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ABSTRACT. The evaluation of the seismic vulnerability of existing buildings is 
becoming very significant nowadays, especially for ancient masonry 
structures, that represent the cultural and historical heritage of our countries. 
In this research, the Cathedral of Santa Maria Assunta in Catanzaro (Italy) is 
analyzed to evaluate its structural response. The main physical properties of 
the constituent materials were deduced from an extensive diagnostic 
campaign, while the structural geometry and the construction details were 
derived from an accurate 3D laser scanner survey. A global dynamic analysis, 
based on the design response spectrum, is performed on a finite element 
model for studying the seismic response of the structure. Moreover, a local 
analysis is conducted to evaluate the safety factors corresponding to potential 
failure mechanisms along preassigned failure surfaces. Furthermore, pushover 
analyses are performed on macro-elements, properly extracted from the whole 
structure and with an independent behavior with regard to seismic actions. A 
novel model based on inter-element fracture approach is used for the material 
nonlinearity and its results are compared with a well-known classical damage 
model in order to point out the capability of the method. Finally, the results 
obtained with the three different models are compared in terms of seismic 
vulnerability indicators. 
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INTRODUCTION  
 

n the last decades, in Italy many seismic events have highlighted that our buildings heritage is manly made of masonry 
structures that are highly vulnerable to damage and collapse events [1,2]. Moreover, the presence of many hazard 
seismic zones in the whole Italian country, has emphasized that diffuse operations and retrofitting are necessary to 

improve the seismic response of the existing buildings and to protect our cultural and historical heritage [3–7].  
The seismic vulnerability assessment and the structural rehabilitation of the existing buildings are becoming very significant, 
especially for complex masonry structures of historical importance. In such cases, the primary aim is to enhance the 
structural integrity of the building, meanwhile preserving its artistic and historical value. 
According to the Italian standard for constructions [8] and the guidelines for cultural heritage [9], an essential step for the 
vulnerability assessment of historical buildings consists in developing a proper background knowledge of the examined case. 
The background knowledge aims to (i) define the geometric survey, (ii) reconstruct the historical building process, and (iii) 
determine the mechanical properties of the materials used for the structural elements [10,11].  
The background knowledge of a given building improves with the amount of available data. However, acquiring exhaustive 
information is often cumbersome, especially for this kind of construction for which in situ investigation must be minimally 
invasive. 
For instance, inaccessible zones of the building may hinder the execution of survey works and/or field tests. For this reason, 
the Italian code defines three levels of knowledge (LC), named LC1, LC2, LC3, which differ from each other depending 
upon the quantity and the quality of information collected. LC3 defines the best knowledge level, whereas LC1 the worst. 
At each LC corresponds a confidence factor (FC) that modifies the mechanical properties of the existing materials. Despite 
the detailed prescriptions, the operative approach for defining LC varies according to the typology of the structural system 
of the building. In particular, there are no guidelines for concrete/masonry hybrid structures, which are typical of several 
historical buildings in Italy, that have suffered from restoration works during the early 1950s. In that period, reinforced 
concrete (RC) elements have been used extensively to enhance the capacity of the existing buildings, thus modifying the 
structural behavior. The result is a new structure in which masonries and RC elements work together. This condition further 
complicates the structural analysis phase.  
The Italian Standards for constructions and related guidelines [8,9] define two basic analysis methods. The first is the analysis 
of the global behavior of the structure, whereas the second is the analysis of its local portions. The former analysis assesses 
the overall resistance of the building considering the interaction between all the structural elements, while the latter one 
evaluates local failure mechanisms such as out-of-plane overturning hazards of unconstrained masonry portions. Note that 
the Italian code prescribes to perform local analyses before evaluating the global behavior of the structure. Moreover, when 
the structure does not manifest a clear overall behavior, the structural analysis can be carried out by considering an 
appropriate ensemble of local analyses on macro-elements. Such methods are useful when ancient buildings are studied, in 
particular for those that are composed by different substructures built in different periods. The Cathedral of Santa Maria 
Assunta falls within such kind of buildings and local analyses carried out on macro-elements can be also useful to assess the 
seismic vulnerability.  
Although the Italian code admits the use of macro-elements to assess seismic vulnerability, fewer guidelines are reported on 
how to perform such analysis. An effective analysis methodology should include nonlinearities associated to material 
damage, especially for masonry elements. This because the behavior of a masonry structure is highly complex, especially for 
churches and ancient buildings that are usually conceived to resist only to vertical loads and, therefore, are rather vulnerable 
to seismic actions, also because of the small ductility of masonry walls. As a consequence, the development of efficient 
approaches aimed to performing the vulnerability assessment of ancient structures is currently desirable. 
In the present work, both innovative and standard methods are used for the static and seismic vulnerability assessment of 
the Santa Maria Assunta Cathedral in Catanzaro (Italy); moreover, the results of alternative structural modeling techniques 
in terms of seismic vulnerability indicators are compared. 
Due to the high complexity of the building and the related uncertainties of its structural behavior, different types of modeling 
approaches have been adopted, ranging from global to local models (see, for instance, [12–16] and references therein). In 
particular, according to the classification proposed by D’Altri et al. [17], the most common modeling approaches belong to 
the following groups: block-based models, continuum models, macro-element models, and geometry-based models. In 
block-based models masonry is represented at the mesoscopic scale, i.e. at the level of its constituents (typically, only units 
and dry/mortar joints) [18–20]. Continuum models do not account for any distinction between units and joints, and can be 
of either phenomenological or homogenization/multiscale kinds [21,22] [23–25]. Macro-element models idealize masonry 
structures into panel-scale elements (typically, piers and spandrels), also including commonly used equivalent frame models 
[13,26,27]. Finally, geometry-based models refer to rigid-plastic models to be used in the framework of limit analysis (based 
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on either static or kinematic theorems) [28,29] [30,31]. In principle, all the modeling strategies belonging to the first three 
groups could be used to perform different numerical analyses, including both linear/nonlinear static and dynamic analyses 
based on 3D models, whereas the fourth group is mainly used to perform the analysis of local mechanisms along predefined 
failure surfaces. The last group of modeling approaches is usually required for taking into account all possible partial failures 
of existing masonry structures (via the so-called linear kinematic analysis), especially in the presence of weak connection 
between adjacent structural elements. It is useful to note that, generally speaking, global modeling approaches usually 
requires the adoption of efficient numerical solution strategy (see, for instance [32], in the framework of base-isolated 
structures), while local models are often associated with simple closed-form analytical solutions. Nevertheless, the combined 
adoption of different modeling approaches provides a useful strategy to identify the more conservative results in terms of 
structural safety.  
As a matter of fact, the actual structural behavior of ancient masonry buildings, characterized by complex geometry and 
with different types of sub-elements built over the years, is affected by several uncertainties such as those arising from the 
variability in geometric and mechanical properties of materials and structural elements and the degree of connection between 
the various structural elements. 
To this end, firstly a global analysis based on 3D finite element model of the structure has been performed; this kind of 
analysis is significant owing to the presence of masonry and reinforced concrete elements interacting each other. Then local 
analyses on single masonry walls or on macro-elements have been performed. In the former case a linear kinematic 
methodology is adopted, whereas in the latter one pushover analyses [33] are performed also based on a novel model to 
account for  material damage  in masonry structures.   
The layout of the paper is the following: firstly, a description of the structure and its historical analysis are presented. 
Secondly, the model used for the linear analysis is introduced. Then, the nonlinear analysis is presented and the different 
nonlinear material models adopted are illustrated, with a special attention devoted to an innovative diffuse interface model 
(DIM) based on the cohesive/volumetric finite element approach. After this, the numerical results are illustrated, together 
with the procedure adopted for the evaluation of the Cathedral’s structural safety. Finally, a brief discussion about the 
outcomes of the proposed methods is presented, as well as some concluding remarks. 

