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ABSTRACT. In this paper, a novel coupled elastoplastic damage model for 
coal-rock is proposed to predict the deformation and potential disaster in coal 
mining. The conditions of small deformation and thermodynamic potential 
are considered, as well as the coupling of damage evolution process with the 
plastic deformation and the plastic hardening of coal-rock. Based on the 
theory of damage mechanics, the formulas of damage evolution, plastic yield 
and plastic potential of coal-rock are deduced theoretically. In addition, triaxial 
compression tests of coal-rock under the different confining stresses are 
conducted to reveal the law of deviatoric stress and strain. Based on the 
experimental data, the control parameters of the coupled elastoplastic damage 
model of coal-rock are determined. The theoretical results obtained from the 
coupled elastoplastic damage model for coal-rock agree well with those from 
the experiment. The proposed model is reasonable to predict the deformation 
of coal-rock. 
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INTRODUCTION  
 

wo types of inelastic behaviors generally exist in most rock materials: plastic deformation, related to sliding 
mechanisms inside the microstructure of rock matrix; and damage to rock materials, induced by spreading 
microcracks[1-2]. In the case of semi-brittle rocks, for instance, limestone and porous sandstone, plastic deformation T 

https://youtu.be/X0c-hyzm5Eg
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and damage are usually coupled. Therefore, it is necessary to develop a coupled elastoplastic damage model to better 
understand the mechanical behaviors of these semi-brittle geomaterials. Coal is a complex fractured geological medium 
containing numerous randomly distributed micro holes and cracks [3]. Its mechanical properties are important essential 
parameters for the mining design, roadway support and some other underground coal engineering [4-5]. Therefore, the 
constitutive relation and damage model of coal-rock is still a major issue to be solved urgently. 
Several elastoplastic models have been proposed for coal-rock in the past, thus providing the standard framework for 
contemporary models [6-9]. The last two decades of geomechanic research have led to an active discussion of damage 
models for geomaterials, to better address microcracks. A series of isotropic and anisotropic damage models have been 
proposed. These approaches can be classified into two groups: (macroscopic) phenomenological and micromechanical 
models. The phenomenological damage models can be easily implemented in computer codes, which then provide an 
efficient tool for progressive failure analysis of coal-rock mass structures under complex loading conditions. Additionally, 
the phenomenological damage models generally take the thermodynamics of irreversible processes into account; they make 
use of different orders of tensorial internal variables to represent the distribution and nucleation and growth of microcracks 
[10-13]. However, in these coupled models, the choice of damage variables and thermodynamic potential is somewhat 
arbitrary, because it is based on mathematical conveniences, rather than the physical interpretation of microcracks. 
Moreover, most of the previous coupled elastoplastic damage models are isotropic, rather than anisotropic, models. But in 
fact, the anisotropic features of geomaterials are observable in triaxial and uniaxial compressive tests. 
The micromechanical damage mechanics approach leads to an improved understanding of the underlying physical processes. 
In the micromechanical approach, researchers study the growth, nucleation, and coalescence of microcracks and their 
influence on the mechanical properties, which is reflected in the constitutive relation in certain ways [9, 14-17]. Among 
these, the most widely used models are the dilute-concentration method (DCM), the self-consistent method [18-20], the 
differential method (DM) [21, 22], the generalized self-consistent method (GSCM) [23], and finally, the effective self-
consistent method [24]. However, the micromechanical damage mechanics model is often difficult to implement in 
engineering applications, because of its proclivity to cause 3D problems. 
Therefore, the phenomenological approach is adapted in the new model. This article proposes a novel coupled elastoplastic 
damage model for coal-rock to discuss the plastic deformation and induced damage found in coal mine. In section 2, 
reconstituted coal samples were manufactured in size of 50 mm × 100 mm by compressing machine. Then triaxial 
compression tests of coal-rock under four confining stresses of 0MPa, 5 MPa, 10 MPa and 15 MPa are conducted. The 
complete deviatoric stress-strain curves of the coal-rock under the different confining stress conditions are obtained. 
Moreover, in section 3, a novel coupled elastoplastic damage model for coal-rock is proposed to predict the deformation. 
The conditions of small deformation and thermodynamic potential are considered, as well as the coupling of damage 
evolution process with the plastic deformation and the plastic hardening of coal-rock. Based on the theory of damage 
mechanics, the formulas of damage evolution, plastic yield and plastic potential of coal-rock are deduced theoretically. In 
section 4, the theoretical results obtained from the coupled elastoplastic damage model for coal-rock agree well with those 
from the experiment. It is demonstrated that the proposed model is reasonable to predict the deformation of coal-rock. 
 
