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ABSTRACT. Due to its physical complexity, fatigue phenomenon inherently 
presents a significant number of uncertain parameters to be predicted. In 
uncertainty quantification (UQ), research has demonstrated that even a small 
variation in uncertain input quantities (UIQs) may lead to a wide dispersion 
in the system response quantities (SRQs). In this paper, a bi-level hybrid UQ 
analysis of a fatigue problem is presented based on the S-N curve approach. 
The uncertain fatigue analysis presented is able to deal simultaneously with 
aleatory- and epistemic-type uncertainties in two levels (a SRQ in the first level 
is a UIQ in the second level). To this end, the proposed scheme is tested for 
an AISI 4130 clamped beam subjected to a concentrated load, which material 
information comes from experiments reported in the literature. The UIQs are 
geometrical parameters, material properties, loading magnitude, and stress, 
while the SRQs are the stress (which is also a UIQ for fatigue life) and fatigue 
life. The results evidenced that the uncertain fatigue analysis, instead of 
providing a unique value for a SRQ, now produces a possible range of values. 
Therefore, depending on the risk an engineer can take on a design, there will 
be a corresponding level of optimization achieved. 
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INTRODUCTION 
 

nder the actual paradigm of industrial competition, the improvement of engineering design is an important issue 
in the usual quality-cost trade-off. In this context, uncertainty consideration in design intends to turn this process 
more realistic by measuring the impact of the quantities assumed as uncertain in the mechanical behavior of a 

structural system. Under fluctuating stresses, it has been estimated that the fatigue phenomenon contributes to the majority 
of service failures due to mechanical causes [1]. In this sense, although it is of great importance, the modeling of a fatigue 
phenomenon itself is a complex issue mainly due to the scarce experimental data available, which may lead to inadequate 
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design assumptions. Therefore, inherently to the nature of this phenomenon, variability is present, for example, in the 
following parameters: geometry, material properties, loading, and environmental conditions [2-4]. Consequently, the 
integration of fatigue analysis with uncertainty quantification (UQ) intends to partially fulfill the gap of investigating the 
influence of each uncertain input quantity (UIQ) in the required system response quantities (SRQs) of a fatigue problem. 
From this perspective, the quantification mentioned may represent considerable knowledge for partially achieving the 
referred engineering design improvement, besides turning the analysis more complex [2,5]. 
One of the greatest challenges presented in a fatigue analysis is to have the availability of the minimum required data in 
order to perform the most adequate analyses [1,6]. The scarcity or even the inexistence of this data leads the engineer to 
make assumptions and simplifications that may significantly affect the model accuracy. However, in possession of the 
minimum adequate information, the challenge relies on the modeling phase, key contributor for the accuracy of the 
responses obtained. Consequently, in the sense that UQ may diminish the technical gap between the conceptual model and 
the reality, UQ plays an important role in the accuracy of representation. 
Therefore, aiming at qualifying a fatigue analysis to be more realistic, the integration with UQ deserves attention as a relevant 
topic of research. In this particular, three main approaches coexist: (a) probabilistic; (b) Bayesian inference; (c) probability 
bounds analysis (PBA). A considerable amount of research works is based on the so-called probabilistic methods, for 
example, [7-16]. The probabilistic approach is an adequate representation of an UIQ when there is sufficient random data 
to be representative of the distribution. In principle, the natural degree of data dispersion cannot be simply removed. 
However, this degree may be reduced by, e.g., improving the control of the generating process. Another branch of research 
within UQ in the context of fatigue analysis is the one related to Bayesian inference, as seen on [15,18]. Based on Bayes’ 
theorem, more accurate inferences on SRQs may be reached by the available knowledge as the prior trustworthiness on 
model parameters. 
Finally, the probability bounds analysis (PBA), which is applied in [3-4,19]. This type of analysis, on which this paper is 
structured, is fundamentally related to: (a) Monte Carlo sampling (MCS) or a variation of it; and (b) evidence theory [4]. 
PBA includes a mathematical characterization of aleatory uncertainties as probability distributions, and a characterization of 
epistemic uncertainties as interval-valued functions. If the two types of uncertainties are dependent on each other (which is 
not the case of this paper), the dependence should be assumed as an epistemic-type uncertainty [4]. However, under the 
segregation of aleatory- and epistemic-type of uncertainty throughout all UQ analysis, all assumed UIQs are mapped through 
the model and the SRQs are illustrated as bounds of probability distributions, known as p-boxes (set of all possible 
cumulative distribution functions – CDFs – contained within design boundaries). 
Thenceforth, a general bi-level UQ analysis of a fatigue problem based on the S-N curve approach is introduced in this 
paper. The scheme presented here has the capability of treat aleatory- and epistemic-type uncertainties simultaneously in 
two levels (a SRQ in the first level is a UIQ in the second level). The UIQs were assumed to be the following: (a) geometrical 
parameters; (b) material properties, and magnitude of variable loading under cycles of constant amplitude, whereas the stress 
(which is also a UIQ for fatigue life in the second level) and fatigue life are the required SRQs. In order to test the proposed 
method, a clamped rectangular cross-section beam made of AISI 4130 subjected to a concentrated load is the object of 
study of the propagated uncertainties. Material properties were extracted from experimental data available in the literature. 
All the information was coded in MATLAB® in order to propagate the uncertainties (via MCS) throughout the mathematical 
model applied. The results are given in terms of the mean convergence studies of the SRQs, their probability density 
functions (PDFs), CDFs, coefficients of variation, correlation coefficients, and p-boxes. The sensitivity analyses (SAs) 
conducted evidenced that, under the conditions imposed herein, the greatest probabilistic contributor to the SRQ stress 
(first level) is the cross-section height of the beam. When the impact is verified on the SRQ fatigue life (second level), the 
height now turns to be the second most contributor, and the stress itself now is the most impacting factor in this fatigue 
design. Additionally, in order to also check the impact of the epistemic-type, the p-boxes are presented, segregating the two 
types of uncertainty in the same representation, aiming at showing the design boundaries for the loading condition of the 
problem studied. Therefore, under the consideration of uncertain parameters, a design point in the deterministic S-N curve 
turns to a lower and upper bounded set of design points, now obligating the designer to assume a certain risk when deciding 
to perform an analysis with fixed input parameters. 
 