 
 

DESCRIPTION OF THE CASE STUDY 
 

he old historical center of the city of Catanzaro, in southern Italy, is made of many ancient buildings and churches, 
built over the centuries from the different cultures and people that have lived here. Indeed, in the city center there 
are several churches built in different phases among which the Cathedral of Santa Maria Assunta (Fig. 1(A)). The 

structural conformation of these types of structures makes them vulnerable to earthquake actions [34].  
In this study, the approach adopted for assessing the seismic vulnerability of Santa Maria Assunta Cathedral is that prescribed 
by the Italian standards for constructions [8], together with the related explicative notes [35], and the Italian Guidelines for 
Cultural Heritage [9]. Both these codes provide detailed guidelines to (i) get adequate background knowledge of the building, 
(ii) perform vulnerability analyses, and (iii) enhance structural performances without compromising the heritage value. 
In the sequel, a detailed description of the data regarding the building survey, the historic evolution, and the material 
properties of structural elements of the Cathedral is presented. According to the amount of collected information, the 
knowledge level (referred to LC in the Italian) and the corresponding confidence factor (FC in the Italian Code) are defined. 

 
Figure 1: S. Maria Assunta Cathedral: general view (A) and 3D model derived from laser scanner survey (B). 
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Geometric survey 
The geometry survey of an ancient and complex building is a challenging task because of various issues, such as the presence 
of articulated shape geometries, the differences in the size of structural elements, and the difficulties of correctly identifying 
all the portions of the building. 
The survey of the Cathedral has been performed through a 3D laser scanner procedure, which involves the construction of 
a dense 3D points cloud of the building (see for instance [36]). Because of the massive size of the Cathedral, different 
locations of the laser scanner have been considered, thus recording many clouds of points. The achieved clouds have been 
subsequently converted to triangular meshes, forming the surfaces of the sampled parts (Fig. 1(B)). Figs. 2 and 3 show the 
output of the triangular mesh operations obtained via laser scanner procedure, useful to achieve a preliminary representation 
of the geometric schemes of the whole structure. Finally, triangular meshes have been transformed into geometric entities, 
thus providing the final geometrical representation of the Cathedral. Besides, a thermographic analysis has been performed 
to recognize discontinuities in the masonry walls and to check the presence of reinforced concrete (RC) elements embedded 
in masonry structures. The actual configuration of the Cathedral is different from the original structures, that exhibited a 
Latin cross plan. These differences are present due to the several events that changed the structural system over the decades, 
such as the earthquake of the 1783 and the damage caused by the Worl War II bombing.  
 

 
Figure 2: Vertical section derived from the 3D laser scanner survey. 

 

 
Figure 3: North-west (A) and South-west (B) general view derived from the 3D laser scanner survey. 

 
The central nave is 30.70 m long and 10.95 m large, whereas the transept is rectangular with a length of about 14.00 m and 
a width of 13.00 m. Both the central nave and the transept have a height of 19.60 m and are covered by a gable roof made 
of reinforced concrete truss structures. The intersection of the central nave with the transept defines the core of the 
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Cathedral, where the main altar is located. This central zone is covered by a massive dome, made of reinforced concrete and 
masonry.  
Both the lateral naves are of 22.70 m length, 7.70 m width and 9.40 m height, covered by a single-pitched roof made of 
reinforced concrete truss structures. Externally, they are flanked by several chapels; three are on the right side and one is on 
the left. In particular, the one on the left side is dedicated to San Vitaliano, the patron saint of Catanzaro. Along the left 
side, there are also a baptistery and a portico made of reinforced concrete. 
In the position currently taken by the baptistery there was, in the original structures built during the 1000s, the bell tower 
with a carrying masonry structure. After the damage caused by the War (see Fig. 4), its structure has been destroyed and 
then rebuilt in the actual position over the West façade. On the top of the tower, we find the statue of Santa Maria Assunta. 
This is the highest point of the church, with a height of 41.5 meters.  

 
Historical evolution of the Cathedral 
According to many historical studies, the Cathedral was built during the XII century. The original plan was a Latin cross 
with three naves. Such a layout was like that of several churches built in that period. Also, in the original structure, there 
were only two chapels placed symmetrically regarding the longitudinal axis of the building along the lateral naves. The 
original structure of the Cathedral presented a bell tower located on the north side in the position where today the baptistery 
is placed, with an independent structure from the rest of the building. Both the structures of the church and the tower were 
entirely in masonry.  
Throughout history, several unfortunate circumstances have altered the original plan of the Cathedral. Various parts of the 
structure have suffered from massive collapse because of seismic events. The most devastating one occurred in 1783 and 
caused the failure of the entire left nave. Subsequent reconstruction works have permitted to repair damaged parts, thus 
enabling the use of the church for many years afterward. 
In 1943, the building suffered other massive damages because of the aerial Anglo-American bombing. The raids destroyed 
the left nave of the church and the bell tower (see Fig. 4). In the second half of the 40s, the architects Fasolo and Domestico 
were commissioned to design the reconstruction project, that was approved in 1949. New reinforced concrete structures 
embedded in the ancient masonry structures were built, and RC bond-beams were constructed over the masonry walls in 
order to improve their structural behavior with regards to seismic loads. Further, to enhance the robustness of the building 
against local strength failure, crumbling masonry walls were re-built entirely. The reconstruction works provided a new bell 
tower made of RC beams and columns integrated into the masonries and placed on the west side, incorporated in the façade 
of the Cathedral. The project included new structures. These were a baptistery and a portico next to the left nave, and a 
windowed dome over the altar zone. 
 

