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ABSTRACT. In this research, the finite element method is used to develop 
a numerical model to analyse the effect of the external strengthening of 
reinforced concrete beams by using carbon Fiber Reinforced Polymer 
(CFRP) sheets. A finite element model has been developed to investigate 
the behavior of RC beams strengthened with CFRP sheets by testing 
nineteen externally simple R.C. beams, tested under a four-point load 
setup until failure. Various CFRP systems were used to strengthen the 
specimens.  The numerical results using the (ANSYS workbench v.19.1) 
were calibrated and validated with the experimental results.  The research 
results indicate a significant improvement in the structural behavior of 
the specimens strengthened using CFRP sheet systems. Then the 
validated model investigated the effect of the width of CFRP sheets, no 
of layers, and CFRP size on the behavior of strengthened R.C. beams. 
Results of this numerical investigation show the effectiveness of increase 
CFRP width to improve the flexural capacity of R.C. beams. An increase 
in the flexural capacity up to 100 % compared to the control beam.  
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INTRODUCTION  
 

ver the past decades, (FRP) has been commonly used to repair and rehabilitate civil structures, showing signs of 
aging degradation and distress. (CFRP) is a brittle material that typically fails at a lower load level (i.e., horizontal 
crack propagation or debonding). As a result, the ultimate capacity of the reinforced concrete structural elements 

is challenging to achieve., Kang et al.,[1]. In the past, various researchers conducted studies on reinforced concrete beams 
with CFRP retrofitted in flexure, and the failure patterns were observed [2-4]. 
Recent research has focused on the impact of geometric factors such as length and the FRP–concrete width ratio. It has 
been shown that the ultimate stress for debonding increases with bonded length up to a critical bond length. 
Although numerous researchers have presented results demonstrating the influence of FRP laminate width on ultimate load, 
these results are frequently inconsistent [5–7]. The available results in the literature are frequently contradictory. While some 
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studies have indicated that average bond strength decreases with FRP width [5], others have found that bond strength 
increases with FRP width [8]. 
Travassos et al [9] suggested adding more CFRP composite at the ends of the CFRP plate to prevent premature debonding. 
Two approaches were offered in particular: (i) addition of more layers of rectangular CFRP sheets; and (ii) addition of more 
layers of CFRP sheets across the main CFRP plate. 
Hasnat et al. [10] studied reinforced concrete beams strengthened by carbon-fiber-reinforced polymer sheets. A CFRP wrap 
(u-shape) had prevented the premature cover from debonding, increasing the final moment's efficiency.  The study on 
reinforced concrete beams, consisting of a T-section, was carried out by Mostafa et al. [11].  
Lusis et al. [12] investigated the influence of insertion of short fibers on reinforced concrete's mechanical characteristics 
using a series of experiments and numerical analysis. They had a significant effect on the tensile strength of the structure. 
Abid et al. [13] performed a systematic analysis of previous scientific studies based on the strength and durability of concrete 
beams externally covered by FRP reinforcement. The research study focused on bond behavior, testing techniques, and 
models used to determine bond performance.  
Bennegadi et al. [14] developed a numerical model for optimization of reinforced concrete beams by external (HFRP) plate, 
and they found that the ultimate load of the reinforced concrete beam was increased when compared to the reference beam, 
the geometrical and mechanical properties of the HFRP plate must be optimized. 
El-Ghandour [15] carried out three-point load checks on seven half-scale reinforced concrete beams, strengthened with 
longitudinal CFRP sheets and U-wraps. Kara and Ashour  [16] developed a numerical system for predicting curvature, 
deflection, and the moment capacity of reinforced concrete beams strengthened by FRP. 
Narmashiri et al.  [17]  conducted more experimental and numerical research on CFRP-reinforced steel I-beams in terms of 
failure analysis and structural behavior. They concluded that the geometric and mechanical characteristics control the load-
bearing capacity of CFRP plates.  
Kermiche and Redjel [18] provided experimental research and an analytical model to simulate the mechanical behavior of 
concrete and reinforced concrete. Osman et al.,[19]. Performed experimental studies on seven reinforced concrete beams 
under four-point loads with specific span-to-depth shear ratios. A comparative analysis of 27 reinforced concrete beams 
with and without CFRP sheets was also carried out.  
The findings obtained using ANSYS have been similar to the experimental outcomes of the studies. Considering the 
previous literature review, it is clear that only few researchers have studied the effect of different CFRP strengthening 
schemes and locations on bending moment and RC beam failure behaviour. 
A total of nineteen FE models were developed to study the flexural behavior of RC beams externally bonded with CFRP 
sheets. ten specimens were used to validate the accuracy of the numerical model by comparing it with experimental results 
by Madqour et al.[20] and nine models were developed to investigate the effect of increasing CFRP sheets size. 
 