 
DETERMINISTIC FATIGUE ANALYSIS: S-N CURVE APPROACH WITH CONSTANT AMPLITUDE LOADING 
  

his section presents the deterministic fatigue design methodology under constant amplitude loading, its 
corresponding governing equations, assumptions, and particularities. A brief description of the deterministic S-N 
curve equation is given, in addition to the concept of damage. T 
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Description of the S-N Approach 
For each design philosophy, there is at least one corresponding design methodology. In the fatigue context, the design 
methodology that conforms to a safe and infinite life is the stress-life approach, which the principal testing data description 
is the well-known S-N (Wöhler) curve. Although the method is recognized to be relatively simple and easy to apply, besides 
being able to give some initial perspective of the analysis, it is restricted to situations where continuum (absence of cracks) 
assumptions can be made. In addition, its range of application is reduced to the elastic range or near this limit, also addressing 
constant amplitude loading conditions. 
A great number of researchers have devoted themselves to the process of S-N curve modeling, e.g., [1,6]. In order to build 
these curves, many tests in metallic materials in air at room temperature were performed, in which the independence between 
the number of cycles and the frequencies of the test could be verified. The fatigue life is also independent of the wave path 
that connects negative and positive stress peaks [6]. Therefore, the next subsection exposes the S-N approach under the 
mentioned conditions. 
 
Mathematical Background of the S-N Approach with Constant Amplitude Loading 
As far as this research could reach, there are three basic types of fatigue stress-life mathematical expressions, which have 
been studied by [20]. They are the following: (a) three-parameter stress-life model [21]; (b) Langer [22]; and (c) Basquin [23]. 
Presuming the existence of an infinite life, the latter model is the most common found in the literature and it is described 
by Eqn. (1), which represents the finite life portion adopted in this work and its limits. 
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In Eqn. (1), C and m are constants corresponding to the material tested, SFR is the fatigue limit in fully reversed loading 
condition, SEL is the endurance limit (threshold between finite and infinite life), SU is the ultimate stress (rupture limit) and 
N is the fatigue life (in number of cycles). If the actuating stress SFR is greater than the rupture limit, the component will 
fail; and if SFR is lower than the endurance limit of this component, it will present an infinite life. Simply taking the logarithm 
on both sides of Eqn. (1) correspondent to the finite life, a straight-line representation results in Eqn. (2): 
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SFR is selected particularly in this formulation because fatigue data is mostly obtained in the fully reversed loading condition. 
The non-linear model adopted is the classical Gerber expression [1] because it is the least conservative when compared to 
Soderberg and Goodman, for example. Therefore, the fatigue limit in fully reversed loading condition can be written in 
accordance with Eqn. (3): 
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where SA is the cyclic stress amplitude and SM is the mean stress. In the case of constant amplitude loading, SA and SM may 
be obtained in terms of the minimum and maximum stresses, SMIN and SMAX, respectively, by Eqns. (4) and (5): 
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For the condition of fully reversed stress amplitude, Eqns. (4) and (5) yield Eqns. (6) and (7): 
 

A MAXS S ;           (6) 
 

0MS  .           (7) 
 