 
 

Figure 4: Left nave of Cathedral destroyed by World bombing. Calabria superintendency storage. 
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Mechanical properties of materials structure 
The material properties of the structural elements are determined through specific in situ tests for both masonry and RC 
structural elements.  
The analysis on masonry elements comprises visual inspections, flat jack tests, endoscopic tests, and “Darmstadt” tests on 
the masonry joints. Such investigations permit identifying all the masonries of the Cathedral, which are illustrated in Fig. 5:  

 Disordered rubble stone masonry (Fig. 5A); 
 Solid brick and lime mortar masonry (Fig. 5B); 
 Squared block stone masonry (Fig. 5C);  
 Soft stone ashlar masonry (Fig. 5D); 
 Irregular soft stone masonry (Fig. 5E).   

RC structures have been investigated using compressive tests on concrete cores and tensile tests on steel bars according to 
guidelines reported in the Italian Standards (par. C8.5.IV) [8] and corresponding explicative notes [35]. Concrete cores and 
steel bar samples have been extracted from RC structures in restricted portions of the building. This strategy has led to 
limited knowledge of the mechanical properties of materials but has avoided damaging several portions of the building, thus 
promoting heritage value preservation. Such an approach is also recommended by the Italian guidelines on Cultural heritage, 
which admits poor levels of knowledge instead of performing invasive tests. 
The sampled data have been examined using the formulations reported in the Italian standards for constructions to define 
an average value of the mechanical properties of both concrete and steel to be adopted in the numerical analyses.  
 

 
Figure 5: Masonry types derived from on-site survey. 

 
Definition of the knowledge level 
As described in previous sections, the Cathedral is an articulated building involving both masonry and RC structural 
elements. Such a peculiar feature complicates the definition of the knowledge level of the building essentially for two major 
reasons. First, Italian standards provide different prescriptions about confidence factors for masonries and RC elements. 
Second, there are no guidelines concerning hybrid structures made of both masonries and RC elements. Therefore, the 
vulnerability assessment for the case under investigation has required adopting a combined approach. 
The proposed strategy evaluates the confidence factors for masonries and RC elements according to the procedures reported 
in the standards. Then, the worst value is assumed as a reference confidence factor.  
For masonries, the method reported in chapter 4.2 of the Italian guidelines for cultural heritage serves as a reference [9]. 
Such approach defines the confidence factor (FC) using an algebraic summation of four partial scores depending upon the 
quality and quantity of background information about the geometric survey (C1), history (C2), mechanical properties of 
masonries (C3), and foundation (C4) of the building:  
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MFC , and  4 0, 0.03, 0.06C

MFC .  

According to Eq. (1), the confidence factor can vary between 1 and 1.35, which correspond to LC3 and LC1 level of 
knowledge, respectively. Note that the proposed approach offers great flexibility due to the different values of the previous 
interval. The recorded data on masonries have led to. 
The mechanical properties of masonries adopted for the parameters are taken in agreement with the Italian Code [8], 
assuming the average values between lower and upper bound of the strength and the elastic moduli suggested in Tab. C8.5.I. 
For Reinforced Concrete elements, the approach reported in Italian standards for constructions [8] and related explicative 
notes [35] is adopted. Although there is substantial background information about geometry survey and historical evolution, 
the limited on-site tests for sampling mechanical properties of materials have negatively affected the knowledge level, thereby 
involving LC2 and FCRC  = 1.2. The mechanical parameters for concrete and steel have been sampled from 46 cores and 12 
bars extracted from several elements of the building. The mechanical properties of the samples have been evaluated through 
destructive tests thus achieving a collection of data. The representative value of Young modulus’s and strength have been 
assumed as the averages of the collected data.  
However, it is worth noting that during the on-site survey many parts of the building were not investigated, hence more 
accurate investigations are necessary to grow the knowledge level and the accuracy of the structural analyses. Moreover, the 
knowledge of existing buildings and their structural analyses are related to each other, and integrative surveys should be 
done based on the Cathedral structural behavior. 
 
 
ANALYSIS METHODOLOGIES 
 

he present paper provides a comparative analysis for the seismic vulnerability assessment of the Cathedral, relying 
on the use of different analysis methodologies (also used in combination to each other), with the final aim of 
identifying the most vulnerable structural elements with respect to seismic actions. The following analysis 

methodologies have been used: 
- Linear static and dynamic analyses performed on a global 3D model; 
- Nonlinear static analysis performed on individual macro-elements; 
- Analysis of local failure mechanisms through a linear kinematic approach. 

The latter analysis is mainly aimed at assessing the structural safety against the so-called out-of-plane overturning failure 
modes of both single and grouped masonry elements. This approach is recommended by the Italian code to be performed 
prior to global (and macro-element) analyses, in order to identify and eventually remove all the brittle failure mechanisms 
potentially activated under seismic actions, which usually are not taken into account when the first two analysis 
methodologies are adopted. 
After this preliminary step, a global analysis is performed on a fully 3D model to investigate the overall structural response 
of the Cathedral under both static and dynamic loads, and to evaluate its modal response (in terms of both natural 
frequencies and related vibration shapes). Despite being a very efficient numerical tool, this analysis methodology is known 
to provide only approximate results for ancient masonry structures. In facts, global models usually neglect common features 
of historical masonry constructions, such as the absence of good connection between the masonry walls or the presence of 
different slabs with a finite stiffness in their own plane, which make the global analysis not always suitable for capturing the 
actual structural behavior. To avoid these issues, the Italian guidelines for the cultural heritage [9] suggest the use of different 
analysis methodologies, including the nonlinear static analysis, also referred to as pushover analysis, to be performed on 
individual macro-elements properly extracted from the global model and with an independent behavior with reference to 
earthquake-induced horizontal actions. In this paper, this analysis methodology has been used to analyze more in depth the 
structural behavior of two macro-elements, which are representative of the transverse and longitudinal behavior of the 
Cathedral against seismic actions. As an important aspect of novelty of the present work, an innovative modeling approach 
has been adopted for the pushover analyses, relying on a cohesive/volumetric finite element method, which has been 
proposed and subsequently refined by some of the authors in Ref. [37]. Such an approach has the advantage of allowing 
complex crack patterns to be naturally predicted, by embedding suitably calibrated cohesive interfaces along all the internal 
boundaries of the bulk mesh used to represent the structural element under investigation. This novel approach has been 
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validated in this work by providing a comparison with a well-established damage model, which assumes an approximate 
smeared representation of fracture phenomena. 
 
