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RTASSUNTO. Nonostante il creep diffusionale sia stato ritenuto, in passato, di scarso interesse per le
applicazioni ingegneristiche, la sempre crescente domanda di nuovi e piu affidabili strumenti di
progettazione a creep per lunghe durate, che superino le 100.000h, richiede lo sviluppo di nuovi modelli
che tengano in contro sia dei fenomeni di creep dislocazionale sia diffusivo relativamente ai regimi di
sforzo elevato-bassa temperatura e di basso sforzo-alta temperatura. In questo lavoro viene proposto una
formulazione per il creep che tiene in conto del cambio di meccanismi attraverso un’esplicita dipendenza
dell’esponente di creep dalla temperatura e dal livello di sforzo applicato. Un esempio di applicazione del
modello ¢ presentata e discussa relativamente al caso di alluminio ad elevato grado di purezza (Al
99.999%).

ABSTRACT. Although diffusional flow creep is often considered out of practical engineering
applications, the need for a model capable to account for the resulting action of both diffusional and
dislocation type creep is justified by the increasing demands of reliable creep design for very long lives
(exceeding 100.000h), high stress-low temperatures and high temperature-low stress regimes. In this
paper, a creep model formulation, in which the change of the creep mechanism has been accounted for
through an explicit dependence of the creep exponent n on stress and temperature, has been proposed. An
application example of the proposed approach to high purity aluminum is given.
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1 INTRODUCTION followed by an acceleration towards failure or stage IV

creep, [1].

Increasing demand for higher operative temperatures
and longer design life requires new materials and
advanced design tools for more accurate life predictions
based on shorter duration laboratory tests. In order to
achieve this challenging task, material modeling needs
to be broaden down to the microstructural material scale
where irreversible processes, such as deformations and
damage, take places.

For a pure polycrystalline metal, subjected to constant
tensile stress, the shape of the curve describing the
accumulation of viscoplastic elongation as a function of
time can be resolved fairly clearly into four stages: a
virtually instantaneous extension also indicated as stage
I; a decelerating Andrade creep, or stage II, well
described by the following relationship,

&= IBt1/3 1)

almost steady-state Andrade creep,
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The attention is commonly focused on the steady state
stage III creep regime because most of the strain and
duration of laboratory test or in the applications occurs
in this stage.
According to the range of stress and temperature, creep
may occur by dislocation glide, or glide-plus-climb
(limited by glide processes, limited by lattice-diffusion
controlled climb, limited by core-diffusion controlled
climb; power-law breakdown, Harper-Dorn creep; creep
accompanied by dynamic re-crystallization), and
diffusional flow (Nabarro-Herring creep; Coble creep
and interface-reaction controlled diffusional flow).
For each of these mechanisms, steady state creep stage
specific models, based on dislocation mechanics theory,
are available in the literature. The majority of them
leads to a n-power-law solutions for the creep rate,
&=Ao" 3)
where A temperature dependency follows Arrhenius’
type law,
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where Q is the activation energy and k the Boltzmann’s
constant.

A= Aoexp(—gj

The literature relative to stage III modeling is extensive
and a detailed discussion and references for each model
can be found elsewhere [2, 3].

As far as concerns diffusional flow creep, theoretical
models predict a dependence of the strain rate on stress
to the power of 1:

Exo (5)
while for dislocation creep type, the strain rate is,

b n

EX O (6)

where n ranges from 3 to 5 for moderate and high stress.
At higher stresses, the power-law description is no
longer verified and several metals show an exponential
dependence of the creep rate on stress,
£ oxcexp(o) (7
Usually the application of eqn. (6) in this regime leads
to very high values of the creep exponent n (>10) and
very small values, not physically sound, of the power
law amplitude constant A.
Although it is often said that diffusional flow creep is
out of the practical engineering applications, the need
for a unified model capable to account for the resulting
action of both diffusional and dislocation type creep is
justified by the increasing demands of reliable creep
design for very long lives (exceeding 100.000h), high
stress-low temperatures and high temperature-low stress
regimes.
In this perspective, a creep model formulation, in which
the change of the creep mechanism has been accounted
for through an explicit dependence of the exponent n on
stress, is proposed.

2 CREEP MODEL FOR STEADY STATE CREEP

According to the Orowan’s equation, steady state creep
rate for dislocation type creep is given by,

&=p,bv (8)
where p is the mobile dislocation density, b the Burgers

vector and Vv the average dislocation velocity. Both
dislocation density and average velocity depend on
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stress and temperature according to:

1 L
P = a_z(i)
b\ o,

and,

)

N
oo

b | o,

- (10)
where o and B are constants, and Dj is the lattice
diffusion coefficient. Usually it is assumed that the
mobile dislocation density is a quadratic function of the
applied stress (L=2) and that the velocity is a linear
function of stress (N=1). With these assumptions a creep
rate power law with n=3 is usually obtained. Although
L=2 is
literature, there are experimental evidences in support of

commonly assumed or postulated in the

the fact that L is neither constant nor necessarily equal
to 2. Taleff et al. [4], for instance, found at 450°C L=1.0
and 1=0.6 for AI-5.5 at.% Mg and AAS5083 aluminum
alloy, respectively.
Similarly, there are also compelling evidences that the
stress dependence of the mobile dislocation velocity is
larger than 1 as predicted by classical models, [5]. In
particular Caillard and Martin [6] reported for N an
exponential function of the applied stress. Evidence of
the variability of the creep exponent n over a wide stress
range can also be found in [7] where, for %2Cr’2Mo%V
steel, the O In (5) /0ln (O') increases with stress. Thus,
in a very general form the creep exponent should be
given as,

