
   

A. Abdelhalim et alii, Frattura ed Integrità Strutturale, 49 (2019) 350-359; DOI: 10.3221/IGF-ESIS.49.35                                                          
 

350 
 

Focused on Fracture Mechanics versus Environment  
 
 
 
  
ANN Approach to Predict the Flow Stress of CMn (Nb-Ti-V) Micro 
Alloyed Steel  
 
 
Allaoui Abdelhalim  
Department of Metallurgy and Materials Engineering, Badji Mokhtar University, Annaba, Algeria  
halim_allaoui23@yahoo.fr, http://orcid.org/0000-0001-2345-6789 
 
Guedri Abdelmoumene, Darsouni Lamia  
Infra-Res Laboratory, University of Souk Ahras, Souk Ahras, Algeria 
Foundry Laboratory, Badji Mokhtar University, Annaba, Algeria  
guedri_moumen @yahoo.fr, http://orcid.org/0000-0002-2345-6790 
ch-lamia@hotmail.fr, http://orcid.org/0000-0002-2345-6791  
 
Darsouni Abderrazek  
Foundry Laboratory, Badji Mokhtar University, Annaba, Algeria  
darsouniabdel@yahoo.fr, http://orcid.org/0000-0003-2345-6792  
 
 
ABSTRACT. The flow behavior of CMn (Nb-Ti-V) micro alloyed steel was 
studied by hot compression tests in a wide range of temperatures (700 °C to 
1050 °C, Step 50 °C), strain rates (0.000734 s-1, 0.0029 s-1, and 0.0146 s-1) and 
true strain of 0 to 0.8. Based on the experimental true stress-plastic strain data, 
the artificial neural network (ANN) methods were employed to predict the 
flow stress of CMn (Nb-Ti-V). The ANN model was trained with Levenberg-
Marquardt (LM) algorithm. The optimal LM neural network model with two 
hidden layer network with ten neurons in the first and ten neurons in the 
second gives the best predictions is developed. It is demonstrated that the LV 
neural network model has better performance in predicting the flow stress. 
The results can be further used in mathematical simulation of hot metal 
forming processes.  
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INTRODUCTION  
 

o optimize the technology of a metal forming operation, it is necessary to experiment the constituent relationships 
relating process variables such as temperature, strain rate and deformation to the flow stress of the deforming 
material [1]. Appropriate modeling of hot deformation curves is the first step in a mathematical simulation of hot T 
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deformation processes, such as hot forging and hot rolling. A more widely adopted approach is to obtain constitutive 
equations from experimentally determined flow curves [2]. Therefore, many researchers have opted for empirical methods 
through which they relate the process variables to the flow stress [3–5]. Recent studies [6–8] have shown that the 
methodology of neural networks can be adopted to resolve problems, which are difficult to answer using traditional 
methods, and demonstrated that ANN techniques can model hot deformation flow curves of different materials. The 
objective of this study is to predict the flow stress of micro-alloy steel CMn (Nb-Ti-V) using a neural network approach. 
 
 
EXPERIMENTS 
 
Material and Experiment Procedures 

he hot compression test is the most suitable of  all the deformation tests for the study of  the rheological parameters, 
because it makes it possible to obtain a homogeneous deformation in the sample from an improvement of  the 
lubrication conditions to the sample-heap interface of  the machine. The compression test also makes it possible to 

achieve deformations of  the order of  unity. The hot compression device is shown in Fig.1. It also allows the quenching of  
the sample at the end of  the test. The heating is done by radiation in a quartz tube, which ensures the best compromise 
between the flexibility of  use and the rate of  rise in temperature using six infrared lamps placed at the focus of  a dish. The 
heating zone is larger with a homogeneous temperature. 

 

 
 