Global analysis of the structure 
Starting from a fully 3D finite element model ad hoc developed for the Cathedral, a linear dynamic analysis has been 
performed using a commercial software for structural analysis and design. This model adopts shell elements for masonry 
members, relying on a Kirchhoff-Love formulation for the out-of-plane flexural behavior, as well as frame elements for 
reinforced concrete members, incorporating a Timoshenko formulation for the bending response. 
An important detail in the structural modeling of ancient masonry buildings is the correct simulation of the real connection 
between the transversal walls. Indeed, if this aspect is not adequately captured, an independent behavior of the structural 
walls is predicted, so that they are exposed to brittle failure mechanisms, such as their out-of-plane overturning induced by 
horizontal forces. According to the results of in-situ surveys and tests, a good connection between the structural walls has 
been assumed for the present 3D model. The hollow clay pot slabs of chapels and sacristy are modeled as plate elements. 
Note that the Italian standards admit the modeling of such slab typologies as elements having infinite in-plane stiffness. 
Such a modeling approach usually adopts rigid-diaphragm constraint equations between the top nodes of the walls able to 
account for the infinite in-plane stiffness behavior. However, in the present structural model, slabs are modeled as elements 
with a finite stiffness in their own plane. This because the results of in-situ tests and surveys have shown that the existing 
slabs are not in good condition, due to their old age as well as to the diffuse deterioration of their structural materials. 
Moreover, all the material properties have been assigned to the model by using the confidence factor (FC) evaluated at the 
end of the background analysis. Indeed, in the vulnerability assessment of existing buildings through both response spectrum 
dynamic and nonlinear static analysis, the confidence factor is used as additionally safety factor, in addition to partial 
coefficient of the material, for the evaluation of the brittle mechanisms (e.g., shear failure), and as the only safety factor for 
the assessment of ductile mechanisms (e.g., bending failure). 
Tab. 1 shows the properties of the different masonry typologies developed in the structure during the on-site survey. The 
reinforced concrete members have been characterized via the results of the tensile test on the steel bars and the output of 
the compressive study on the concrete samples. 
 

Material E 
(MPa) 

G  
(MPa) 


(-) 


(kN/m3)

cf  
(MPa)

 0  
(MPa) 

0vf  
(MPa) 

Disordered rubble 
stone masonry

1305 435 0.25 19.0 2.92 0.049 - 

Solid bricks and lime 
mortar masonry 

2067 689.05 0.25 18.0 4.75 0.124 0.276 

Squared block stone 
masonry 

3420 1140 0.25 22.0 8.40 0.126 0.277 

Soft stone ashlar 
masonry 

2256 720 0.25 14.5 4.16 0.096 0.232 

Irregular soft stone 
masonry 

1620 540 0.25 14.5 3.24 0.063 - 

 

Table 1: Mechanical parameters of the five masonry types involved in the global model. 
 
A reinforced concrete with a value of 15 MPa for the average compressive strength, has been considered for the structural 
elements according to the results of the considered samples.  
Based on the necessity of overcome the uncertainty on the mechanical behavior of the masonry connection-elements, 
another model has been created, in which the masonry arches were modeled like masonry spandrels and not with their 
effective geometry (see Fig. 6).  
Despite missing the pushing contribution, characteristic of arch, such model should be suitable for the axial-bending analysis 
of the masonry structure, highlighting eventually deficits and issues. 
The geometric dimensions of the coupling beams using in this model, have been evaluated with an area equivalence between 
the arches and the beams elements. It is important to note that the Italian Code [8] provides the conditions that define the 
masonry spandrels as coupling beams (see Section 7.8 of the Italian Code). 
In addition to the FE model of the Cathedral, a preliminary analysis of the soil-structure interaction has been performed 
analyzing the geotechnical assessment of the structure, even if in a preliminary manner and not reported in this paper for 
the sake of brevity. It is important to note that this type of assessment, according to the Italian Code [8], is mandatory only 
if local failure, caused by settlements foundation, or global instabilities of the whole structure are present.  
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Figure 6: Schematic example of the two models defined for the global analysis: 3D global model (A); detail of the arcade modeled with 
masonry arches (B) and masonry spandrels (C).  
 
Starting from the global model, structural analysis and assessment were performed for different load combinations, including 
seismic and no-seismic load cases.  
The first load combination was a non-seismic load case, known as Ultimate Limit State (ULS) combinations (see EC2 [38]), 
that includes only the permanent imposed loads and the service-imposed loads, without considering the other variable 
actions (i.e., snow on roofing or wind actions). This first approach provides useful information on the actual state of the 
building, highlighting eventually preliminary issues already for the human-controlled load. Moreover, using this procedure, 
it is possible to reduce the use of the structure and prevent unsafety situations. Subsequently, complete non-seismic load 
combinations were defined including snow, wind, and thermal variation actions. 
On the other hand, the response of the whole structure for seismic load combinations were analyzed based on the classical 
combination case that includes the partial factors of the different variable loads (see Tab. 2.5.I of the Italian Code [8]).  
 
Nonlinear static analysis of macro-elements 
Complex buildings frequently comprise different sub-units of various geometric configurations and material compositions 
that behave differently from each other from a structural point of view. Such a condition occurs also for the case under 
investigation because the architectonical portions of the Cathedral (i.e. naves, transept, chapels, apex, and bell tower) are 
distinct sub-structures that are aggregated to each other. These portions can be regarded as the structural macro-elements 
of the building. Hence, the overall seismic vulnerability of the Cathedral can be assessed through the analysis of its individual 
macro-elements. These macro-elements represent the parts of the Cathedral whose behavior is independent from the whole 
structure with respect to the seismic forces, especially in terms of their collapse mechanism. 
Italian Guidelines for the historical and cultural heritage [9] (chapter 5.4.3 and Annex C) do not provide detailed 
recommendations to analyze the different macro-elements of historic buildings. For church buildings, these guidelines only 
define the most probable collapse mechanisms of usual macro-element geometries, but they do not provide exhaustive 
information about the choice of failure mechanisms in more complex structural configurations. 
In the present paper, two macro-elements are extracted from the global 3D model described in the previous section, and 
subsequently considered for a nonlinear static (i.e., pushover) analysis, as shown in Fig. 7. The first element (referred to as 
longitudinal macro-element) has the length of almost the whole structure and contains the narthex, the colonnade, and the 
final part of the longitudinal section of the structure (excluded the circular apse), as depicted in Fig. 7(A). The second one 
(called transverse macro-element) is selected from the lateral section of the church and corresponds to the transept (see Fig. 
7(B)). These two macro-elements have been chosen to be representative of the seismic response of the Cathedral in the 
longitudinal and transverse directions, respectively. However, for the sake of brevity, only the numerical results related to 
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the transversal macro-element have been reported, which is believed to be more vulnerable due to its peculiar configuration 
and location with respect to the other structural elements of the Cathedral. This macro-element involves two different 
masonry types, i.e. irregular soft stone masonry for the two lateral portions, and squared block stone masonry for the central 
part. The inelastic parameters required to perform the nonlinear static analysis by using the two models presented in the 
following section are reported in Tab. 2. In particular, the strength parameters (tensile strength ft, uniaxial and biaxial 
compressive strengths, fc and fb) were deduced starting from the average compressive strength reported in the Italian code 
[35], whereas the fracture energies Gf are assumed on the basis of typical values adopted in the technical literature for these 
masonry types. 
 