 
DESCRIPTION OF THE EXPERIMENTAL PROGRAM 
  

 he FE model was created to investigate the flexural behavior of RC beams reinforced with CFRP sheets [20] by 
Madqour et al. Information on the RC beams is omitted and briefly summarized in the following. 
 

 
Geometric features of the beams 
A total of ten RC beam specimens strengthened with various schemes were tested by Madqour et al.[20]. The specimens 
examined included a control beam (B01) reinforced with two steel bars with a diameter of 10 mm. The tested beam has a 
rectangular cross-section with a nominal width, depth, length of 150 mm, 200 mm, and 2000 mm and spanned over 1800 
mm. The compression reinforcing of the specimens tested consisted of two steel bars of 8 mm diameter Fig. 1 Also, the 6 
mm diameter stirrups spaced at interval 125 mm.  
 
Table 1 provides the characteristics of the examined beams. The deflection of the beams was measured at mid-span using 
a displacement transducer (LVDT) placed on the beams Fig. 2. 
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Figure. 1. Details of the tested beams (in mm) [18]. 
 

 
Table 1: Description of the examined RC beams. 

Figure. 2. Test setup. 

 
FINITE ELEMENT MODEL DEVELOPMENT  
 

 everal computer programs packages have been developed to solve finite element problems. ANSYS, NASTRAN, 
ADINA, LS-DYNA, MARC, SAP, COSMOS, ABAQUS, and NISA are some of the most commonly used packages. 
The most recent version of ANSYS 19.1 [21] was selected for use in this research work. It can model non-metal 

materials and successfully model reinforced concrete as non-homogeneous material with nonlinear response. It also can 
predict and display the cracking and crushing patterns of the material. 
ANSYS 19.0 FE software is used to develop 3D FE specimen models tested by madqour et al. [20].  The geometry, 
constituent material characteristics, loading, and boundary conditions of the FE models are similar to those of the tested 
beams previously described in Table 1. 
 

Beams designation [20].  FEM designation  Reinforcement type  FRP width (mm) 

B00 S00 Control beam without strengthening N/A 

B02 S01 Two layers with lengths 1700, and1400 mm 100 

B04 S01S One layer and on both sides with length 1700 mm 100 

B05 S01U One layer and 6 (U-shape) 100 

S 
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Figure 3: FE models elements: (a) SOLID65 (b) LINK180 (c) SHELL181 (d) SOLID185 layered and SOLID45  [22-27]. 

 
Numerical modeling 
The concrete is modeled by using 8-noded SOLID65 Fig 3(a) element, which has three degrees of freedom at each node 
and can crack in tension and crushing in compression. Fig. 3(a) shows the geometry of the SOLID65 element. Due to the 
fact that concrete is highly nonlinear in compression, a proper uniaxial stress-strain relationship is used to describe this 
nonlinearity more precisely, the compressive behavior of concrete is modeled by using the nonlinear stress-strain relation 
proposed by Popovics, [28] and later modified by Thorenfeldt et al. [29]. Figure (2) shows the curve, which is defined using 
these Equations. The use of Thorenfeldt et al., [29]'s stress-strain model for concrete in compression was found to be 
effective for FRP reinforced RC beams by El-Tawil et al., [30]. 
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Figure (4): Uniaxial stress-strain curve implemented in the FEM for concrete.Where,  cu is the maximum compressive strength, 
εcu is the ultimate strain, and ε0  is the strain at maximum stress. 

 
The steel reinforcement modeled with a 3-D spar LINK 180 element having three degrees of freedom at each node 
(translation in x, y, z directions), as shown in Fig. 3(b). The reinforcement element is assumed to be a bilinear isotropic 
elastic-perfectly plastic material identical in tension and compression. 
SHELL 181 element is used to model the FRP sheet. The thickness of a shell element is relatively small compared to other 
dimensions of the element. This element is a four-node element with six degrees of freedom at each node: x, y, z-direction 
translations, and x, y, and z-axis rotations Fig.2 (c). To exclude the debonding of FRP sheets, the effective FRP strain should 
be as recommended by ACI 440.2R-08 [31]. Therefore, such a recommendation is used to modify the debonding FRP strain 
equation originally proposed by Teng et al.  [23]. The effective FRP strain to consider debonding failure in modified form 
is given by 
 