 

EXPERIMENT STUDY ON AND RESULT OF THE TRIAXIAL COMPRESSION DEFORMATION OF COAL AND ROCK  
 

Sample preparation 

n this paper, reconstituted coal samples were used to investigate the mechanical property of coal-rock. The pulverized 
coal was collected from Songzao coal mining area in Chongqing. Then in laboratory, the pulverized coal and water 
were mixed first and stirred evenly, as shown in Fig. 1 (a). The reconstituted coal samples were made by compressing 

machine, as shown in Fig. 1(b). The compression of the pulverized coal was stress-controlled with a loading rate of 200 N/s 
until the axial load reached 150kN. The diameter and length of coal sample were 50mm and 100mm, respectively. Four 
groups (each group contained 5 samples) coal samples were prepared for the triaxial compression test with different 
confining stresses. The samples were dried in a thermostat at 28°C for 30 days. The reconstituted coal sample is shown in 
Fig. 1(c). 
 

Experimental apparatus  
In this paper, the triaxial compression test of coal-rock were conducted using the Servo-controlled Rock Mechanical Test 
System MTS815, as shown in Fig. 2(a) and Fig. 2(b). The axial stress, the axial displacement and the circumferential 
displacement under different confining stresses can be obtained using MTS815. The triaxial compression tests of coal-rock 
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have four confining stresses of 0MPa, 5 MPa, 10 MPa and 15 MPa. All tests were conducted under displacement-controlled 
conditions at average loading rate of 0.01 mm/min until the coal-rock sample is failure. 
 

 
 

Figure 1: The preparation of coal samples. (a) The pulverized coal collected from Songzao coal mining area in Chongqing; (b) The stress-
controlled compressing machine for manufacture the coal samples; (c) The reconstituted coal sample. 
 

 

 
 

Figure 2:  The rock mechanical triaxial test system. (a) The Servo-controlled Rock Mechanical Test System MTS815; (b) The installation 
of the coal samples. 

 

Experimental results 
According to the experimental data, the complete deviatoric stress-strain curves of the coal-rock under the different 
confining stress conditions can be obtained, as shown in Figs 3-6. It is found from Figs 3-6 that the overall trends of the 
complete deviatoric stress–strain curves are similar. The characteristics of the complete deviatoric stress–strain curves can 
be divided into three stages, which are the linear elastic stage, the elastic damage stage and the plastic damage stage. As 

shown in Fig. 3, the peak deviatoric stress 1 3 −  of the coal-rock is 4.576 MPa and the corresponding axial strain 1  is 

0.518% when the confining stress is 0 MPa. As shown in Fig. 4, the peak deviatoric stress 1 3 −  of the coal-rock is 9.442 

MPa and the corresponding axial strain 1  is 1.765 % and the corresponding transverse strain 3  is -0.956% when the 

confining stress is 5 MPa. As shown in Fig. 5, the peak deviatoric stress 1 3 −  of the coal-rock is 12.832 MPa and the 

corresponding axial strain 1  is 3.146 % and the corresponding transverse strain 3  is -1.771% when the confining stress 

is 10 MPa. As shown in Fig. 6, the peak deviatoric stress 1 3 −  of the coal-rock is 13.521 MPa and the corresponding 
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axial strain 1  is 3.583% and the corresponding transverse strain 3  is -1.872% when the confining stress is 15 MPa. The 

elastic modulus of coal-rock is 957 MPa and the Poisson's ratio of coal-rock is 0.36. 
 

 
 

Figure 3:  The deviatoric stress   versus axial strain   under the confining pressure of 0 MPa. 
 
 

 
 

Figure 4: The deviatoric stress 1 3 −  versus axial strain 1  and transverse strain 3  under the confining pressure of 5 MPa. 