Substituting Eqns. (3), (6), and (7) into Eqn. (1), an equation of fatigue life as a function of materials properties and maximum 
stress turns into Eqn. (8): 
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To estimate when a component will fail, the fatigue process is based on the assumption of damage accumulation paradigm, 
which does not consider the effects of understressing and overstressing. The specimen with finite life resists until the life 
of the component is exhausted. Under the stress range corresponding to infinite life, theoretically, the part never reaches 
the exhaustion. The cumulative damage during this process is frequently obtained by applying the Palmgren-Miner linear 
cumulative damage rule, which has several limitations referred to its applicability conditions, but it is simple and fast to 
implement. This rule states that the fatigue life of a component can be predicted by adding up the part of the life 
correspondent to each stress level. Mathematically, the cumulative fatigue damage D is represented in Eqn. (9): 
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where Di is understood as the damage corresponding to the i-th stress level. In this particular, now representing SMAX as 
simply Si , the fractional damage Di is given by Eqn. (10): 
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where ni is the number of cycles performed at the i-th stress level Si and Ni is the fatigue life (in number of cycles) at Si 
considering the fully reversed amplitude loading condition. Therefore, when D = 1, theoretically, the component fails by 
fatigue [24]. 
 
 
UNCERTAIN FATIGUE ANALYSIS: S-N CURVE APPROACH 
 

his section presents some generic sources and a basic classification of uncertainties. It also describes the 
methodology to treat aleatory- and epistemic-type uncertainties in a fatigue problem under the stress-life method of 
solution. Mathematical models for the stress as a function of geometrical parameters and applied loads (first level) 

and for the number of cycles as a function of applied loads, geometrical parameters, and material properties (second level) 
are also presented. 
 
Sources of Uncertainty and Classification 
Some of the sources of uncertainty present in real engineering applications occur due to manufacturing, material variability, 
initial conditions, system wear or damaged condition and its surroundings. Information on magnitude, type, behavior, and 
sources of uncertainty is crucial in the decision-making process for engineered systems. The main sources of uncertainty 
can be listed as: (a) model inputs (data from surroundings and model); (b) numerical approximation (when solving discrete 
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equations, instead of differential, for example); and (c) model form (assumptions, simplifications, mathematical 
formulations, etc.) [4]. In the field of model-based predictions, uncertainty originates from model inputs (boundary 
conditions, initial conditions, etc.), gap between real system and adopted model, computational costs (time to accomplish 
the run, analysis feasibility, and complexity), solution, and errors [25]. 
There are several classifications related to uncertainties, which mainly diverge in the nomenclature adopted but rarely related 
to the concept, for example, [4,26]. The selected terminology of the types of uncertain parameters employed here are 
described in [4]. According to this reference, they can be listed as: (a) aleatory: commonly represented by a PDF and/or 
cumulative density function (CDF). The modeled system has intrinsic variability, such that it is inherent to the 
phenomenology of the problem. This type of uncertainty cannot be eliminated, even if the available information is the most 
reliable, but can be better quantified in order to be reduced; (b) epistemic: represented by an interval variable, it occurs when 
there is a lack of complete information or knowledge. If more information is added into the analysis, it can be reduced; (c) 
mixed: it is simply a combination of the previous two, and, therefore, can be characterized by a PDF or a CDF with an 
interval. For example, if the sample size is small compared to the population, the PDF or CDF characterization related to 
the random variable is impaired in its accuracy. In this case, the uncertainty is defined as a combination of aleatory- and 
epistemic-type. 
 
Aleatory-type Uncertainty 
In the case of aleatory-type uncertainty, the information comes from a selected, candidate, or available probability 
distribution. Let nk be the number of known parameters of the probability distribution function of the i-th probabilistic 
UIQ Xi. If the PDF of Xi is denoted by fXi(xi, k,…, nk), then the realizations of Xi are obtained by the inverse function of 
the PDF (Eqn. (11)): 
 

  1  ,   ,  , 
ii X i kx f x k n  ,         (11) 