  0.41
     df

f f

Fc

n E t

ˋ
 ≤ 0.9 

uf
                                                              (5) 

 

where, 
df
 is the debonding strain of externally bonded FRP reinforcement, Fc ˋ  is specified compressive strength of 

concrete, (MPa), n is the number of layers, fE  is the tensile modulus of elasticity of FRP, (MPa), ft  is the nominal thickness 

of one ply of FRP reinforcement, (mm), and 
uf
 is the design rupture strain of FRP reinforcement. 
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SOLID 185 element is used to model the loading supports. Eight nodes represent this element Fig.2(d), each having three 
degrees of freedom in the nodal directions x, y, and z. Plasticity, stress stiffening, creeping, large deflection, and high strain 
power are all capabilities of the element. 
The adhesive is modeled using the element SOLID45 Fig. 2(d). It is an eight-node three-dimensional structure with three 
degrees of freedom at each node, i.e., translations in directions nodal x, y, and z. The element has the capacity for plasticity, 
creeping, swelling, stress stiffening, large deflection, and significant strain. Hawileh et al. [24] used the SOLID45 element to 
model adhesive and obtained satisfactory results in the study of RC beams reinforced by FRP. This system consists of two 
nodes, one set of nodes with the concrete element used in this analysis and another with FRP elements.  
The material properties of the concrete, steel reinforcement, CFRP, steel plate, and epoxy used in the developed FE models 
are summarized in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2: Material properties concrete, reinforcement steel, CFRP, epoxy, and steel plate. 

 
 
FE MODEL VALIDATION 
 

 he flexural behavior of RC beams externally strengthening with CFRP sheets is studied using a total of nineteen FE 
models. The accuracy of the numerical model is validated by comparing experimental results with the ten beams 
reported in Table 1, and the remaining models are developed to study the effect of CFRP width and sheet size on 

the flexural behavior of the beams. Fig. 4 shows the developed FE models for a RC beam, externally strengthening with 
CFRP sheets. 
The four beams detailed in the previous section are modeled and to evaluate the accuracy of the numerical models. the 
predicted and obtained experimental data are compared for all beams.  
For four beams, in Fig. 5 are plotted the experimental and predicted results in terms of load versus mid-span deflection. 
Table 3 compares the FE results and experimental measured data in terms of attained load (Pu) along with its corresponding 
mid-span deflection (δu) value. 
 

 

Material FE type Properties Values 

Concrete SOLID 65 

Compressive strength (MPa) 32 
Modulus of elasticity (GPa) 30.6 

Poisson's ratio(v) 0.25 
Modulus of elasticity (GPa) 200 

Open shear Transfer 0.50 
Closed shear coefficient 0.80 

Uniaxial cracking (ft) 32 
Uniaxial crushing (fc) 3.4 

Reinforcement 
steel 

 

LINK 180 
 

Yield strength (MPa) (Longitudinal) 525 
Yield strength (MPa) (stirrups) 400 

Poisson's ratio(v) 0.20 
Elastic modulus (MPa) 200 000 

CFRP SHELL 181 
Modulus of elasticity (GPa) 230 
Design thickness (mm/ply) 0.129 

Tensile strength (MPa) 4000 

Epoxy SOLID45 
Modulus of elasticity (GPa) 4.50 

Tensile strength (MPa) 30 

Steel plate SOLID185 
Elastic modulus (MPa) 200 000  

Poisson’s ratio  0.3 

T 
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Figure 5: Finite element model of a RC beam: (a) numerical model; (b) modeling of longitudinal reinforcement without stirrups and 
modeling of longitudinal reinforcement with stirrups. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Comparison between experimental and numerical load-deflection curve for B00, B02, B04, and B05 beams. 
 

 
 
 
 

 

 
 

Table 3: Comparison between experimental and numerical results for B00, B02, B04, and B05 beams. 
 
 
PARAMETRIC STUDY 
 

 n this section, parametric research is carried out by developing and analyzing nine additional FE models to investigate 
the influence of CFRP laminate size (width) and different schemes of FRP laminates on the flexural response and 
strength of RC beams externally strengthened with sheets as in Fig. 7. 

Beam No. 
Ansys (100 mm width) Experimental 

Load (kN) Deflection (mm) Load (kN) Deflection (mm) 
B00 51.39 30 51.20 32.01 
B02 72.43 31.76 75.66 31.74 
B04 77.67 23.82 75.1 26.13
B05 80.08 24.87 --- --- 

I
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Figure 7: Strengthening configurations of specimens 
 
To investigate the behavior of the beam when the size (width) of CFRP sheets is changed, nine FE models were developed. 
One of the beams was modeled as an un-strengthened control, while the other eight were strengthened using CFRP sheets  
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of varying width of 150 mm. Table 3 lists the designations for each studied model. Figure 6 shows the predicted load versus 
mid-span displacement response curves. Table 3 further summarizes the predicted ultimate achieved load (Pu) and its 
corresponding mid-span deflection (u). 
 