 
 

 
 

Figure 5: The deviatoric stress 1 3 −  versus axial strain 1  and transverse strain 3  under the confining pressure of 10 MPa. 
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Figure 6: The deviatoric stress 1 3 −  versus axial strain 1  and transverse strain 3  under the confining pressure of 15 MPa. 

 
 

ELASTOPLASTIC DAMAGE COUPLED MODEL OF COAL-ROCK 

 

ontinuum damage mechanics is investigated based on macro phenomenological theory, which deals with dissipative 
systems. In the dissipative systems, the whole damage process is irreversible and always accompanied by internal 
energy dissipation. In the study of irreversible processes, some basic principles (such as conservation of mass, 

conservation of momentum moment, conservation of momentum, etc.) must be satisfied. For irreversible processes, there 
is always energy dissipation within the system. The irreversible phenomenon of energy dissipation within the system is 
related to internal state variables. The basic state variables can be taken as thermodynamic temperature and strain. In 

continuum damage mechanics, the internal state variables involve the elastic strain tensor
e , the plastic strain tensor

p , 

the cumulative inverse strain 
p  and the damage variable d  and so on. 

 

Mechanical characteristics of coal-rock 

Firstly, elastic modulus, Poisson's ratio, tensile strength, internal cohesion and internal friction angle of coal-rock are the 
basic mechanical properties of coal. According to the experimental results above, the mechanical properties of coal-rock 
are low modulus of elasticity, low strength and high Poisson's ratio. Moreover, it is easy to produce plastic deformation. 
The axial failure stress and modulus of coal-rock are related to confining stress closely. 
Secondly, many micro-cracks, micro-pores and weak structural planes exist in coal-rock, as shown in Fig. 7. The existence 
of these micro-cracks determines the internal structure of coal-rock, which lead to the heterogeneity and anisotropy of coal-
rock. Therefore, coal-rock is a typical geotechnical material with internal defects. Because the stress concentration at the 
cracks or the micro-pores will occur in the process of loading, the coal-rock will be destroyed. 
 

 

 
Figure 7: The micro-pores and micro-cracks in coal-rock [25]. 

 

The elastoplastic coupled damage model of coal-rock 

In this paper, an elastoplastic coupling model is proposed to describe the mechanical properties of coal and rock. Under the 
isothermal conditions, the state variables are composed of the elastic strain tensor e , the plastic strain tensor p , the 
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damage variable d  and the cumulative inverse strain p . The total strain   are divided into two parts, namely the elastic 

strain e and the plastic strain p . 

 
  e p  = +   and e pd d d  = +                                                       (1) 

 
where d  is the incremental total strain, ed  is the incremental elastic strain ed  is the incremental plastic strain. 

As stated by Shao et al. [9], the damage process is coupled with plastic deformation and plastic hardening. Therefore, the 
thermodynamic potential can be expressed as 
 

( ) ( )
1

: ( ) : ( , )
2

p p
p pC d d     = − − +                                                 (2) 

 

where ( )C d  is the fourth-order elastic stiffness tensor of the damaged coal-rock and ( , )p p d  is the closed plastic 

potential of the damaged coal-rock related to plastic hardening. 
Then, the equation of state can be obtained by deriving the elastic strain e  from the thermodynamic potential as [9] 

 

( )( ) : p

e
C d  




= = −


                                                                   (3) 

 
According to works by Nemat-Nasser and Hori [26], the fourth-order elastic stiffness tensor can be expressed as 

 

( ) 3 ( ) 2 ( )C d k d J d K= +                                                                     (4) 

 
where ( )k d  is the bulk modulus of damaged materials and ( )d  is shear modulus of damaged materials. The other two 

symmetric four-order tensors J  and K  are 

 

1

3
J  =   and K I J= −                                                                   (5) 

 
where   is the two-order unit tensor, I  is the symmetric four-order unit tensors. 

The thermal forces related to the damage variable is expressed as [9] 
 

( ) ( )
( , )( )1

: :
2

p pp p
d

dC d
Y

d d d


   


= − = − − − −

  
                             (6) 

 
According to the non-negativity of the internal energy dissipation, the following expression can be obtained [9] 
 

: 0p
dY d  +                                                                         (7) 

 
where   is the stress tensor of coal-rock, p is the derivation of p  to time t  and d  is the derivation of d  to time t . 

