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ABSTRACT. Axial alternating stress controlled fatigue tests with superimposed 
static torsional mean stress and shear alternating fatigue tests with 
superimposed static tensile mean stress are represented. The material used in 
the current experimental investigation is 2024 aluminum alloy. A decrease in 
the fatigue life of the material was observed with an increase in the shear and 
static tensile stresses. Marin and modified Crossland methods are analyzed by 
means of the available experimental data. The two modifications of Sines 
method are proposed to take into account the static torsional stress effect 
(Sines+) and different slopes of the S-N curves in tension-compression and 
torsion tests (Sines++). It is shown that Sines++ model is the most accurate 
among others. 
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INTRODUCTION 
 

uring operations the greatest number of critical components of construction elements undertake complex cyclic 
loadings, thus the estimation of their influence on durability of metal materials is a problem to be solved [1-5]. 
Also, the need in studying fatigue processes under complex stress state brought a number of experimental works 

in this area, which used specialized equipment and methods of multiaxial loading. Here are some major research centers 
studying the problems of multiaxial fatigue: ENSAM University in Bordeaux, France (T. Palin-Luc, N. Saintier, F. Morel) 
[6, 7], University of Opole, Poland (T. Lagoda) [8], University of Sheffield, United Kingdom (L. Sumsel) [9], University of 
Lisbon, Portugal (V. Anes, L. Reis, M de Freitas) [10, 11], S.P. Timoshenko Institute of Mechanics, Kiev, Ukraine (V.P. 
Golub) [12], Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia (N.G. Burago, A.B. Zhuravlev, I.S. 
Nikitin) [13, 14], and others [15]. 
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The main loading conditions referred to the literature when studying multiaxial fatigue are biaxial tension of cross-shaped 
specimens, tension with torsion and bending with torsion of cylindrical specimens. Meanwhile attention is paid not only to 
the proportional cyclic loading but also to more complex modes with phase shifting, different frequencies and other 
characteristics [16-20]. Apart from testing standard hourglass and tubular specimens, one can also test weld joint specimens 
[21, 22], specimens with grooves [23] and other stress raisers [24]. 
Cyclic effects may be associated with a cycle asymmetry due to static loadings caused, as an example, by gravity force or 
linear overloading. Apart from that, static loads may occur along an axis different from the cyclic ones, which results in 
bending cyclic loads with constant torsion and so on. Gerber [25], Goodman [26], Morrow [27], Smith [28], Oding [29], 
Birger [30] and many others [31-35] studied the influence of the asymmetry of the loading cycle on the fatigue behavior of 
various materials. As a rule, the experimental results are shown in the Haigh diagram (the stress amplitude versus the mean 
stress in the cycle), and different relations for their description are suggested. An increase of the mean stress leads to a 
decrease of fatigue strength. This effect is quite strong for brittle materials (e.g. cast iron) both in axial and in torsion [34]. 
However this effect is lower in torsion than in axial for ductile materials such as steels and aluminum alloys [31]. Thus, some 
authors [5, 36, 37] do not suggest taking into account the influence of the mean stress under torsion until the maximum 
values of shear stress do not exceed yield strength. Let us note that under cyclic loadings in the compression area there is 
an increase in fatigue strength which is more significant for brittle materials and less significant for ductile ones [5, 32]. 
In general, a similar behavior is demonstrated by the materials under constant static stresses under multiaxial loadings (e.g. 
an alternating bending with a constant torsion and so on) [5, 36-39]. However, there are much less studies in this area, 
compared to uniaxial effects, and there is no complex approach to studying this issue. Apart from that, works mostly pay 
attention to fatigue limit under more than 106 cycles, i.e. they consider such loadings that allow a material (conventionally) 
to endure an unlimited number of loading cycles. But if we design structures with a set (limited) service life in order to save 
resources, it is important to describe not only the fatigue limit but also S-N curves at different levels of additional static 
stresses. 
In the previous work [40] the authors researched the influence of the constant components of multiaxial loading (constant 
tension and alternating torsion, constant torsion and alternating tension-compression) on the fatigue life of 2024 aluminum 
alloy. It is shown that the influence of the constant static stresses results in a decrease of the number of cycles to failure. 
Moreover, the realized values of the constant static stresses obviously did not exceed the corresponding values of the 
conventional yield strength for the alloy. The purpose of this work is to check if it is reasonable to use various criteria for 
multiaxial fatigue using the experimental data presented in the article [40]. 
 