 
where xi is a possible outcome of a universal set χi of all possible outcomes and k is the k-th known parameter. A cumulative 
distribution function (CDF) FXi can be assigned to every element xi such that the following conditions are satisfied (Eqns. 
(12) and (13)): 
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Epistemic-type Uncertainty 
Originated by the interval analysis [27], the epistemic model of uncertainty is implemented in a UQ process in which there 
is no sufficient knowledge about the behavior of a variable. It is a non-probabilistic method to represent and propagate 
epistemic-type of uncertainties in engineering problems. Any realization within the interval represents only a possibility 
without a probability associated. Therefore, it can be simply described by the j-th UIQ as an interval variable (Eqn. (14)): 
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in which ℝI is the set of all closed real interval numbers, YjLB and YjUB are the lower and upper bounds of the j-th epistemic 
UIQ, respectively. The governing theory characterizes an interval variable by two basic parameters: the mean or central 
value and the amplitude, respectively, given by Eqs (15) and (16): 
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Bi-level Hybrid Uncertain S-N Curve Approach 
A UQ process comprises the obtainment of uncertainties correspondent to model-based predictions [4], which can be based 
on the different types of uncertainty throughout calculation levels. The bi-level hybrid approach adopted in this paper can 
deal with aleatory- and epistemic-type uncertainties simultaneously, but in a segregated manner in two distinct levels. The 
SRQ obtained in the first level turns out to be the UIQ in the second level of propagation, i.e. the SRQ calculated in the 
second level is influenced by the UIQs of the same level and by the SRQ of the previous level. Values of the SRQs are 
obtained as a result of the mapping of the UIQs throughout the uncertainty propagation process. In order to accomplish 
this task some propagation methods were proposed [28-33]. In view of these, Monte Carlo simulation (MCS) is the method 
through which the uncertainties are propagated in this work. Although it requires a larger sample size, the example solved 
herein shows that the convergence is achieved without a reasonable computational effort, which partially justifies the 
application of the MCS. The ease of implementation also explains its selection. In a generic form, Eqn. (17) is presented as 
the model structure responsible for mapping the required SRQs in terms of the types of uncertainties: 
 
     ..., , ..., , ,  ..., , ..., , ,  ,  ..., , ..., , , 212121 kji nknjni ZZZZYYYYXXXX     (17) 

 
in which ni is the number of column vectors of aleatory-type UIQs, nj is the number of column vectors of epistemic-type 
UIQs, and nk is the number of column vectors of SRQs required in the UQ analysis. Under the conditions of the adopted 
mathematical model 𝕄, the mapping of the dependence of the output uncertain data on the input uncertain data is 
performed. The named process (propagation of uncertainties) is fundamentally dedicated to obtain the effect of the set of 
the ni vectors and the nj vectors on the nk vectors. Therefore, the column vectors corresponding to each type of parameter 
are represented by the following structure (Eqn. (18)): 
 

         11 2 ,  , ... ,  , ... ,  , r r
Tp n n

i i i i i ix x x x x   X  

 
         11 2 ,  , ... ,  , ... , y  , yr r

Tq n n
j j j j j jy y y    Y        (18) 

 
         11 2z  , z  , ... , z  , ... , z  , zr r

Tn nr
k k k k k k

   Z  , 

 
where the superscript of each element of each vector refers to the realization number. Since just one SRQ can be obtained 
from each mathematical expression (one level), the r-th realization of the k-th SRQ should be obtained by solving the 
corresponding equation with the p-th realization of all the needed aleatory-type UIQs in conjunction with the q-th realization 
of all the needed epistemic-type UIQs. This is true if, and only if, p = q = r , ∀ 1 ≤ p, q, r ≤ nr. Performing these calculations 
for all the nk SRQs, a number of nk x nr values (elements) are obtained to compose the responses of whole model. According 
to the deterministic S-N curve approach presented, i.e. assuming the condition of fully reversed constant amplitude loading, 
the general Basquin mathematical model, represented by Eqn. (1), was particularized into the Eqn. (8). Regarding only its 
finite domain, Eqn. (19) states the second level as a function of the SRQ SMAX (from the first level) and the UIQs C and m 
(from the second level) (Eqn. (19): 
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For the purposes of the second level UQ analysis, the independent variable column vectors, C, SMAX, and m, may constitute 
a set of one, two, or three UIQs, whereas the dependent variable column vector N is the SRQ. If a parameter is known 
exactly, then it can be assumed as deterministic in this process (not a UIQ). Among other factors, the quantity of non-
deterministic parameters in an analysis is defined by the focus of the study and limitations of computational capacity.  
Analogously to the model of Eqn. (17), the column vector SMAX (now an SRQ in the first level) can be expressed as a 
function of ns vectors of applied loads and nt vectors of geometrical parameters involved, as can be seen in Eqn. (20). Fs is 
the column vector of the s-th applied force and Gt is the column vector of the t-th geometrical parameter considered. 
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Thenceforth, combining Eqns. (17) and (20), the mathematical model wherewith the propagation of all UIQs is performed 
is given by Eqn. (21), where Mu is the vector of the u-th material property and nu is the number of vectors of material 
properties involved. Since SMAX is implicit in Eqn. (21), this expression corresponds to the bi-level hybrid UQ model already 
mentioned. 
 

 
s t1 2 n 1 2 n 1 2, , ..., ,..., , , , ..., ,...,  , , , ..., , ...,

us t u nfN F F F F G G G G M M M M  .    (21) 

 
Therefore, Eqns. (20) and (21) are applied to the uncertain fatigue problem to be solved (uncertain S-N curve approach 
with all the assumptions made) and is calculated for each realization of each UIQ, obtaining the correspondent value for 
the same realization of the required SRQ. 
 