Effect of CFRP sheet size for the case one layer  
As expected, the beams with a width of 150 mm bonded FRP sheets obtained a larger load-carrying capacity (flexural 
strength) than the beams with a width of 100 mm, as shown in Fig. 8 and Table 4. The load-carrying capacity (Pu) of beam 
S01, which has a 150 mm wide CFRP sheet, is 8% greater than the control specimen. Fig.8 further shows that the increase 
in Pu for beams S01U with 150 mm wide CFRP sheets and S01S with 150 mm wide CFRP sheets was 7.98% and 12.95%, 
respectively. As a result, the increase in the load-carrying capacity of a beam is inversely proportional to the increase in 
CFRP laminates' size (width). 
 

 

Figure 8: Numerical load-deflection curve for S01, S01S, and S01U beams. 
 

Effect of CFRP sheet size for case of two-layers  
The load versus mid-span deflection curves for the two layers are provided in Fig. 9. The load capacity (Pu) of beam S02, 
which has a 150 mm wide CFRP sheet, is 12.8 % greater than that of the control specimen. Table 4 further shows that the 
increase in Pu for beams S02U with 150 mm wide CFRP sheets and S02S with 150 mm wide CFRP sheets was 9.58 % and 
10.47%, respectively, as a result, the increase in the load capacity of a beam is inversely proportional to the increase in the 
width of CFRP sheets.  
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Figure 9: Numerical load-deflection curve for S02, S02S, and S02U beams. 

 
Effect of CFRP sheet size for in case of three-layers  
The predicted load versus mid-span deflection curves for the three layers are provided in Fig. 10. The ultimate load of beam 
S03 with a 150 mm wide CFRP sheet is 22.50 % greater than that of the control specimen. Table 4 shows that the increase 
in Pu for beams S03U with 150 mm wide CFRP sheets and S03S with 150 mm wide CFRP sheets was 14.10 % and 14.32 
%, respectively.  
 
 
 

 

 

 

 

 

 
 
 
 
 
 

Table 4: Comparison between analytical and experimental results. 
 

 

 

Beam No. 
Ansys (100 mm width) Ansys (150 mm width) Experimental 

Load 
(kN) 

Deflection 
(mm)

Load 
(kN)

Deflection 
(mm)

Load 
(kN)

Deflection 
(mm) 

CB 51.39 30 51.39 30 51.20 32.01 
S01 75.21 23.92 81.78 28.25 69.44 27.72 
S01S 72.43 31.76 83.20 34.01 75.66 31.74 
S01U 78.43 24.79 85.23 29.85 73.76 32.96 
S02 77.67 23.82 89.08 28.14 75.1 26.13 
S02S 80.08 24.87 89.45 26.74 --- --- 
S02U 88.03 24.53 97.36 30.96 87.85 36.96 
S03 76.39 23.69 98.59 28.50 79.39 23.33 
S03S 86.88 26.09 101.41 27.39 --- --- 
S03U 86.43 26.48 100.62 29.93 88.78 30.97 
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Figure 10: Numerical load-deflection curve for S03, S03S, and S03U beams. 
 

Figure 11: Strain distribution and force equilibrium conditions for externally strengthened FRP beams. 
 

 

THEORETICAL PREDICTION OF BEAM CAPACITIES 
 

everal research, including Wenwei et al. [32] and Chellapandian et al. [33], compared the experimental and theoretical 
flexural and shear capacities of various CFRP strengthening RC beams. S 
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According to ACI, the bending moment of externally bonded FRP beams is calculated using strain compatibility, internal 
force equilibrium, and governing modes of failure [31]. The strain distribution and force equilibrium conditions for 
externally reinforced FRP beams are depicted in Figure (11). 
According to GangaRao and Vijay[34], ACI [31], the modes of failure in externally reinforced FRP beams are  
(1) tension-controlled failure with FRP rupture ( s  0.005> sy,  frp = ufrp );  

(2) tension-controlled failure without FRP rupture ( s  0.005>  sy,   ufrp frp ,  cu = 0.003);  

(3) tension and compression-controlled failure ( sy  0.005  sy,   ufrp frp , cu = 0.003);  

(4) compression-controlled failure ( s  sy,    frp frpu  ); and  

(5) balanced failure ( s =   u =0.003,  frp frpu ,  s  sy). 