 
 

Figure 7: Vertical section generating from the global geometrical model: longitudinal macro element (A) and transverse macro element 
(B). 
 

Material ft (MPa) fc (MPa) fb (MPa) Gf (J/m2) 

Irregular soft 
stone masonry 

0.095 
 

3.24 

 

3.89 

 

100 

 
Squared block 
stone masonry 

0.189 8.40 10.08 500 
 

Table 2: Inelastic parameters of the masonry elements. 
 
Limit analysis of local collapse mechanisms 
In addition to the global analysis of the structure, the seismic vulnerability assessment of an existing masonry building also 
requires the study of local collapse mechanisms, that are local portions of the structure that are susceptible to rigid 
overturning falls under moderate seismic actions. Indeed, most of the existing masonry structures present several vulnerable 
portions, such as unconstrained perimeter bearing walls (because of the lack of orthogonal connections) or soaring sub-
structures ready to fail because of equilibrium losses rather than strength exceedance. For an existing masonry building, the 
equilibrium loss of local portions represents undoubtedly an unsafe condition. In extreme cases, the sudden loss of a local 
masonry portion can trigger a sequence of consecutive local collapse mechanisms up to the fall of the entire structure. 
Hence, the vulnerability of all unrestrained elements of a masonry structure against overturning risks represents an essential 
investigation, which is also helpful in achieving timely information for adopting proper retrofitting strategies to avoid them 
(including those based on the external application of FRP-like systems [39]). 
The study of local collapse mechanisms consists of comparing the horizontal load capacity of all the vulnerable portions of 
the masonry structure with the seismic demand of the building site. To this end, the Italian Codes prescribe using the 
kinematic approach of limit analysis to evaluate the horizontal capacity of a vulnerable masonry element, under the 
assumption for the masonry of being (i) rigid in compression, (ii) with no tensile strength, and (iii) unsusceptible to sliding 
failures. 
Quantifying the horizontal capacity of a masonry portion via the kinematic approach comprises several consecutive steps. 
The analysis begins by extracting the vulnerable element from the building, together with all the vertical and horizontal 
forces acting on it (i.e., all the actions transmitted by the structure, that are, for instance, all floor and service loads, and the 
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trust of adjacent masonry arches). The subsequent step involves introducing a sufficient number of kinematic hinges on the 
extracted masonry portion to configure a single-degree-of-freedom system capable of reproducing a potential collapse 
mechanism. Note that the location of the kinematic hinges strictly depends on the investigating structural element. For 
instance, for examining the seismic vulnerability of an unrestrained perimeter masonry bearing wall (i.e., out-of-plane 
overturning), a single kinematic hinge is usually placed at the base of the wall itself. Next, an additional set of horizontal 
forces is imposed on the investigating masonry portion devoted to reproducing the effect induced by seismic actions. They 
are usually expressed as the product between the vertical loads acting on the masonry element and a load multiplier factor 
(α0). Note that the horizontal load multiplier α0 represents the commonly adopted parameter for quantifying the capacity of 
a local masonry portion against overturning hazards. Finally, the last step of the kinematic approach involves the evaluation 
of α0 through the analysis of the equilibrium state by the classic relationship of the Principle of Virtual Work: 
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where Pi is the weight force of the i-th element forming the local masonry portion, Pj is the j-th weight force not directly 
applied on the element whose mass generate horizontal loads, and Fh is the h-th external load. Besides, δx,i, δx,j and δh are the 
virtual displacements of Pi, Pj and Fh, defined according to the assumed collapse mechanism. Finally, Lfi is the work of the 
internal loads. 
The horizontal load multiplier evaluated through Eq. (2) is usually converted into the ground acceleration threshold (a0*) 
that activates the considered local collapse mechanism through the following relationship provided by the Italian Codes: 
 

 






 
 
   


 

2

,*
* * *0
0 * 2

,

with and
i x i

i

i i x i
i i

P
g gM

a e M
e FC P g P      (3) 

  
where g is the gravity acceleration, FC is the confidence factor associated to the knowledge level, e* is the participating mass 
ratio, and M* is the participating mass involving in the mechanism. 
To assess the vulnerability of the local masonry portion, the acceleration capacity a0* is compared with the seismic demand, 
which is either the peak ground acceleration of the building site (when the element lies on the ground floor) or the action 
derived by using a floor response spectrum approach provided by the Italian codes, when the investigated masonry portion 
is located at a Z-height of the building. 
 
  
A REFINED DIFFUSE INTERFACE MODEL FOR THE NONLINEAR ANALYSIS OF MASONRY MACRO-ELEMENTS 
 

s a key novelty point of the present paper, a refined Diffuse Interface Model (DIM) is proposed for the nonlinear 
analysis of masonry macro-elements. Such a fracture model is based on the insertion of cohesive interface elements 
along all the interelement boundaries of the computational mesh, thus allowing arbitrary crack paths to be accurately 

predicted. This strategy can be regarded as an alternative to well-established approaches, based on either global/local 
remeshing techniques or node relocation approaches (including some recent moving mesh methodologies [40,41]). The 
adopted model, proposed in Ref. [42] and successfully used in Refs. [43,44] to simulate crack propagation in different classes 
of homogeneous and heterogeneous materials, is here adapted to the case of 2D masonry substructures (here referred to as 
macro-elements) modeled at the macroscopic scale. 
As a further aspect, the proposed DIM approach is validated through a suitable comparison with a well-established 
regularized damage model, incorporating a Rankine-type failure criterion (according to the maximum principal stress theory) 
for tensile damage onset, as well as an exponential softening law for damage evolution. 
Both modeling approaches have been implemented in a standard finite element setting, within the commercial simulation 
environment COMSOL Multiphysics [45]. Such a computational tool has been chosen by virtue of its advanced scripting 
capabilities, required for the practical development and validation of the proposed DIM approach. In the following, an 
overview of these two models is reported, providing their theoretical background, together with some computational details. 
 