 
NUMERICAL EXAMPLE: CANTILEVER BEAM WITH CONCENTRATED LOAD 
 

he numerical example treated herein consists of a clamped beam subjected to a concentrated load near its free end, 
in which its UIQs were identified and characterized. A bi-level hybrid UQ analysis was conducted to investigate the 
behavior of the required SRQs in the two levels followed by a sensitivity analysis (SA) to rank the UIQs, disposing 

them in decreasing order of impact on the variability of the SRQs. 
 
Basic Description of the Problem 
To illustrate the problem to be solved in the context of a UQ analysis, Fig. 1 is now introduced. The beam made of AISI 
4130 is clamped at its left end, whereas its right end is free to displace. A concentrated variable load with constant amplitude 
has magnitude F and is pointed downward the y-axis near the free end, thus producing a downward deflection. However, 
because it is fully reversed, an upward deflection is produced when the load direction is upward. The prismatic beam is 
characterized geometrically by its length L (parallel to x-axis), cross-section base b (parallel to z-axis), cross-section height h 
(parallel to y-axis), and the longitudinal distance d (parallel to x-axis) between the structural support and the load application 
point (taken orthogonally to the upper clamped edge of the beam). Its material properties are the parameters related to 
fatigue (C, m, and SEL), and SU. It is important to observe that the deflection magnitude is not a design restriction 
(serviceability requirement) in this work and that the body forces are neglected for simplification purposes. 
 

 
 

Figure 1: Cantilever beam subjected to a concentrated variable load with constant amplitude F near its free end with the nomenclature 
of geometrical parameters. 
 
The UIQs and SRQs considered in this analysis are organized in Tab. 1, which also contains the characterization of each 
input quantity, and the values of the parameters needed to calculate the behavior of the UIQs and SRQs. The specific values 
of C and m were extracted from an interpolated equation based on experimental data points collected from [34], in which 
the material selected corresponds to unnotched specimens which ultimate stress is approximately 806.687 MPa. This 
interpolated equation (Eqn. (22)) is valid only for the stress ratio R = -1 (Eqn. (22)). Thenceforth, rearranging for the SRQ 
N, Eqn. (23) is obtained: 
 

       log 9.27 3.57  log 43.3 log   log 43.3MAX MAXN S C m S       ,   (22) 

T 
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 43.3
m

MAXN C S
  ,          (23) 

 
where SMAX is given in ksi and C is in (ksi)m. In order to work with units of système internationale (SI), where SMAX is now given 
in MPa and C is in (MPa)m, the converted form of Eqn. (23) yields Eqn. (24): 
 

  6.895 298.543
mm

MAXN C S
  ,        (24) 

 
where the maximum stress for this problem is obtained by Eqn. (25): 
 

 26 MAX
Fd

S
bh

 .           (25) 

 

UIQ SRQ 
Deterministic 
Value of UIQ 

Type of
uncertainty 

Mathematical 
representation Parameters 

b SMAX, N bD = 33.60 mm Aleatory Gaussian μb = 33.60 mm ; σb = 0.084 mm 

h SMAX, N hD = 60.48 mm Aleatory Uniform μh = 60.48 mm ; hLB = 60.17 mm ; hUB = 60.79 mm 

F SMAX, N FD = 6000 N Aleatory Weibull α = 6000 N ; β = 3 x 10-4 

d SMAX, N dD = 2000 mm Epistemic Interval dM = 2000 mm ; dLB = 1990 mm ; dUB = 2010 mm 

C N CD = 109.27 (MPa)m Epistemic Interval CM = 109.27 (MPa)m ; CLB = 1.852777 x 109 (MPa)m ; 
CUB = 1.871398 x 109 (MPa)m

m N mD = 3.570 Epistemic Interval mM = 3.57 ; mLB = 3.552 ; mUB = 3.588 

SMAX N SMAXD = 585.8 MPa Not 
applicable

Not 
applicable

Not applicable 
 

Table 1: Detailing of the UIQs and SRQs of the cantilever beam example. 
 
In Tab. 1, μ is the mean, σ is the standard deviation, α is the shape parameter, and β is the scale parameter. The superscripts 
M, LB, and UB stand for mean, lower bound, and upper bound of the indicated interval, respectively. The type of 
uncertainty, its mathematical representation, and its parameters are not applicable for SMAX as a UIQ (condition of the 
second level) because SMAX is a consequence of the first level, thus not being a direct input for N. All the parameters 
contained in Tab. 1 refer to the load condition of closest proximity to the maximum stress and minimum number of cycles 
of the finite part of the S-N curve modeled by Eqn. (21). The study of the behavior of the structure at high stresses was 
made in order to show the variability of the fatigue life in the condition where it presents its lowest value. In this situation, 
a fixed coefficient of variation in fatigue life would be more representative. However, this makes sense especially when 
dealing with structural systems which loading is of low frequency. In other words, this loading condition corresponds to the 
maximum applied load F = 6000 N, which corresponds to the stress S = 585.8 MPa. It can also be noted from Tab. 1 that 
the deterministic values are used as information for the UIQs: (a) for the aleatory-type of uncertainty, the deterministic value 
of each UIQ is assumed as the mean of the adopted distribution; (b) in the case of epistemic-type, the deterministic value 
is attributed to the central value of the corresponding interval. It is important to observe that since body forces were 
neglected, the only condition that length L has to comply with is that L ≥ dUB. Therefore, L can be equal to 2020 mm 
(deterministic) for the purposes of this analysis. 
The particularization of the Eqn. (17) for the problem just described is shown in Eqn. (26), which consists of the bi-level 
model. Consequently, ni = 3 (b, h, and F), nj = 3 (d, C, and m), and nk = 2 (SMAX and N). 
 