n=n (0', T) (11)
A possible evolution law for n can be derived from the
deformation mechanism map (DMM) [8] where each
region on the map is associated with a specific,
dominating deformation mechanism for which the creep
exponent is known.
In order to derive a plausible expression for eqn. (6),
two paths on the DMM can be ideally followed: varying
stress at constant temperature, o'|T , or varying the
temperature at constant stress, 7| .
In general, for the latter, T|0, the creep exponent n
exponent does not change along the path. In fact, at low
stress, the mechanism is diffusional (n=1) at low
temperatures and it changes to lattice diffusion at high
temperature but always with n=1 (eventually changing
in Coble or Nabarro-Herring creep).
Increasing the stress there is only a very narrow stress
band for which the creep mechanism may change, going
from low to high temperature, from diffusional to
dislocation climb.
At higher stress, the dominating creep mechanism is
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dislocation climb at both low and high temperatures
(n=3-5, n>5-8 in the power law breakdown, PLB,
regime). According to this, for a given stress, eqn. (6)
should show a weak dependence on temperature.

On the contrary, a change in n always occurs any O‘|T
path. For a given temperature, at low stress n=1 since
the creep mechanism is always diffusional,
increasing the stress level, it switches to dislocation
climb and, at even higher stress, PLB may also take
place.

Since the change in the creep mechanism as a function
of stress occurs rapidly as soon as threshold stress is
exceeded, the following expression is proposed:

n = 2sinh ii +1
Oy

where m is a constant and O, is the stress required to

while

(12)

move a dislocation in the absence of other dislocations

that can arise as a result of solutes, Peierls-type stresses,

grain-size strengthening, etc. This value is temperature

dependent according to,
OA'O:Alexp(—T*)+A2 (13)

where T* is the homologous temperature.

In its general form eqn. (8) becomes,

L N N+L
. D, o o D, o
e=s s Ty ls (14)
6, ) \ 6, b” \ 5,

where, n=N+L and « is a constant.

From eqn. (12), expressing the sink in exponential
terms, N and L may be given according to the following
expressions:

O_ m
L=1-exp|—| —
O

N =exp

(15)

(o}

~ 16
5 (16)
For the mobile dislocation density, eqn. (15) results in a
function which saturates as confirmed by experiments,
[9] while Eqn. (16) gives an increasing N with stress,
with a lower bound of N=1 for stress going to zero.

In analogy with the Orowan’s equation, the steady state
creep rate for diffusional flow can be given as,

: Q
8:¢VCVE

where ¢V is the vacancy diffusion flux,Cy is the vacancy
concentration, Q is the atomic volume and d is the

(17

average grain size. Since,

¢, ~ 200D, [ kTd (18)
and D C D / Q , where Dy, is the vacancy diffusion
coefﬁment D 1S the atom diffusion coefficient, it follows
[10],
D, Q
c=o—~—
d’ kT
which shows a linear dependence of the creep rate on
stress (i.e. n=1).
Eqn. (14) can be also used to describe diffusional flow
creep because it is formally analogous to eqn. (19)
posing:
. kT
G, =—
Q
and « = a. Since the diffusional flow creep takes place
at very low stress, from eqn. (8) N+L=1 is obtained.
Therefore, the proposed approach allows the derivation
of a single equation for the steady state creep rate,
derived in the framework of dislocation based models,

(19)

(20)

that can be used over a wide range of temperature and
stress covering most of the DMM.

3 APPLICATION
ALUMINUM

TO  HIGH  PURITY

The proposed creep model has been applied to high
purity aluminum. Experimental data have been collected
from [11] and integrated with data from [12]. The
constants in eqn. (12) and (14) have been found as
follows: b= 2.86E-10 m, D =Djexp(-O/RT) where
D,=1.7E-04 m?/s [8], O=116 klJ/mol, for the reference
temperature T=533K, k=7.8288E-12, &Ois function of
temperature and it has been derived from [8] (for
T=533K, 6,=3.4 MPa).

The coefficient m has been identified on the In (e) —1In (0)
plot for T=533K and kept constant for all other
temperatures. In Fig. 1, the DDM for pure aluminum is
reported, [13] while in Fig. 2 the comparison with
experimental data of the predicted creep rates as a
function of stress, at several temperatures, is given. It is
worth to underline how the agreement is very good even
at very low stress.

A confirmation of the fact that the proposed approach is
physically sound can be found in the calculation of the
activation energy that can be determined as the slope of
linear fit on theln (KDV / bz) vs 1/T plot.

If the Norton type creep power law is used, this fit
usually results in unrealistic values of Q. On the
contrary, with the proposed model, the O found for pure
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aluminum is 116 kJ/mol, see Fig. 3, in the temperature
range of 400-700K, that is very close to the value
measured in [14].

Similar good agreement is found for also for single
crystal high purity aluminum. In Fig. 4 the comparison
of the present with experimental data
compensated for temperature is given.

model

4 CONCLUSIONS

In this work a creep law which allows to account for

both diffusional flow and dislocation climb creep
mechanisms has been derived. In the proposed creep
equation, that result in a n-power-law type formulation,
the creep exponent n is function of both stress and
temperature, even though this latter dependence is
weak.

The proposed model has the following major features:
a) it is mechanism based and allows one to follows the
mechanism evolution according to the DMM; b) it is
able to predict the non linearity in the at low stress,
that is a fundamental requirements for long live
predictions; c¢) the activation energy values derived with
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Figure 1: Deformation mechanism map (DMM) for pure aluminum average grain size d=10 pm.
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Figure 2: Comparison of the predicted creep rates for variable temperature, as a function of stress.
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the proposed model are in agreement with experimental
measurements.
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Figure 3: Determination of the activation energy for pure aluminum with the present model.
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Figure 4: Comparison of predicted normalized steady state creep rate as function of normalized stress for high purity Al with

experimental data.
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