Then, the derivative form of the constitutive equation of coal-rock can be obtained as [9] 
 

( )
( ) : :

( )
( ) : ( ) : ( )

e e

p p

C d
C d d

d

C d
C d d

d

  

   


= +




= − + −



                                                            (8) 

 
where  is the derivation of to time t . 
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COMPARISON OF ELASTOPLASTIC DAMAGE COUPLED MODEL OF COAL AND ROCK WITH EXPERIMENTAL 

RESULTS 

 

Determination of damage evolution characteristics of coal and rock 

he elastoplastic coupling model is established in section 3.2. According to Eqn. (4), the elastic stiffness matrix of 
isotropic damaged materials is expressed by shear modulus and bulk modulus. Moreover, the elastic modulus and 
Poisson's ratio vary with the damage variable d . Based on Eqn. (4), the effect of damage on elastic mechanical 

properties can be determined accurately. For the moderate damage condition, the degradation of elastic mechanical 
properties [26-28] can be expressed as 
 

( ) ( )0 1k d k d= − ， ( ) ( )0 1d d  = −                                                        (9) 

 
where 

0k  and 
0  are respectively the bulk modulus and shear modulus of undamaged materials,   and   are the two 

parameters of coal-rock to present the effect of damage on the elastic mechanical properties of coal-rock. 
According to the damage criterion, the thermal forces related to the damage variable 

dY  can be linearized as 

 
0

d dY Y md= +                                                                         (10) 

 

where 0
dY is the initial energy release threshold, m  is a parameter to control the damage evolution rate. 

 

Determination of expression of plastic properties of coal and rock 

The yield equation of coal and rock includes some main characteristics, such as pressure sensitivity, unconnected plastic 
flow, asymmetric response under pressure and tension loading, plastic hardening and so on. The three-dimensional nonlinear 
strength criterion proposed by Zhou et al. [29] is introduced to determine yield surface of coal-rock, which is expressed as 
follows: 
 

2
1 3 2 3( ) - - ( )p

c cF n m      = + +                                                              (11) 

 
where n  and m  are the strength parameters, 

c denotes uniaxial compressive strength of  rocks, 
1 2 3, ,    are the major, 

intermediate and minor principal stresses, respectively. 
When the damage variable is considered, the nonlinear strength criterion Eqn. (11) is rewritten in another form 
 

( ) ( )

2

1 2

( , , ) 2 3 cos

3 1 3 cos 3 2 sin 0
3

p
p

c c

F d J

trd
I m n J m m n



 

  

   

=

    − − + + − + − =      

                (12) 

 

where the stress angle is equal to 3 1 2

1 2

2 ( )
arctan

3( )


  


 

 − +
=  

+ 
, 30 30o o

−   , 1I is the first invariant of stress, 2J is the 

second invariant of deviator stress, c is an uniaxial compressive strength of an intact rock material, m and n   are strength 

parameters of rocks. 
The cumulative inverse strain can be determined as 
 

2
:

3

p p
p e e =                                                                    (13) 

 

where 
1

3

p p pe tr  = −  

T 
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Determination of thermodynamic potential of coal and rock 

In this paper, it is assumed that the plastic flow is in the state of strain hardening. Under the assumption of moderate 
damage, the closed plastic potential of the damaged coal-rock can be simplified as 
 

0( , ) (1 ) ( )p p p pd d   = −                                                              (14) 

 

where 0 ( )p p   is the plastic hardening rate without damage. We introduce parameters [0,1]   in the coupling of damage 

evolution and plastic flow. If 0 = , there is no coupling between damage evolution and plastic flow. If 1 = , the model 

is a total damage model. Based on the experimental data of coal-rock, the expression of plastic hardening rate without 
damage are proposed as 
 

( ) ( )0 2 0 0m m m
p p p p p p p pB       = − − − −                                              (15) 

 
The plastic hardening rate of damaged materials can be written as 
 

( ) ( )( )0 01 2 2 1m
p p p p p p

p

d


      



 = = − + − −
 

                                                (16) 