 

EXPERIMENTS 

 

Material and specimen 
he material used in the current experimental investigation is a common aeronautic material, 2024 aluminum alloy. 
The chemical composition of the alloy consists of Cu 4.28, Mg 1.48, Mn 0.75, Fe 0.28, Si 0.29, Zn 0.12, Ni 0.009, 
Ti 0.06, Cr 0.017, Pb 0.05. Mechanical properties for the material are listed in Tab. 1. Fatigue tests were performed 

on hourglass specimens. The specimen geometry is shown in Fig. 1. The specimens are designed in accordance with 
recommendations of national standard GOST 25.502. Stresses used in calculating were in accordance with the minimum 
cross-section of specimen. 
 

Property Symbol 2024 aluminum alloy Unit 

0.2% Tensile yield strength σy 336 MPa 

0.3% Torsional yield strength τy 153 MPa 

Ultimate tensile strength σu 450 MPa 

Modulus of elasticity E 75.4 GPa 

Shear modulus G 30.0 GPa 
 

Table 1: Mechanical properties of 2024 aluminum alloy. 

 

T 
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Loading path σa (MPa) σm (MPa) τa (MPa) τm (MPa) N 

Uniaxial 168.1 0 0 0 476 451 
Uniaxial 168.1 0 0 0 617 189 
TSTS1 168.1 0 0 15.3 378 142 
TSTS1 168.1 0 0 15.3 455 634 
TSTS1 168.1 0 0 30.6 435 758 
TSTS1 168.1 0 0 30.6 404 964 
TSTS1 168.1 0 0 45.9 356 718 
TSTS1 168.1 0 0 45.9 368 430 
TSTS1 168.1 0 0 61.2 519 480 
TSTS1 168.1 0 0 61.2 259 565 
TSTS1 168.1 0 0 76.5 203 836 
TSTS1 168.1 0 0 76.5 298 301 
TSTS1 168.1 0 0 91.8 255 564 
TSTS1 168.1 0 0 91.8 322 877 
TSTS1 168.1 0 0 107.1 240 549 
TSTS1 168.1 0 0 107.1 296 235 
TSTS1 168.1 0 0 122.4 305 221 
TSTS1 168.1 0 0 122.4 198 799 

Uniaxial 205.1 0 0 0 139 913 
Uniaxial 205.1 0 0 0 149 767 
Uniaxial 205.1 0 0 0 185 520 
Uniaxial 205.1 0 0 0 165 011 
TSTS1 205.1 0 0 18.4 196 496 
TSTS1 205.1 0 0 18.4 182 057 
TSTS1 205.1 0 0 36.8 120 610 
TSTS1 205.1 0 0 36.8 166 584 
TSTS1 205.1 0 0 55.2 155 908 
TSTS1 205.1 0 0 55.2 133 260 
TSTS1 205.1 0 0 73.6 158 711 
TSTS1 205.1 0 0 73.6 179 106 
TSTS1 205.1 0 0 92.0 122 202 
TSTS1 205.1 0 0 92.0 121 562 
TSTS1 205.1 0 0 110.4 126 479 
TSTS1 205.1 0 0 110.4 207 306 
TSTS1 205.1 0 0 128.8 100 577 
TSTS1 205.1 0 0 128.8 146 293 
Torsion 0 0 107.1 0 376 148 
Torsion 0 0 107.1 0 445 992 
TSTS2 0 16.8 107.1 0 146 622 
TSTS2 0 16.8 107.1 0 115 265 
TSTS2 0 33.6 107.1 0 101 503 
TSTS2 0 33.6 107.1 0 103 000 
TSTS2 0 67.3 107.1 0 68 057 
TSTS2 0 67.3 107.1 0 139 743 
TSTS2 0 100.9 107.1 0 74 294 
TSTS2 0 100.9 107.1 0 45 391 
TSTS2 0 134.5 107.1 0 34 385 
TSTS2 0 134.5 107.1 0 37 224 
TSTS2 0 201.8 107.1 0 35 651 
TSTS2 0 201.8 107.1 0 27 162 
Torsion 0 0 114.8 0 115 648 
Torsion 0 0 114.8 0 99 285 
TSTS2 0 16.8 114.8 0 83 350 
TSTS2 0 16.8 114.8 0 86 779 
TSTS2 0 33.6 114.8 0 59 443 
TSTS2 0 33.6 114.8 0 95 959 
TSTS2 0 67.3 114.8 0 49 145 
TSTS2 0 67.3 114.8 0 64 942 
TSTS2 0 100.9 114.8 0 35 866 
TSTS2 0 100.9 114.8 0 16 966 
TSTS2 0 201.8 114.8 0 24 661 
TSTS2 0 201.8 114.8 0 19 823 

 

Table 2: Summary fatigue tests. 
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Figure 1: Specimen geometry, all dimensions in millimeters. 
 