A 
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Diffuse Interface Model 
The proposed Diffuse Interface Model is based on the cohesive/volumetric finite element approach, proposed a few 
decades ago [42] and successfully adopted in different models [46], according to which a finite set of zero-thickness interface 
elements are preinserted along the boundaries of a standard finite element mesh. Such an approach is here followed, by 
considering these main assumptions: quasi-static loading, small deformations, linearly elastic bulk materials and purely 
cohesive mesh boundaries (i.e., no frictional neither plastic behavior is accounted for). This model, which has been widely 
used by some of the authors for the failure simulation of different materials, including plain and reinforced concrete, fiber-
reinforced concrete, and concrete enhanced with embedded nanomaterials [46,47], is able to accurately predict arbitrary 
crack patterns experiencing during the quasi-brittle damage evolution. 
Starting from the 2D continuum depicted in Fig. 8(A), occupying the region   and delimited by the boundary  , its 
discretized version (denoted by the subscript h ) with embedded discontinuity lines  int

h  coinciding with the internal mesh 
boundaries and representing the potential crack paths, is used for the simulation of a fracturing body (see Fig. 8(B)). Such a 
body is subjected to applied tractions t  on N  as well as to prescribed displacements u  on D , the subscripts N  and 
D  indicating the Neumann and Dirichlet portions of  , respectively). The mechanical response of the bulk phase is 
assumed to be linearly elastic and isotropic, so that the unique nonlinearity source is the constitutive behavior of the 
embedded cohesive interfaces. Such a constitutive behavior is written as a damage-driven traction-separation law, in terms 
of the cohesive traction vector   coh coht t u  being, in turn, a function of the displacement jump vector  u . Such a law 

is conveniently written with respect to a local reference system, defined for each pair of adjacent bulk elements h  and h  

by the unit vectors s  and n , the latter being oriented outward with respect to h .  In such a way, these cohesive interfaces 

behave as nonlinear spring beds involving both the tangential  su  and the normal  nu components of the displacement 

jump vector  u  (see Fig. 8(C)). 

 

 
Figure 8: Schematic representation of the DIM approach. Continuum unfractured body (A); discretized body with embedded 
discontinuity lines (B); zero-thickness cohesive interfaces element (C). 
 
As widely known from the literature, the structural performance of masonry structures is highly influenced by the nonlinear 
behavior of its constituents, thus resulting in a globally anisotropic behavior in both elastic and post-elastic range [24,48]. 
In this study, a degenerated Drucker-Prager criterion has been used for the macroscopic failure analysis of masonry 
structures (see for instance [49]). According with the works reported in Ref. [50], the following traction-separation law is 
considered: 
 

 coh  t K u(1 )d           (4) 
 
where K is the initial stiffness matrix (containing the normal and tangential stiffness constants in its principal diagonal), and 
d is the damage variable, expressed as a function of the maximum effective displacement jump over the entire loading 
history, denoted as umax, which depends on the tensile strength ft of masonry, as well as on its uniaxial and biaxial compressive 
strengths, fc and fb, respectively (see [50] for additional details). In particular, the following expression for d is considered: 
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 is a dimensionless parameter governing the brittleness of the cohesive response, ft and Gf are the tensile 

strength and the mode-I fracture energy of masonry, respectively (both assumed to be independent of the crack orientation 
with respect to the material axes), while u0 is the normal displacement jump at damage onset. For more details about this 
constitutive model, the reader is referred to the work [50]. 
 
Regularized damage model 
As widely known from the technical literature [51–53] damage models are well-established approaches to incorporate the 
effects of material degradation into the constitutive behavior of quasi-brittle materials at the macroscopic scale, including 
masonry structures [54,55]. Is it also well-known that the application of local damage mechanics theories to softening 
materials may result in a spurious mesh sensitivity and a convergence towards physically inadmissible solutions, as 
consequences of the loss of ellipticity and of the resulting well-posedness of the underlying equilibrium equations. Therefore, 
a simple regularized isotropic damage model has been used in the present paper for comparison purposes. The related 
constitutive relation is written as σ =(1−d)C :ε, where C, ε and σ are the elastic stiffness tensor, the strain and the stress 
tensors, respectively. The scalar quantity d denotes the damage variable, which depends on the maximum level of the 
Rankine equivalent strain, eq, achieved during the entire deformation history, here denoted by  and playing the role of 
internal state variable, according to the following evolution law: 
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where ε0 = ft/E is the limit tensile elastic strain, ft and E being the tensile strength and the Young’s modulus, respectively, 
whereas f denotes the ultimate strain, defined as 
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which controls the slope of the softening curve. In Eq. (7), Gf
 is the energy dissipated per unit area at complete failure (i.e., 

the fracture energy), and hcb is the crack bandwidth, coinciding with the size of the numerically resolved localized damage. 
For the adopted regularization approach, relying of the crack band concept, this size is strictly related to the size, shape and 
orientation of finite elements. In this work, only 2D triangular elements have been employed, so that it has been always 

assumed as  2cbh A , A being the bulk element area. 
The resulting stress-strain constitutive diagram under pure tensile loading is characterized by a linearly elastic behavior up 
the tensile peak, followed by an exponential softening branch so that the area under this diagram represents the fracture 
energy per unit volume gf  = Gf/hcb. 
It is worth noting that the adopted damage model requires fewer physical parameters than the diffuse interface one, since 
only the tensile strength of masonry appears in the damage onset criterion. 
 
 
NUMERICAL RESULTS 
 

n this section, the results of the numerical simulations are illustrated. In particular, the main outcomes obtained via the 
different modeling approaches are reported, together with their critical discussion. 
 I 



 

                                                                  F. Greco et alii, Frattura ed Integrità Strutturale, 60 (2022) 464-487; DOI: 10.3221/IGF-ESIS.60.32 
 

477 
 

Response spectrum analysis on the global model 
The linear dynamic analysis indicated the Italian Standards relies on the evaluation of the modal properties of the entire 
structure, and subsequently, of its seismic response by means of the response spectrum technique.  According to the Italian 
Standards, the seismic response of the Cathedral is predicted by considering the first 30 modes obtained from the generalized 
eigenvalue problem, assuring that the cumulated participating mass ratio is greater than 85% for two horizontal ground 
motion components. The period and the participating mass ratio of the first ten natural modes are reported in Tab. 3. The 
associated mode shapes are shown in Fig. 9. It can be observed that modes 3 and 4, whose shapes are predominantly 
translational in nature and involve almost the entire structural masses, are associated with the greatest values of mass 
participation ratios in Y and X directions, respectively. Instead, modes 1 and 2 involve only the motion of the bell tower 
along X and Y directions, respectively. The remaining modes have almost negligible mass participation ratios, being 
associated with local deformed shapes with no dominant horizontal translations. 
 

 
 

Figure 9: First (A), second (B), third (C) and fourth (D) mode shapes of the S.Maria Assunta Cathedral (axes X, Y and Z are indicated 
by colors red, green and blue, respectively). 