  NSmCdFhb  ,  , ,  ,  , , MAX         (26) 
 
Analogously, Eqns. (20) and (21) adapted to the proposed problem, yields Eqns. (27) and (28), respectively. 
 

 ,  , ,MAX fS F b h d  .          (27) 
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 ,  , , , ,fN F b h d C m  .         (28) 

 
In accordance with Eqns. (27) and (28), all the calculation and generation of graphical results were performed in MATLAB® 
2016. The MCS coded in this software was implemented using a different seed random number for each sample generated 
(pseudo-random number generation). Next section is dedicated to show the results of these simulations, besides some 
comments about them. 
 
Results and Comments 
The PDFs of the aleatory-type UIQs for the mentioned load case are pictured in Fig. 2. Cross-section basis b, cross-section 
height h (both in mm), and applied load F (in N) are represented by blue continuous lines according to 5000 realizations of 
their correspondent distributions (characterization of uncertainties in Tab. 1). Vertical continuous red lines correspond to 
their deterministic values, represented by the letter D. Fig. 3 shows their CDFs and also the related deterministic values. 
The variation profile of the epistemic-type uncertainty is represented by an interval between the lower and upper bounds 
with the possible values between them (without a probability associated to each one), reason why their graphical 
representation will not be made here. 
 

 
 

Figure 2: PDFs of the aleatory-type UIQs and their deterministic values. 
 

 
 

Figure 3: CDFs of the aleatory-type UIQs and their corresponding deterministic values. 
 
Fig. 4 and Fig. 5 illustrate the PDFs and CDFs of the SRQs of this problem, respectively. Some statistical parameters of the 
UIQs and SRQs shown in these figures are presented in Tabs. 2 and 3. The estimated values indicated by the columns of 
these tables are those obtained from the simulations in the code developed. The relative errors between the deterministic 
values (Tabs. 2 and 3) and the obtained means (Tab. 2) are shown in the penultimate column of Tab. 3. The good agreement 
between the deterministic and the means of the SRQs is partially explained by the assumption of a considerable degree of 
symmetry verified in the distributions of the aleatory UIQs. Particularly for epistemic-type, it is conceptually understood as 
symmetrically disposed. In the case of parameters which have intervals associated, the lower and upper bounds (Tab. 2) 
were achieved with a good precision too (comparison of Tabs. 1 and 2). The last column of Tab. 3 presents the coefficient 
of variation, which can only be evaluated in what refers to aleatory-type UIQs and the SRQs. Between the UIQs, h is the 
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variable that presents the greatest value, followed by b, and F (the minor contributor). In other words, the standard 
dispersion of data is the greatest for the cross-section height of the beam and the lowest for the applied load. When 
analogous comparison is made between the SRQs, the fatigue life N is almost one order of magnitude greater than the 
stress, thus presenting the greatest dispersion. 
 

UIQ/ 
SRQ Deterministic value Estimated lower bound Estimated mean Estimated upper bound 

b bD = 33.600 mm bLB = 33.279 mm μb = 33.598 mm bUB = 33.863 mm 

h hD = 60.480 mm hLB = 60.178 mm μh = 60.477 mm hUB = 60.782 mm 

F FD = 6000.000 N FLB = 5984.296 N μF = 5998.931 N FUB = 6004.135 N 

d dD = 2000.000 mm dLB = 1990.001 mm μd = 1999.942 mm dUB = 2009.989 mm 

C CD = 1.862087 x 109 (MPa)m CLB = 1.852784 x 109 (MPa)m μC = 1.861998 x 109 (MPa)m CUB = 1.871393 x 109 (MPa)m 

m mD = 3.570 mLB = 3.552 μm = 3.569 mUB = 3.588 

SMAX SMAXD = 585.800 MPa SMAXLB = 572.932 MPa μS = 585.823 MPa SMAXUB = 597.900 MPa 

N ND = 3071 cycles NLB = 2421 cycles μN = 3080 cycles NUB = 3781 cycles 
 

Table 2: Statistical parameters obtained from the simulations for both UIQs and SRQs. 
 