Experimental procedure and results 
All tests were carried out in the Instron ElectroPuls E10000 at room temperature in Center of Experimental Mechanics 
(Russia). The ElectroPuls E10000 Linear-Torsion is an all-electric test instrument with a dynamic linear load capacity of 
±10 kN and dynamic torque capacity of ±100 Nm. A summary of the applied loading conditions and experimental fatigue 
life for each test performed is included in Tab. 2.  
All tests were performed in load-control, using sinusoidal waveforms, and include uniaxial (6 tests), pure torsion (4 tests), 
tension with static torsional stress (30 tests), and torsion with static tensile stress (22 tests) loading conditions. The range of 
the torsional mean stress τm was from 0 to 0.84·τy. The normal stress amplitudes σa were 0.5·σy and 0.61·σy. The testing 
frequency was 50 Hz. 
 

sin(2 )a

m

t  

 

 =


=

          (1) 

 
The range of the static tensile stress σm was from 0 to 0.6·σy. The shear stress amplitudes τa were 0.7·τy and τa = 0.75·τy. The 
testing frequency was 3.4 Hz. 
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=

          (2) 

 
During the experiments, a decrease in the fatigue life of the material was observed with an increase in the static torsional 
and tensile stresses. At smaller values of the stress amplitude in the cycle, a decrease in fatigue life with an increase in the 
static stresses is more evident. 
 
 

CORRELATION OF THE EXPERIMENTAL RESULTS WITH MULTIAXIAL FATIGUE MODELS 

 
s has been pointed out before the static torsional stress effect less pronounced than the static tensile stress effect 
in ductile metals. Some researchers [5, 36, 37] propose to neglect this effect as long as the maximum shear stress is 
within the torsional yield strength (models Sines [5], Crossland [41] and so on). Relevant results of the literature 

show that the static torsional stress effect is not negligible in ductile metals. 
 

The Marin method 

The Marin method [42] can be expressed through Eqn. (3): 
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( ) ( ) ( ) ( )
2 2 2

2 2 21
2 11 22 22 33 11 33 12 23 136

6m m m m m m m m m mI         = − + − + − + + +   (5) 

 
where σ-1 is the fully reversed axial fatigue limit, σu is the ultimate tensile strength, I2a and I2m are the amplitude and the mean 
value of the second invariant of the stress deviator tensor. 
In order to predict the material fracture with an arbitrary number of N cycles, let us replace the fully reversed axial fatigue 
limit σ-1 in Eqn. (3) with the axial S-N curve σa0(N). 
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Let us rearrange Eqn. (3) for two types of multiaxial loadings given in the second part. For the first case (see Eq (1)), we 
will write as follows 
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For the second one (see Eq 2), it will be 
 

2a aI = , 2 3m mI = , 

2
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1
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a m
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 −  

 
      (8) 

 

The Marin method requires the ultimate tensile strength and the axial S-N curve. The ultimate tensile strength σu of the 

alloy is equal to 450 MPa. The axial S-N curve was plotted according to the experimental data (σa = 0.5·σy; τm = 0 

and σa = 0.61·σy; τm = 0 from Tab. 2) and was interpolated through a function σa0(N). 

 

( )'
0( ) 2a fN N


 =           (9) 

 

( ) 0'
0( ) 2a fN N


 =           (10) 

 

where coefficients σf’ = 1478 MPa, τf’ = 370 MPa, and exponents β = -0.156, β0 = -0.051. 

For different alloys one can observe an increase of fatigue strength in the compression area (at negative static tensile stresses 

σm) [32]. However, the Marin method (see Eq 6) does not make it possible to consider this. One can observe the same 

value of the second invariant I2m (see Eq 5) at positive and negative values of static tensile stresses σm.  

Also, the disadvantage of the method is that it predicts the same reduction of fatigue life at constant torsional τm and 

tensile σm mean stresses (see Eq 6). And, as has been mentioned above, for ductile materials an increase of the mean stress 

in torsion direction leads to a decrease of fatigue strength lower than in axial direction. In order to take into account this 
effect one can add, for example, the maximum hydrostatic stress (see Eq 11) how was made in [31].  

The advantage of the model is its relative simplicity and a small number of adjusting experiments (σu; σa0(N)) necessary 

to determine its parameters. 
 