 

where 0
p  is the initial plastic yield threshold, m

p  is the final value of the hardening equation and B  is the model parameter 

controlling the plastic hardening rate. 
In geotechnical materials, there is a transition from plastic compression to plastic expansion based on loading path [30, 31]. 
the expression of plastic potential can be determined as 
 

( ) ( ) ( )
0

1 ln 0
p C

g qh d p C
I

  
 −

= + + − = 
 

                                                (17) 

 
where 

0I  define the intersection point of plastic potential surface and p  axis. The boundary of compression and expansion 

regions is defined by conditions of ( ), 0g p q p  = . It is assumed that p  and q  are both linear. Then, the expression of 

plastic potential can be simplified as 
 

( ) ( ) ( )1 0cdf qh d p C  = − − − =                                                       (18) 

 
where   is the boundary diagonals between the compression and expansion regions. 

 

The parameters of the coupled elastoplastic damage model of coal-rock 

Twelve parameters involved in the coupled elastoplastic damage model of coal-rock, including two elastic constants of 
undamaged materials 

0k  and 
0 , two parameters of coal-rock to present the effect of damage on the elastic mechanical 

properties of coal-rock   and  , five parameters related to plastic characteristics 0
p , m

p ,C , B , , two parameters related 

to damage characteristics 0
dY  and m , and one parameter related to plastic-damage coupling  . All these parameters can 

be obtained from a series of triaxial compression tests under different confining pressures. The values of parameters are 
listed in Tab. 1.  
Substituting the parameters in Tab. 1 into Eqns. (8)-(22), the theoretical results of deviatoric stress 

1 3 −  versus axial 

strain 
1  and transverse strain 

3  can be obtained. The curves of deviatoric stress 
1 3 −  versus axial strain 

1  and 

transverse strain 
3  under the different confining stresses obtained from the theoretical and experimental results are 

depicted in Figs 8-11. In this figures, the black solid lines represent the experimental result, and the dotted lines represent 
the theoretical results. It is found from Figs 8-11 that the theoretical results agree well with experimental data. The 
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experiment results prove that the model established in this paper can be well applied to evaluate the constitutive relation of 
coal-rock. 
 
 

Parameters Values 

0k  / MPa 1139.28 

0  / MPa 351.84 

  0.25 

  0.8325 

0
p  0.00479 

m
p  0.0032 

C  / MPa 1.49 

B  2.5×10-4 

  3.75 

0
dY  0.683 

m  0.85 

  1.0 

 

Table 1: The values of parameter involved in the proposed model 

 
 

 

 
Figure 8: The theoretical and experimental results of deviatoric stress 

1 3 −  versus axial strain
1 curve when the confining pressure 

is 0 MPa. 
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Figure 9: The theoretical and experimental results of deviatoric stress 1 3 −  versus axial strain 1  and transverse strain 3  curve 

when the confining pressure is 5 MPa. 
 

 
Figure 10: The theoretical and experimental results of deviatoric stress 1 3 −  versus axial strain 1  and transverse strain 3  curve 

when the confining pressure is 10 MPa. 
 

 
Figure 11: The theoretical and experimental results of deviatoric stress 1 3 −  versus axial strain 1  and transverse strain 3  when 

the confining pressure is 15 MPa. 
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CONCLUSION 

 

 novel coupled elastoplastic damage model for coal-rock is proposed to predict the deformation and potential 
disaster in coal mining. The conditions of small deformation and thermodynamic potential are considered, as well 
as the coupling of damage evolution process with the plastic deformation and the plastic hardening of coal-rock. 

Based on the theory of damage mechanics, the formulas of damage evolution, plastic yield and plastic potential of coal-rock 
are deduced theoretically. In addition, triaxial compression tests of coal-rock under four confining stresses of 0MPa, 5 MPa, 
10 MPa and 15 MPa are conducted to reveal the law of deviatoric stress and strain. Based on the experimental data, the 
control parameters of the coupled elastoplastic damage model of coal-rock are determined. The theoretical results obtained 
from the coupled elastoplastic damage model for coal-rock agree well with those from the experiment. The proposed model 
is reasonable to predict the deformation of coal-rock. 
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