 
Strain and stress in FRP: 
FRP reinforcement is assumed to behave linearly elastic manner until failure. Furthermore, the FRP stress is proportional 
to strain. The maximum strain obtained in the FRP reinforcement is determined by either the strain level developed in the 
FRP at the point where the concrete crushes, the FRP ruptures, or the FRP debonds from the substrate. The effective strain 
level in FRP reinforcement at the ultimate can be calculated using the following expression: 
 

        
 

                    e cu i m u
h c

f b k f
c

                                                       (6) 
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The effective stress level in the FRP reinforcement can be calculated as follows: 
 

fe f ef E f                                                                                                          (9) 

                                                                   
Concrete delamination or FRP debonding can occur if the substrate cannot sustain the force in FRP. To prevent the 
debonding of FRP reinforcement, a limitation should be provided on the strain level developed in the FRP reinforcement. 
The bond dependent coefficient km is given as follows: 
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      (10b) 

 
The flexural strength of beams with FRP external reinforcement can be computed using Equation (11). The additional 
strength reduction factor ( f  0.85) is applied to the flexural strength contribution of the FRP reinforcement. 
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The theoretical bending moment values are calculated by incorporating the additional strength reduction factor,  f . Table 

5 shows the final results of the theoretical method.  

 

 

 

 

 
 

Table 5: Results of the theoretical method. 
 
 
CONCLUSION  
 

he main aim of the research is to investigate the influence of increasing CFRP sheet size and width, the models have 
been validated by comparing the behaviour and response of nine beam specimens. At all levels of loading until 
failure, the numerical and experimental data demonstrated a high correlation, and it can conclude that. 

 The FE models accurately predicted the flexural behaviour of the tested reinforced concrete beam specimens 
with and without CFRP sheet reinforcement. 

 Increasing the number of layers of FRP sheets increases the ultimate strength of RC beams up to 100% compared 
to the control beam. However, the mid-span deflections are less than those of the control specimen. 

 By increasing the width of CFRP sheets increases beam load capacity. 
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NOMENCLATURE 
 

a Depth of equivalent rectangular stress block 
Afrp = n tf wf, area of FRP external reinforcement 
As Area of non-prestressed steel reinforcement
b Width of rectangular cross-section 
c Distance from extreme compression fiber to the neutral axis 
d The effective depth of the beam 
Ec Modulus of elasticity of concrete 

Efrp or Ef Tensile modulus of elasticity of FRP 
Es and Ec Modulus of elasticity of steel and concrete 

fc The compressive strength of the concrete 
ffe Effective stress in FRP; stress level attained at section failure 
fy Yield strength of non-prestressed steel reinforcement

cf
ˋ  Compressive strength of concrete 

h Overall depth of the beam 
Icr Moment of inertia of cracked section transformed to concrete
km Bond-reduction coefficient for flexure 

k 
The ratio of the depth of the neutral axis to reinforcement depth measured on the same side of the 
neutral axis 

MDL Bending moment due to dead-load 
Mn Nominal bending moment 
n Number of FRP layers 
tf Nominal thickness of one ply of FRP reinforcement 

Tfrp Tensile force in FRP 
Ts Tensile force in steel 
β1 The ratio of the depth of equivalent rectangular stress block to the depth of neutral axis 
εbi Strain level in the concrete substrate at the time of FRP installation 
𝜀𝑐 Concrete compressive strain 
εci Initial strain in extreme compression fiber 
εcl Additional strain in extreme compression fiber after strengthening and loading 
εcu Maximum usable compressive strain in concrete 
ε0 The corresponding compressive strain at the compressive strength 
εfd Debonding strain of externally bonded FRP reinforcement, (mm/mm) 
εfe Effective strain level in FRP reinforcement; strain level attained at section failure 
εfrp Strain level in FRP reinforcement 
εfrpu Strain in FRP at the point of incipient rupture 
εfrpl 

 
 

Additional strain in extreme tension fiber after strengthening and loading 
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εfu Ultimate rupture strain in FRP reinforcement 
εs Strain level in steel reinforcement 
εsy Strain corresponding to the yield strength of steel reinforcement 
εsi Initial strain in steel reinforcement 
εsl Additional strain in steel reinforcement after strengthening and loading 
 cu The maximum compressive strength 
 f  FRP reinforcement ratio 

s   The ratio of non-prestressed reinforcement 

 f  Additional FRP strength-reduction factor 