The modified Crossland method (Crossland+) 
The Crossland method does not take into account the static torsional stress effect. Therefore, authors in Ref. [31] proposed 
the modified Crossland method: 
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where σH max is the maximum hydrostatic stress, a, b, c are the model parameters, which were determined as follows: 

- the parameter a was determined by means of the torsional S-N curve τa0(N) 
 

0a m m  = = = , max 0H = , 2 0mI = , 0( )a a N = , 2 0( )a aI N=     (13) 

 

0( )aa N=            (14) 

 

- the parameter c was determined by means of the axial S-N curve σa0(N) 
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- the parameter b was determined by means of the axial S-N curve σaτ(N) with torsional mean stress τm = 126 MPa 
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S-N curves τa0(N) and σaτ(N) were plotted according to the experimental data from Tab. 2 similarly to curve σa0(N) 

(see section 3.1, Eq (9)). 
The advantage of this model is that it takes into account the beneficial effect of the mean compressive axial stresses and 

that the Marin method does not predict. Also, by using the σH max term in the multiaxial function (11), the mean stress 

effect in the axial direction is increased compared with the torsion case. It is worth notice that this method is quite 
complicated, compared to the Marin method, and requires a great number of adjusting experiments (at least three S-N 

curves τa0(N), σa0(N) and σaτ(N)). 

 
 

EXTENSION OF THE SINES METHOD 

 

Extension of the Sines method to take into account the static torsional mean stress effect (Sines+) 
he Sines method [5] can be expressed through Eqn. (19): 
 T 
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where I1m is the mean value of the first invariant of the stress tensor, A0 and B0 are the model parameters. In this article the 
Eqn. (19) was modified similarly to the modified Crossland method [31] to take into account the static torsional stress effect 
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where A1, B1 and С1 are the model parameters, which were determined as follows: 

- the parameter A1 was determined by means of the axial S-N curve σa0(N) 
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- the parameter B1 was determined by means of the axial S-N curve σaτ(N) with torsional mean stress τm=126 MPa 
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- the parameter С1 was determined by means of the torsional S-N curve τaσ(N) with tensile mean stress σm=202 MPa 
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S-N curve τaσ(N) were plotted according to the experimental data from Tab. 2 similarly to curve σa0(N) (see section 3.1). 

This model has all the advantages and disadvantages of the previous modified Crossland method. 
 
 

Extension of the Sines method to take into account different slopes of the S-N curves under tension-compression and torsion (Sines++) 

In some cases, experiments show different slope of the S-N curves in tension-compression σa0(N) and torsion τa0(N) 

tests. It means that the ratio σa0(Ni) / τa0(Ni) will not be constant. The modified Sines method (Sines+) does not take 
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into account this effect because it predicts the constant ratio σa0(Ni) / τa0(Ni) = √3. Therefore, the Eqn. (21) was 

modified as follows: 
 

( ) ( )
2 2

2 2 2 2 2 1 2 1 1a m m aA I B I C I D I+ + +         (28) 

 

1 11 22 33a a a aI   = + +           (29) 

 
The parameters of Eqn. (28) are written in the numerator. It helps avoiding the division by zero (function jumps) at Nk 

point, when σa0(Nk) / τa0(Nk) = √3. We think that such a formulation is more convenient for program implementation. 

The the model parameters A2, B2, С2 and D2 were determined as follows: 

- the parameter A2 was determined by means of the torsional S-N curve τa0(N) 
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- the parameter D2 was determined by means of the axial S-N curve σa0(N) 
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the parameter B2 was determined by means of the axial S-N curve σaτ(N) with torsional mean stress τm = 126 MPa 
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the parameter С2 was determined by means of the torsional S-N curve τaσ(N) with tensile mean stress σm = 202 MPa 
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Thus, the approach presented above has all the advantages of the previous model and allows taking into account the different 
slopes of the fatigue curves under tension-compression and torsion, however, it requires even more experimental data (four 

S-N curves τa0(N), τaσ(N), σa0(N) and σaτ(N)). 
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THE COMPARISON OF THE METHODS GIVEN IN THE ARTICLE 

 
n order to estimate the predictive ability of the models, we assume that the experimental data scatters are approximately 
the same in logarithmic coordinates with respect to the fatigue life N (that is, the variance of reproducibility are uniform 
throughout the factor space). In general, it does not contradict the available data. The increase of the fatigue life N 

leads to the increase of the experimental data scatter, however, in the logarithmic coordinates they remain the same. 
Then one can use the following functional to assess the predictive ability of the models: 
 

( )
2

2

1

1
Ф log

n

Mi i

i

N N
n =

=           (38) 

 

where N is the experimental fatigue life, NM is the model’s fatigue life, n is the number of the experiments (62 specimens). 