 
 

Mode 
number 

Period 
(s) 

Mass participation ratio Mode 
number

Period 
(s)

Mass participation ratio 
X Y Z X Y Z 

1 0.4333 0.0763 0.0001 0.0000 6 0.2260 0.0000 0.0013 0.0000 

2 0.4257 0.0001 0.0622 0.0000 7 0.2077 0.0314 0.0001 0.0001 

3 0.2720 0.0003 0.5833 0.0000 8 0.2015 0.0000 0.0234 0.0000 

4 0.2555 0.5013 0.0007 0.0001 9 0.1879 0.0011 0.0017 0.0001 

5 0.2389 0.0000 0.0040 0.0000 10 0.1801 0.0000 0.0151 0.0000 
 

Table 3: Modal information of the Cathedral’s 3D global model for the first ten natural modes. 
 
Nonlinear pushover analysis 
By using the two models introduced in the previous section for the representation of material nonlinearities in masonry 
structures, i.e., the proposed refined diffuse interface model and the (reference) isotropic damage model, different nonlinear 
static analyses have been performed on the extracted transversal macro-element. Both the geometric configuration and the 
reference mesh arrangement of the analyzed macro-element considered for the subsequent structural analyses are reported 
in Fig. 10. It is worth noting that possible structural interactions of the modeled structural portion with the adjacent and 
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incident ones have been neglected in favor of safety, neglecting the relevant contributions in terms of stiffness and mass 
but considering the effects in terms of transmitted loads. As a matter of fact, this assumption can be justified by the weak 
connection between the distinct portions of the Cathedral, which were built in different ages and without introducing 
construction details able to guarantee a global behavior against horizontal forces. Furthermore, also the soil/structure 
interactions have been neglected, so that fixed constraints have been considered as prescribed boundary conditions at the 
ground level.  
 

 
Figure 10: Transverse macro-element: identification in the transverse vertical section (A) and representation of the reference 
unstructured mesh (i.e. Delaunay) for the finite element model (B). 
 
The nonlinear pushover analysis has been performed according to the following procedure: 

 In the first step, a nonlinear analysis is performed, in which only the vertical loads (gravitational loads, vertical 
diffuse actions) are considered. Among these loads, the actions derived from the central dome and the two lateral 
gable roofs of the transept have been computed, including both the weight of all structural elements not explicitly 
modeled and the relevant applied loads; 

 In the second step, starting from the configuration at the end of the first step, a nonlinear analysis is performed by 
applying monotonically increasing horizontal forces, obtained by assuming a uniform distribution of accelerations 
along the macro-element height, as prescribed by the Italian standards [8]. In particular, a lateral displacement 
control scheme has been adopted, with reference to the upper right corner of the central part of the macro-element 
(see Fig. 10B). Moreover, a Newton-Raphson method is employed to solve the nonlinear equilibrium equations. 
This step is aimed at the evaluation of the capacity curve of the given structure.  

The reliability of the DIM approach for the failure analysis of masonry structures has been assessed by performing a 
comparison with the well-established isotropic damage model. As shown in Fig. 11, the results are in good agreement with 
each other in terms of damage maps. It is important to note that the cohesive/volumetric approach implemented in the 
DIM is more accurate in predicting the crack pattern during the damage evolution (potentially, also in terms of crack width 
and spacing). Such an advantage is provided by the superior ability of the proposed approach over the reference damage 
model to keep the discrete nature of fracture. 
Moreover, a mesh sensitivity analysis has been conducted, both for damage and cohesive models, in order to investigate 
their mesh dependency properties.  
In particular, three different meshes have been used for each model: mesh 1 (the coarsest, used as the reference mesh and 
shown in Fig. 11B), mesh 2 and mesh 3 (the finest), with an average element size of 0.6, 0.45 and 0.3 m, respectively. The 
results show that the proposed cohesive methodology is reliable in predicting the strongly nonlinear response of the given 
masonry macro-element. Firstly, the mesh convergence analysis presented here has demonstrated the small sensitivity of 
the peak and post-peak behavior to the mesh size, provided that a sufficiently refined discretization is used, in the spirit of 
a classical finite element setting. Secondly, the structural response predicted by the DIM (see Fig. 12(A)) are consistent with 
those arising from the well-established isotropic damage model (reported in Fig. 12(B)), thus further confirming the 
predictive capabilities of the novel approach.  
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Figure 11: Damage maps: comparison between isotropic damage model (A) and DIM approach (B). 

 
Figure 12: Pushover curves: comparison between DIM approach (A) and reference isotropic damage model (B). 

 
Limit analysis of the local pre-assigned failure mechanisms in the masonry structures  
The first step of the study of local collapse mechanisms for the masonry structure under investigation requires the 
identification of all vulnerable masonry portions susceptible to overturning risk. To support the identification of the 
vulnerable local portions, Annex C of the Italian guidelines [9] reports a set of 28 local collapse mechanisms that usually 
occur in masonry church structures. Such collapse mechanisms have been identified based on the inspections conducted in 
several church masonry structures damaged by seismic events. 
Fig. 13 shows a schematic of the local collapse mechanisms identified for the masonry structure investigated in the present 
study. Although the present analysis investigated all such collapse mechanisms for assessing the seismic vulnerability of the 
Cathedral, in the sake of brevity here this paper focused the attention only on that involving the bell tower, depicted in the 
exploded scheme in Fig. 14. The bell tower is part of the main façade of the Cathedral and represents the highest sub-
structure of the building. In particular, starting from the height of 17.70 m, the structure is alone from other masonry sub-
structures. Hence, such a portion represents a soaring element ready to overturn under seismic action. Note that Annex C 
of the Italian Code does not report this mechanism explicitly. However, it is like the one causing the overturning of a 
common spire sub-structure, hence worth to be investigated. Besides, the fall of the bell tower represents a seriously unsafe 
condition because of its critical position up to the church’s main entrance.  
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Figure 13: Schematic representation of pre-assigned failure mechanisms. A, B, E, F: façade overturning mechanism; C, D, H: apse 
overturning mechanism; G: belfry overturning mechanism.   
 

 
 

Figure 14: 3D representation of the bell tower pre-assigned failure mechanism. 
 