Figure 1:  Experimental equipment of the compression tests 
 

The compression test also makes it possible to achieve deformations of  the order of  unity. The hot compression device is 
shown in Fig.1. It also allows the quenching of  the sample at the end of  the test. The heating is done by radiation in a quartz 
tube, which ensures the best compromise between the flexibility of  use and the rate of  rise in temperature using six infrared 
lamps placed at the focus of  a dish. The heating zone is larger with a homogeneous temperature. 
The compression test is controlled by a computer and provides the position regulation of  the cross during the rise in 
temperature, so that the upper pile always remains in contact with the sample. A programmer managed by microprocessor 
allows performing complex thermomechanical cycles. The maximum permissible temperatures in this model are of  the 
order of  1300 °C. The force is measured continuously. When this exceeds a certain threshold, the cross is automatically 
raised to cancel the force. In this way, the effect of  dilation is compensated. The samples used are cylindrical with a diameter 
of  7.8 mm and a height of  11.3 mm. Before deformation, our samples are heated inside the compression device up to the 
test temperature at a rate of  100 °C per minute. 
The temperature is controlled by two thermocouples placed one above and one below the sample. As soon as the test is 
finished, the upper pile of the machine rises automatically to allow us to soak our samples very quickly using a finger that is 
actuated from the outside. The compression tests were carried out at temperatures between 700 °C and 1050 °C, for 
deformation rates going from (0.000734, 0.0029, and 0.0146 s-1) , depending on the cycle shown in Fig. 2. This cycle aims 
is a gradual precipitation of the additive elements. After homogenization of the structure by heating at 1300 °C followed by 
quenching with water, the specimens are fixed in the compression device where they undergo a solution treatment at 
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1050 °C. Then they are cooled to the deformation temperature, which is between 700 °C and 1050 °C. Tab. 1 Show detailed 
chemical compositions and Figs. (3–4) present starting microstructure. The average grain size is about 40 µm. 
 

% C % S % P % Al % Si % Mn % V % Nb % Ti 

0.044 0.012 0.012 0.017 0.22 1.45 0.053 0.080 0.041 
 
 

Table 1: The detailed chemical compositions 
 

 
Figure 2: Experimental procedures for the compression tests of CMn (Nb-Ti-V) micro alloyed steel. 

 
 

 

Figure 3: Microstructure of the raw steel casting 
 

Figure 4: Raw casting sample quenched after austenization at 
1300 °C. 

 
Experimental Results 
Figs. (5–7) show real stress-strain curves resulted from hot compression at different temperatures (from 700 °C to 1050 °C) 
and strain rates values of 0.0146 s-1, 0.0029 s-1 and 0.000734 s-1. their paces suggest classifying them in three types a, b and 
c, according to the different ranges of temperature:  

o The stress increases rapidly and decreases with a significant slope (700 °C and 750 °C) (type a);  
o  The stress increases rapidly until reaching a plateau (800 °C and 850 ° C) (type b);  
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o  The stress raises up to a maximum after which it decreases more or less rapidly to reach a stationary state (austenitic 
domain) (type c). 

 

 
Figure 5: Stress-strain curves under different temperatures with a value of 0.0029 s-1 strain rate. 

 
 

       
Figure 6: Stress-strain curves under different temperatures with a value of 0.0146 s-1 strain rate- 

 
 

   
Figure 7: Stress-strain curves under different temperatures with a value of 0.000734 s-1 strain rate - 
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ANN MODEL 
 
Development of  ANN Model 

n this work, an ANN model for the compression flow behaviors of  CMn ( Nb-Ti-V) micro-alloyed steel was developed.  
The input variables are temperature (T), strain rate (έ) and strain (ε), and the output variable is the flow stress (σf).  The 
material flow stress (σf) depends on the independent variables (ε, έ, T) during hot working process. Therefore, the input 

layer is composed of  three neurons representing these variables. The flow stress is represented by the neuron in the output 
layer.  MATLAB was used to train the neural network.  It used the Levenberg—Marquardt algorithm, which is known to be 
highly efficient in solving problems of  non-linear optimization.  The total data of  the ANN model, which consists of  1168 
input—output data sets, are derived from the 24 stress-strain curves.  These data were subdivided into three groups.  The 
first group consists of  590 data sets and is used to train the network.  The second group is composed of  287 and is used to 
evaluate the generalisation.  Finally the last group, which consists of  291 data sets, is used to validate the ANN model.  
In looking for the best ANN model, one has to determine the appropriate number of  hidden layers and the number of  
neurons in each one. This is done though training and testing of  different network structures and the appropriate one 
should ultimately be determined by evaluating tolerance between predicted and experimental data. Mean square error, MSE, 
indicator as shown in Eqn. (1) was introduced to evaluate the training and generalization performances of  ANN [7].  
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where E and P are experimental and predicted flow stress values respectively and N the number of  data sets. 
The training and testing exercise as indicated in the previous paragraph resulted in a network of  two hidden layers with ten 
neurons in each one.  This network produced an MSE value of  0.15 as shown in Fig. 8. The resulted network is shown in 
Fig. 9. 

