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ABSTRACT. This paper presents a numerical method for non-local stress assessment by means of a general FE 
tool and the local stress field. Unlike usual calculations by means of a numerical PDE solver, a more general 
numerical integration is used. Different solutions are compared theoretically and numerically by evaluating the 
results obtained by two different FEM commercial software. The application of the non-local tension field is 
applied to the strength assessment of notches, welded joints and cracks. 
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INTRODUCTION 
 

n real applications, it is usual for an engineer to deal with strength assessment at stress raisers, i.e. notches, welding or 
cracks. There are several theories and approaches explaining how to tackle such problems, but, sometimes, the 
proposed approaches are difficult to use. In particular, it is often impossible to apply the “non-local” effective stress 

values without a particular software tool because many procedures require the integration of a specific Partial Differential 
Equation to calculate the non-local stress field. 
The goal of this research is to find a method for the evaluation of the non-local field in a fast and simple way, by using the 
local stress field available in all FEM software. 
For this purpose, both Comsol Multiphysics and Ansys numerical software were used and compared. 
Comsol has a pre-loaded module for an ordinary differential equation solution (Helmholtz equation) that can be used to 
calculate stress for non-local resistance, and even has an integration procedure for a general user-defined integral 
evaluation all-over the investigated domain. Alternatively, Ansys only has the possibility to compute and export the nodal 
coordinates and nodal results turned out from a conventional local structural analysis. 
The final aim is to compute a non-local stress field by means of a sound conventional local stress analysis. 
 
 
IMPLICIT GRADIENT METHOD  
 

he authors recently presented a new way to estimate the fatigue life of notched structures and welded joints based 
on the Implicit Gradient [1, 2]. 
This method is particularly suitable for a numerical estimation of the component fatigue life dependent on their 

geometry. The idea is very simple and enables application of the average damage originally formulated in the 1930s by 
Neuber [3], referred to as a geometry where fatigue crack propagation is on the bisector of the notch direction. This idea 
succeeds in attaining the fatigue limit of a plane component with notches by simple manual calculation [3,4]; on the other 
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hand, it is difficult and awkward when the maximum stress or the crack initiation and propagation is outside the bisector 
or generally when the component is three dimensional or geometrically complex. 
The implicit gradient method reinforces the idea that the damage should be related to the average of the stress 
components occurring on the body, where the values near to the critical point are more important than the far away field 
(by a weight function). The computed effective stress is representative of the overall damage in the process zone. The 
influence zone dimension is simply regulated by material properties and is indicated by the length c. 
In a uniaxial fatigue case, the authors proposed to only average the first principal stress; for multi-axial fatigue it is 
necessary to use a multiaxial criterion, for instance, by using stress invariants or critical plane approaches, it is possible to 
define the ratio ρ between the hydrostatic component and the deviatoric component in the tension field averaging [5]. 
 
 
MATHEMATICS OF THE PROBLEM 
  

n a body of volume V, it is possible to define a non-local effective tension σeff in a generic point X as an integral 
average of an equivalent local tension σeq, weighted by a Gaussian function ψ (x,y) depending on the distance between 
points x and y of the body: 
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By approximating Eq. (1), it is possible to define an effective stress σeff by the Helmholtz equation [1, 2, 6] using Neuman 
boundary conditions ( eff n 0   ) [6]. 
  

2 2
eff ,IG eff ,IG eqc                   in V                                                                                  (3)  

 

here σeq is the first principal stress and c is a material coefficient (for instance, it is 0.2 mm for weldable construction steel). 
 

 

  

Figure 1: 2D geometry with a variable angle, size in mm. 
 