UIQ/ 
SRQ Deterministic value Estimated mean Estimated 

standard deviation 
Relative error 

(x 10-3 %) 
Coefficient of 

variation (x 10-3) 

b bD = 33.600 mm μb = 33.598 mm σb = 0.0827 mm εb = 5.952 COVb = 2.461 

h hD = 60.480 mm μh = 60.477 mm σh = 0.174 mm εh = 4.960 COVh = 2.877 

F FD = 6000.000 N μF = 5998.931 N σF = 2.329 N εF = 17.82 COVF = 0.388 

d dD = 2000.000 mm μd = 1999.942 mm Not applicable εd = 2.900 Not applicable 

C CD = 1.862087 x 109 (MPa)m μC = 1.861998 x 109 (MPa)m Not applicable εC = 4.780 Not applicable 

m mD = 3.570 μm = 3.569 Not applicable εm = 2.801 Not applicable 

SMAX SMAXD = 585.800 MPa μS = 585.823 MPa σS = 4.0558 MPa εS = 0.5121 COVS = 6.923 

N ND = 3071 cycles μN = 3080 cycles σN = 197.9 cycles εN = 293.1 COVN = 64.25 
 

Table 3: Statistical parameters obtained from the simulations for both UIQs and SRQs. 
 

 
 

Figure 4: PDFs of SRQs and their deterministic values. 
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Figure 5: CDFs of SRQs and their deterministic values. 
 
The convergence of the means of the aleatory-type UIQs and SRQs are shown in Fig. 6 and Fig. 7, respectively. The relative 
error of these variables are presented in Tab. 4. For example, if a relative error criteria of 0.02% is adopted for these UIQs, 
the minimum required number of realizations will be nr = 4775 in order to have a relative error of 0.3% in the SRQs. At nr 
= 5000, a relative error of  5.952 x 10-3 %, 4.960 x 10-3 %, and 17.82 x 10-3 % in the UIQs b, h, and F, respectively, produce 
relative errors of 0.5121 x 10-3 % and 293.1 x 10-3 % in the SRQs S (first level) and N (second level), respectively. This leads 
to the partial conclusion that the fatigue life N is the more restrictive parameter when the objective is to minimize the 
number of realizations (computational effort). This is explained by the fact that the uncertainty is propagated through two 
levels to achieve the results for the number of cycles; in contrast, the obtainment of stress demands just one level. It is 
important to note that the low nr for the UIQs does not account for the stabilization of the mean throughout the process 
of generation of realizations. Therefore, the number of realizations contained in this table accounts only for the strictly 
necessary to achieve the deterministic value within the error margin defined in Tab. 4. To also ensure the stabilization of 
the mean values obtained for all variables involved, nr was chosen to be 5000. 
 

 
 

Figure 6: Convergence analysis of the means of the aleatory-type UIQs and their deterministic values. 

 
 

Figure 7: Convergence analysis of the means of the SRQs and their deterministic values. 
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UIQ or SRQ Deterministic value Relative error 
(x 10-3 %) 

Relative error criteria 
(%) 

Stopping 
realization Estimated mean 

b bD = 33.600 mm 5.952 0.02 nr = 51 μb = 33.598 mm 

h hD = 60.480 mm 4.960 0.02 nr = 49 μh = 60.477 mm 

F FD = 6000.000 N 17.82 0.02 nr = 19 μF = 5998.931 N 

SMAX SMAXD = 585.800 MPa 0.5121 0.3 nr = 4 μS = 585.823 MPa 

N ND = 3071 cycles 293.1 0.3 nr = 4775 μN = 3080 cycles 
 

Table 4: Statistical parameters of the obtained SRQs stress and fatigue life. 
 

The sensitivity analyses (SAs) performed also help in the task of mapping the impact of non-deterministic parameters in 
terms of the required response for future actions aiming at reducing the dispersion and improving the accuracy of the SRQs. 
The SAs were performed via scatter plots of the SRQs related to the aleatory-type UIQs involved and by the comparison 
of the correlation coefficients. Fig. 9 pictures how the stress S depends on these three parameters and Fig. 10 illustrates the 
dependence of fatigue life N on these parameters. The dashed black horizontal lines correspond to the deterministic values 
of the SRQs and the continuous red vertical lines in these figures give the deterministic values of the UIQs. The correlation 
coefficients between the variables are found in Tab. 5, where the most relevant aleatory-type UIQ in these simulations is 
the cross-section height h of the beam for both S and N SRQs. The least influencing UIQ is the applied load F, presenting 
a low correlation factor. The intermediate parameter in terms of impact on the SRQs is the cross-section basis b. 
Independently of their magnitude of contribution to the SRQs variability, the extent to which the uncertainty is propagated, 
all the UIQs lose influence when the analysis is first made related to S and, right after to N. For example, the correlation 
coefficient of b related to S is φbS = -0.3747 while the coefficient of b directly related to N is φbN = 0.3048, where the 
parameter b partially loses approximately 18.65% of its correlation capacity throughout the process of uncertainty 
propagation. Height h and applied F load lose 21.76% and 13.29%, respectively. 
 