Tab. 3 shows the values of the functionals for different models. Adjusting experiments are the experiments necessary to 
determine models parameters. Fig. 2-5 present a comparison of the models with the experimental data.  
 
 

No. Model Adjusting experiments Ф 

1 Marin 
- the ultimate tensile strength σu; 

- S-N curve σa0(N). 
0.135 

2 Crossland+ - S-N curves σa0(N), τa0(N), σaτ(N). 0.135 

3 Sines+ - S-N curves σa0(N), τaσ(N), σaτ(N). 0.056 

4 Sines++ - S-N curves σa0(N), τa0(N), σaτ(N), τaσ(N). 0.025 
 

Table 3: The comparison of the models based on Ф functional. 

 

 
 

Figure 2: Dependences of fatigue life N of 2024 alloy under cyclic tension-compression with the amplitude σа = 0.5·σy versus the 

torsional mean stresses τm plotted by means of the multiaxial fatigue models (Marin, Crossland+, Sines+, Sines++). 

 
Based on Fig. 2-5 one may notice that the modified methods of Sines and Crossland predict the same result (the curves 
coincide). An increase of the mean stress in torsion direction virtually does not affect fatigue strength under the  amplitude 

σа = 0.61·σy (Fig 3) unlike the amplitude σа = 0.5·σy (Fig 2). It is also clear from Tab. 3 and Fig. 2-5 that Model No. 

4 (Sines++) is the most accurate. Finally, one should mention that the number of the experiments carried out with the same 
loading parameters were not enough to explicitly judge about the model adequacy. It is necessary to increase the amount of 
the statistical data. 
 

I 
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Figure 3: Dependences of fatigue life N of 2024 alloy under under cyclic tension-compression with the amplitude σа = 0.61·σy versus 

the torsional mean stresses τm plotted by means of the multiaxial fatigue models (Marin, Crossland+, Sines+, Sines++). 
 

 

 
 

Figure 4: Dependences of fatigue life N of 2024 alloy under cyclic torsion with the amplitude τа = 0.7·τy versus the tensile mean 

stresses σm plotted by means of the multiaxial fatigue models (Marin, Crossland+, Sines+, Sines++). 
 

 

 
 

Figure 5: Dependences of fatigue life N of 2024 alloy under cyclic torsion with the amplitude τа = 0.75·τy versus the tensile mean 

stresses σm plotted by means of the multiaxial fatigue models (Marin, Crossland+, Sines+, Sines++). 
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CONCLUSIONS 
 

ased on the analysis of the available experimental data the performed work made it possible to reveal the influence 
of the constant static stresses on the fatigue life of 2024 aluminum alloy during the tension with torsion experiments 
of the hourglass specimens. At the same time, the implemented values of the constant static stresses did not exceed 

the corresponding values of the conventional yield strength of the material in question. Some methods of the multiaxial 
fatigue available in the scientific literature are analyzed; they allow to take into account the patterns of the fatigue behavior 
noted above. The two modifications of Sines multiaxial fatigue model (Sines+ and Sines++) are proposed. According to 
the comparison results of Marin method and the modified Crossland+, Sines+ and Sines++ methods, the latter (Sines++) 
describes the experimental data in the most accurate way. The obtained results may be used for strength computations with 
regard to setting the admissible limits of the constant static stresses occurring in constructions that will not reduce durability 
of products operated under cyclic loading. 
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NOMENCLATURE 
 
E modulus of elasticity 
G shear modulus 
σy tensile yield strength (0.2%) 
σm tensile mean stress 
σa normal stress amplitude 
σu  ultimate tensile strength 
σ-1 fully reversed axial fatigue limit 
σa0(N) axial S-N curve (Rσ = -1) 
σaτ(N)  axial S-N curve with torsional mean stress (τm = 126 MPa) 
τy torsional yield strength (0.3%) 
τm torsional mean stress 
τa shear stress amplitude 
τa0(N) torsional S-N curve (Rτ = -1) 
τaσ(N)  torsional S-N curve with tensile mean stress (σm = 202 MPa) 
Rσ axial stress ratio, Rσ = σmin / σmax 
Rτ shear stress ratio, Rτ = τmin / τmax 
N fatigue life (number of cycles to failure) 
I2 second invariant of the stress deviator tensor 
I1  first invariant of the stress tensor 
σH  hydrostatic stress 
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