 
COMPARATIVE ASSESSMENT AND STRUCTURAL SAFETY PREDICTION 
 

s is well known, ancient buildings can usually bear only partially the entity of seismic accelerations provided by the 
present technical codes. Indeed, various retrofitting systems can be designed with the aim of improving the seismic 
response of such structures until that all the design seismic actions can be carried by the structural members. To 

better understand this aspect, the Italian standards introduce the notion of seismic vulnerability indicator, computed as the 
A 
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ratio between the actual capacity of the structure to carry horizontal loads, expressed in terms of seismic acceleration ag, and 
the reference seismic acceleration of the construction site, ag,ref, expressed by means of the design response spectrum 
provided by the Italian standards for construction. Moreover, the seismic vulnerability indicator can be also expressed in 
terms of return period, according to the expression reported in Ref. [8]. The expressions of these two indicators, denoted 
as ξE and ξTR, respectively, read as:  
 



 
 

    
 , ref , ref

g R
E TR

g R

a T

a T
         (8) 

 
In the second expression of Eq. (8) the exponent α is derived from the statistical analysis of the seismic hazard curves of 
the Italian territory. It is set equal to 0.41, in order to obtain results that are comparable with the value of the analogous 
seismic indicator expressed in terms of acceleration.  
Fig. 15 show the average values of the return period seismic indicators for different groups of structural elements and 
loading types, as obtained by a linear dynamic analysis performed on the previously described global model. It is possible to 
note that the shear mechanisms, for both masonry and reinforced concrete elements, are the most critical while for the 
compression-bending actions, the various parts of the structure exhibit higher values of the seismic vulnerability indicators.   

 
 

Figure 15: Average values of the seismic indicator in terms of return period for different element/stress type: RC/V=Reinforced 
concrete/shear force; Masonry/V=Masonry/shear force; RC/C-B=Reinforced concrete/compression-bending; Masonry/C-
B=Masonry/compression-bending. 
 
With regard to pre-assigned failure mechanism involving the bell tower, and depicted in Fig. 14, the seismic indicators in 
terms of both return period and seismic acceleration have been evaluated and compared to each other as illustrated in Fig. 
16. 
From the results reported in Fig. 16, it is important to note that the two seismic indicators defined in Eq. (8) are almost in 
agreement with each other.  
Starting from the values of the seismic vulnerability indicators, Fig. 17 illustrates the number of structural members requiring 
seismic retrofitting as a function of the desired value of seismic indicator in terms of return period (TR). For example, to 
achieve a value of ξTR = 0.3, corresponding to a seismic upgrade level of 30%, it is necessary to improve the seismic capacity 
of 184 masonry piers, 69 masonry spandrels, 44 reinforced concrete beams and 6 reinforced concrete columns. This scenario 
indicates that the reinforced concrete columns are in good conditions, after considering that only the 9% of the total number 
of RC columns require maintenance. On the contrary, the masonry spandrels are the most vulnerability elements of the 
whole structures, after considering that the 74% of total members requires maintenance. 
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Figure 16: Comparison between the seismic indicators for the pre-assigned failure mechanism of the bell tower. 

 

 
Figure 17: Number of structural elements requiring retrofitting interventions as a function of the required seismic upgrade level, for 
masonry elements (A) and reinforced concrete elements (B). 
 
In order to obtain a more precise information about the seismic vulnerability of the Cathedral, the numerical results arising 
from the nonlinear static analysis performed on the structural macro-element are considered. In particular, the curve that 
provides the most conservative results in terms of collapse displacement has been chosen among the three curves depicted 
in Fig. 12(A), with the aim of deriving the related seismic vulnerability indicator. After the evaluation of the capacity curve 
of the structure, that represents the structural response of a multi-degree-of-freedom (MDOF) system [56], the curve of the 
single-degree-of-freedom (SDOF) system has been evaluated by dividing the horizontal displacement and base shear, i.e. 
the coordinates of each evaluation point, by the modal participation factor of the given macro-element evaluated during a 
preliminary linear dynamic analysis. Moreover, the equivalent bilinear curve needed for the evaluation of the seismic 
indicator has been also evaluated, as show in Fig. 18.  
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Figure 18: Capacity curve of the transverse macro-element and damage maps for three different points: (A) peak of the linear-elastic 
phase; (B) damage diffused in all the elements involved in the collapse mechanism; (C) collapse of the structure. 
 
The seismic indicator associated with the capacity curve obtained through the above procedure has been evaluated for the 
life-safety limit state (SLV in Italian standard) [8].  
In Tabs. 4 and 5, the complete results of this comparison are reported, showing that the seismic vulnerability indicators 
obtained by the linear dynamic analysis are lower than the analogous ones computed via the nonlinear static analysis. Such 
a difference can be explained by the fact that the structural safety assessment according to the linear dynamic analysis as 
prescribed by Italian standards is based on the evaluation of local failure mechanisms at the discrete element level rather 
than at the macro-element one, thus leading to more conservative results.  
 

/ga g  , /g refa g  RT

(Years) 
,R refT

(Years) E  TR  

0.145 0.288 145 712 0.503 0.521 
 

Table 4: Seismic vulnerability indicators for the macro-element obtained by performing the nonlinear static analysis on the local model. 
 

/ga g  , /g refa g  RT

(Years) 
,R refT

(Years) E  TR  

0.128 0.288 82 712 0.445 0.412 
 

Table 5: Average seismic vulnerability indicators for the macro-element obtained by performing the linear dynamic analysis on the global 
model. 
 
 
CONCLUSIONS 
 

n the present work, a detailed comparison between different analyses methodologies has been presented, in order to 
evaluate the seismic vulnerability of the Cathedral of S. Maria Assunta in Catanzaro (Italy). The classical limit and 
dynamic analyses admitted by the Italian code have been compared with the nonlinear static analysis performed using 

the diffuse interface model (DIM), an innovative research method based on the inter-element fracture approach for 
I 
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simulating the material nonlinearity associated to damage. Starting from the definition of the knowledge level, different 
models have been developed and implemented within a finite element framework in order to perform advanced structural 
analyses.  
The results illustrated in the previous two sections are suitable for a preliminary identification of the main structural 
deficiencies of the construction and to establish the necessity to increase the knowledge level. Moreover, the obtained 
outcomes allow to define a hierarchy between the different structural elements in terms of intervention priorities.  
The analysis of local failure mechanisms has been performed by using a linear kinematic approach, while a linear dynamic 
analysis has been used to study the global behavior of the Cathedral under seismic loads. Moreover, the macro-elements 
extracted from the global model have been investigated via a pushover analysis using the force distributions provided from 
the Italian code. Two different models have been used to represent material nonlinearities, the former is based on a Rankine 
failure criterion, whereas the latter on a cohesive approach.    
The study of the pre-assigned local failure mechanisms has pointed out the vulnerability of single parts of the building, 
especially the bell tower. Results obtained by using the cohesive model in conjunction with the DIM technique on macro-
elements, show a reasonable agreement with those determined by means of classical damage models.  
Despite the possible uncertainties, the proposed framework based on different types of structural analysis, including both 
classical and innovative approaches, can be regarded as a suitable tool to estimate the seismic vulnerability of historical 
masonry churches. More accurate investigations could be provided in the future taking into account the damage processes 
induced by nonlinear phenomena acting at the microstructural scale of the material (see for instance [57,58]) or by using the 
DIM model in combination with multiscale method [59,60], aimed at explicitly modeling the mechanical behavior of each 
masonry constituent. 
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