 
Figure 8: The square error (SE) of all data and the mean square error (MSE) 

 

 
 

Figure 9: The architecture of the optimal artificial neural network (ANN) model 
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Results of  the developed neural network 
The predictability of  ANN model is verified in this study using two statistical indicators: the absolute relative error (AARE) 
and the correlation coefficient (R) [8]. These indicators are given in Eqns. (2) and (3).  The higher value of  R close to one 
illustrates that the predicted values conform to the experimental ones well; meanwhile, a low AARE-value close to zero 
indicates that the sum of  the errors between the predicted and experimental values tend to be zero. Thereby, such R and 
AARE are expected. 
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In which E and P are respectively the experimental value and predicted value of  true stress; E  and P  are the mean values 
of  E and P respectively; N the number of  data sets.  
 

 
Figure 10-a: Experimental versus predicted flow stress for the training set 

 

 
Figure 10-b: Experimental versus predicted test flow stress data set 
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Figure 10-c: Experimental versus predicted validation flow stress data set. 

 
 

 
Figure 10-d: Experimental versus predicted all flow stress data set. 

 
The ANN model resulted from the previous sections is used hereafter to predict the deformation conditions, which 
corresponds to test points and previous training points.  Figs. (10-a, b, c, and d) show predicted and experimental flow stress 
values along with their correlation relationships. The best-fit line corresponds to the 45 degrees line.  The figures show that 
all errors between predicted and observed flow stress values are lower the 5%.  Likewise, the resulting correlation coefficients 
between observed and predicted values are 0.9999 and 0.9998 for the training and testing data sets, respectively. 
As indicated in the above, high correlation coefficient would indicate a good prediction capacity of  the model.  Similarly, 
AAR is used as an alternative goodness fit test as shown in Fig.11.  The AAR value was found to be equal to 0.31% for all 
data sets.  This low error would indicate the high accuracy of  the ANN model for both testing and training data sets. 
Figs.12 and13 show the results of  training, test and validation for stress strain curves with a maximum relative error of  3.1% 
for the experimental conditions shown in the corresponding figures.  These results would confirm, and therefore, validate 
the learning and generalisation capacity of  the ANN model. 
A comparison between initial experimental curves and ANN predicted stress-strain values are presented in Figs. (14, 15, 
and 16).  The predicted data show that the ANN model is able to precisely reproduce the evolution rules that govern the 
stress-strain relationships.  Hence, when the temperature increases, the stress and its rate decrease.  Therefore, the obtained 
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ANN model was capable to follow the dynamic softening regions and hardening work of  CMn (Nb-Ti-V) micro-alloyed 
steel. 
 

                            
 

Figure 11: The absolute relative error (ARE) of all data and the average absolute relative error (AARE) 
 

 
Figure 12: Experimental versus predicted flow stress values for Strain rate = 0.0029 S-1 and at T=700°C 

 

     
Figure 13: Experimental versus predicted flow stress values for different strain rates values at T=750°C 
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Figure 14: Experimental versus predicted flow stress values for different strain rates at T=900 °C 

 
Figure 15: Experimental versus predicted flow stress values for different strain rates at T=950 °C 

 

 
Figure 16: Experimental versus predicted flow stress values for different strain rates at T=1050 °C 

 
Fig.17 shows the evolution of  the maximum stress as a function of  the strain rate and the temperature. These curves are 
characterized by a decrease in the stress between 700 °C and 750 °C, followed by an increase between 750 °C and 850 °C. 
Finally, beyond 850 ° C, the maximum stress decreases rapidly. Indeed, the maximum stress decreases at the beginning of  
the two-phase domain, then increases with the increase of  the volume fraction of  the austenitic phase to reach a maximum 
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at the AC3 point. Dilatometry measurements were made on our material to determine allotropic transformation points 
AC1= 710°C and AC3=850°C.  
 

 
Figure 17: Experimental versus predicted peak stresses values for different temperatures and strain rates values 

 
 

CONCLUSIONS 
 

 model based on artificial neural networks has been developed in order to predict the response of  the deformation 
of  micro alloyed steel subjected to hot compression.  The experimental data ranges from 700 °C to 1050 °C in 
temperature for strain rate values of  0.000734 s-1, 0.0029 s-1 and 0.0146 s-1.   The output variable of  the ANN 

model is the compressional flow stress and the input variables are temperature, strain rate and strain.  The Levenberg-
Marquardt algorithm was used to train the model.   
The resulting network architecture is composed of  three neurons in input layer followed by two hidden layers composed of  
ten neurons each and ends with a one-neuron output layer.  The ANN model predicts well the flow stress behaviour and 
precisely follow dynamic softening, flow localization regions and work hardening of  the deforming material.  We can 
conclude with confidence that the proposed model can reliably predict the deformation response of  CMn (Nb-Ti-V) micro 
alloyed steel under hot compression. 
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