 
ANALYSIS BY SOFTWARE WITH A BUILT-IN PDE SOLVER 
 

he initial investigated geometry is a simple 2D geometry (Fig. 1), with the under linear elastic plane stress 
condition and remote tensile stress equal to one. The geometry has a notch-opening angle ranging from 0° to 180° 
and a notch tip radius varying from 0 to 1 mm, the initially investigated parameter being the null radius. 
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Comsol has a built-in PDE Solver, including the Helmholtz equation solver. The linear elastic stress solution provides the 
local stress field. The Helmholtz equation (σeff,IG) can be directly solved on the same model. 
One of the obtained outputs is given in Fig. 2. By changing the angle of the notch and plotting the results, it is possible to 
compare the differences at the tip (Fig. 3). Except for smaller angles, σeff,IG decreases by improving the opening angle of 
the notch. 
Alternatively, by considering the integral value, the Eq. (1) can also be evaluated by the Comsol solver; Fig. 3 also shows 
such type of result (σeff,int). 

 
 

Figure 2: Example of plot of the σeff,IG 
 

 
 

Figure 3: Trend of σeff,IG VS σeff,int 

 

2α σeff,IG σeff,int Difference
[°] [MPa] [MPa] [%] 

0 9.47 7.47 -21.1% 
30 9.37 7.58 -19.1% 
60 9.74 7.97 -18.2% 
90 9.37 7.82 -16.5% 
120 7.67 6.64 -13.4% 
135 6.26 5.56 -11.1% 
150 4.61 4.23 -8.2% 

180 1.00 1.00 0.0% 
 

Table 1: Value of σeff,IG  and σeff,int at any tested angle. 
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To achieve a sufficient approximation, it is not necessary to compute the integral across the whole domain, but it is faster 
to only make the integration in a subdomain (a circular subdomain with a radius equal to 5.5c has been verified as 
suitable). 
Differences between these two estimations can be assumed to be the intrinsic scatter between the two methods so that if 
the “integral” value is available, the “IG effective” value can be computed by this correction (Tab. 1). 
 
 
ANALYSIS BY SOFTWARE WITHOUT A BUILT-IN PDE SOLVER 
 

ost FEM software does not have the PDE solver or integration option; nevertheless, it is possible to have a 
reasonable approximation by means of the knowledge of nodal coordinates and nodal local stress. 
One possibility is to transform the integral into a summation, with a quadrature rules approximation [7]. For 

this calculation it is necessary to define a weight coefficient, called N, built on the distance between nodes: 
 

 

 
   

   
V

eff ,int eff ,sum

V

ψ x,y σeq(y)dV N x,y ψ x,y σeq(y)
   

N x,y ψ x,yψ x,y dV
    


            in V                            (4)  

 

In a uniform mesh, i.e. with elements having the same dimension and constant distance between nodes, N should be 
constant. In any other case, N shall be computed depending on element dimension and actual node distances. This 
approach suggests using the nodal reaction (at each node constrained) as the N approximation, when the body is loaded 
by a uniform distributed load, such as the gravity load. Consequently, the bigger the element, the bigger the reaction.  
Fig. 4 shows the nodal reaction in a subdomain in the case of a fairly regular, but not uniform, mesh. 
 

 
 

Figure 4: Plot of reaction N in a subdomain 
 

For any kind of FE software, it is simply necessary to export coordinates of the node inside the subdomain, the first 
principal stress in each of those nodes, and the reaction of the same nodes. Any mathematical tool (i.e. Matlab or even a 
spreadsheet such as Excel) can compute σeff,sum of Eq. (4). 
 

 
 

Figure 5: Trend of σeff,int Vs σeff,IG Vs σeff,sum. 
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The σsum from the Ansys structural analysis is not so far from the Comsol integration for each opening angle taken into 
consideration (Fig. 5), it is never higher than 4% as a maximum error (Tab. 2). 
 

2α σeff,IG σeff,int σeff,sum Error 

[°] [MPa] [MPa] [MPa] [%] 

0 9.47 7.47 7.22 -3.36 
30 9.37 7.58 7.65 0.91 
60 9.74 7.97 8.01 0.52 
90 9.37 7.82 7.84 0.26 
120 7.67 6.64 6.70 0.90 
135 6.26 5.56 5.61 0.85 
150 4.61 4.23 4.23 -0.13 

180 1.00 1.00 1.00 0.00 
 

Table 2: Value of σeff,IG, σeff,int and σeff,sum at any tested angle. 
 