 
 

Figure 8: Sensitivity analysis of the aleatory-type UIQs related to the stress SRQ and their deterministic values. 
 

 
 

Figure 9: Sensitivity analysis of the aleatory-type UIQs related to the number of cycles SRQ and their deterministic values. 
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Fig. 10 shows the distribution realizations with respect to the mentioned load condition, which covers just a little portion 
of the S-N curve. The correlation factor is φSN = 0.7922, which demonstrates great influence of the UIQ S on the SRQ N. 
 

 
 

Figure 10: Sensitivity analysis of SRQ stress related to the SRQ fatigue life and their deterministic values. 
 

UIQ SRQ Correlation 
coefficient 

b SMAX φbS = -0.3747 

h SMAX φhS = -0.8347 

F SMAX φFS = 0.0790 

b N φbN = 0.3048 

h N φhN = 0.6531 

F N φFN = -0.0685 

SMAX N φSN = -0.7922 
 

Table 5: Correlation coefficients between UIQs and SRQs. 
 

Combining the information from Tabs. 3, 4, and 5, the cross-section height h is the aleatory-type UIQ with simultaneously 
the greatest dispersion and the greatest impact on the stress SRQ. In the second position, the parameter b; and the last in 
dispersion and correlation is the applied load. It is important to observe that not always the one with the highest correlation 
will have the greatest dispersion. 
 

 
 

Figure 11: P-boxes of SRQs stress and number of cycles, and their deterministic values. 
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In order to assess the overall contribution of the UIQs on the SRQs, but in a segregated mode, the p-boxes of both SRQs 
are shown in Fig. 11. The p-box indicates the set of all possible CDFs contained within design boundaries and it tries to 
allow the engineer to make the most adequate decisions in terms of UIQs, aiming at reducing the dispersion of the required 
SRQ. The first p-box illustrates the effect of the aleatory-type uncertainty from the UIQs b, h, and F, and the epistemic-
type due to UIQ d on the SRQ stress. In the second p-box, besides the influence of the UIQs just described, the epistemic 
UIQs C and m are also taken into account when assessing the effect on SRQ fatigue life. The blue curves represented by 
circles are the lower probabilistic boundaries of the SRQs shown on the horizontal axis. The black continuous curves are 
the probabilistic responses if the possibility of the deterministic values of the epistemic-type UIQs are realized. The pointed 
lines correspond to the upper probabilistic boundaries of the SRQs, and the vertical dashed lines are the deterministic values 
of the SRQs represented. Consequently, any design point within these design boundaries is theoretically possible. To reduce 
the variability of these results more information should be added up to the design and/or process controls should be 
improved. 
 
 
CONCLUSIONS  
 

his paper presents a bi-level hybrid uncertainty quantification scheme capable of dealing with both aleatory- and 
epistemic-type uncertainties in the context of a fatigue analysis. The bi-level hybrid methodology adds up the 
possibility of working with cases where there is no sufficient knowledge about the behavior of a variable in two 

distinct levels. From this perspective, the uncertain fatigue analysis is able to produce a range of possible solutions, working 
with limited information from the UIQs. With these capabilities attached, the proposed scheme was assessed by conducting 
an analysis of a clamped rectangular cross-section beam subjected to a concentrated load, which material information is 
extracted from experimental data available in the literature for the AISI 4130. 
As this type of analysis evidenced that there is a rank of most influencing fatigue design factors (UIQs), the most effective 
manner to improve the referred design is to implement changes directly on the most relevant UIQs, if possible. The 
comparison of the results obtained via this scheme with those achieved by the deterministic analysis evidences that the first 
tries to reproduce the discreteness intrinsic to uncertainties from manufacturing processes, design, and service conditions. 
Besides that, the uncertain fatigue analysis, instead of providing a unique threshold value for the SRQs, now yields a possible 
working range. Depending on the risk that an engineer can take on a specific design, there will be a corresponding level of 
optimization achieved.  
Another point to be highlighted is that the results obtained in terms of the required SRQs directly depends on the choice 
of the mathematical model of each UIQ. A different range of results would be obtained in the case of adding up information 
to the analysis performed. Moreover, the method wherewith the uncertainties are propagated through the model is 
determinant to the definition of possible ranges of response variables. 
In a general manner, the referred findings emphasize that the behavior of the uncertain responses depends largely on the 
information provided as input uncertain data. Thenceforth, there is a growing need to expand the knowledge related to 
these types of problems in order to produce not only a safe design, but also to propose the most effective design 
improvements. 
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