 
Tab. 1 reports the number of specimens tested and the percentage of the results of fatigue life estimation included into 
the scatter band with coefficient 2 and into the scatter band with coefficient 3, for each data set analyzed. 
The quality of the predictions made by applying the extended C-S criterion can be evaluated through an error index, I (), 
defined as follows: 
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For each data set presented above, the relative frequency of the error index is shown in Fig.5.  The values of I , ranging 
from %100  to %100 , have been separated in 20 classes of 10% range.  Such a relative frequency represents the 
number of experimental tests whose error index falls in the interval considered, normalised with respect to the total 
number of tests.  Note that a positive value of I   represents a conservative prediction. 
 

 
 

Figure 4: Experimental fatigue life expN  vs predicted fatigue life calN  for each experimental data set analysed [11, 19–21]. 

 
 

Figure 5: Error index distribution for each experimental data set analysed [11,19–21]. 
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Reference  No. 
specimens 

Scatter band 2
% 

Scatter band 3 
% 

Archer [19] 18 94 100 
Siljander et al. [20] 30 77 97 
Bäckström et al. [21] 21 24 29 
Sonsino et al. [11] 43 65 81 

 
Table 1: Percentage of the results included into the scatter bands with coefficients 2 and 3,  

for each experimental data set analysed [11, 19–21]. 
 
 
CONCLUSIONS 
 

n the present paper, the criterion proposed by Carpinteri and Spagnoli for both smooth and notched structural 
components is extended to the fatigue assessment of welded joints under in-phase or out-of-phase loadings.  The 
averaged principal stress axes, determined through the weight function method, are used to predict the orientation of 

the critical plane where to perform the fatigue failure assessment.  Then a fatigue failure criterion based on a nonlinear 
combination of an equivalent normal stress amplitude and the shear stress amplitude acting on the critical plane is 
employed to carry out such an assessment.  The criterion proposed is applied to relevant experimental results, available in 
the literature, related to welded joints subjected to bending (or tension), torsion, in-phase or out-of-phase combined 
bending (or tension) and torsion.  It can be remarked that, in most of the cases here examined, the fatigue life predictions 
of the present criterion fall within a scatter band of coefficient 3. 
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