ρ/c 
σeff,IG σeff,int Difference σeff,sum Error 
[MPa] [MPa] [%] [MPa] [%] 

0 9.37 7.82 -16.5% 7.84 0.26
0.125 9.42 7.84 -16.8% 7.79 -0.60 
0.25 9.47 7.87 -16.9% 7.87 -0.03 
0.4 9.52 7.91 -16.9% 7.91 0.01 
0.5 9.54 7.94 -16.8% 7.94 -0.05 
1 9.55 8.06 -15.6% 8.06 0.00 
2 9.32 8.18 -12.2% 8.18 0.00 
3 8.99 8.16 -9.2% 8.16 0.00
5 8.31 7.84 -5.6% 7.84 0.04 

 

Table 3: Value of σeff,IG, σeff,int and σeff,sum at any tested ratio. 
 
  

CHANGING THE FILLED RADIUS 
 

y modifying the ratio of the filled radius over c; it is possible to compute effective stress in rounded geometries as 
well. Results related to the opening-angle equal to 90° are given in Tab. 3 and Fig. 6. 
The scatter between the Implicit Gradient effective stress and the integral value decreases by increasing the notch 

tip radius. In any case, the error between the integral value and its numerical approximation is very low. 
Hence, we can argue that the integral value of eq. (4) can be evaluated by means of generic FE software. The problem is 
the general relationship between the Implicit Gradient σeff,IG and Integral value σeff,int by combining different values of the 
opening angle and notch tip radius. The ratio between σeff,IG and σeff,int is given in Fig. 7. 

 
 

Figure 6: Trend of σeff,IG Vs σeff,int Vs σeff,sum on the filled radius. 
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Figure 7: σeff,IG/σeff,int  function of filled radius and notch opening angle 2α. 
 
 
MESH INFLUENCE  
 

 further problem regarding the numerical assessment of non-local effective stress is the sensibility of results to the 
elements dimension. Taking the 120° geometry and through mesh analysis, it is possible to look at the 
relationship between the maximum element size and errors that occur. Tab. 4 d shows the dimension of the 

element at the notch tip. In this investigation “Plane 42” elements in Ansys and “quadrangular” elements in Comsol, were 
used. 
 

Mesh Comsol Ansys Error 
d/c σeff,IG σeff,int σeff,sum σeff,int VS σeff,sum

4 7.44 6.66 7.39 10.93%
3 7.53 6.67 7.58 13.74% 
2 7.57 6.66 6.84 2.73% 
1 7.65 6.65 6.70 0.76%

0.5 7.67 6.64 6.70 0.90% 
0.25 7.67 6.64 6.70 0.96% 
0.1 7.67 6.64 6.70 0.97%

 

Table 4: Error occurs in the mesh analysis. 
 

 
HOW TO  
 

ccording to a previous theoretical framework, it is possible to sketch a procedure for effective non-local effective 
stress assessment by means of a general FE numerical tool. First of all, it is suitable to make a subdomain around 
the interested zone: this makes it easier to create a good quality mesh (element size close to c/2) and to export 

the needed results and no more. After that, it is only necessary to make an appropriate model and to export the nodal 
data: first principal stress of stress analysis, nodal coordinates, and reaction solutions under uniform loading. 
The Eq. (2) defines “ψ” and the data are combined into the Eq. (4), N is the reaction solution and σeq is the first principal 
stress. 
 
 
THREE-DIMENSIONAL PROBLEM 
 

he applicability of the proposed approach was also verified for a three-dimensional component. The investigated 
structural detail is a welded joint depicted in Fig. 9. The obtained results are reported in Tab. 5. In this first 
application, the errors are slightly higher, however, it remains acceptable if used for design strength assessment. 
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Figure 9: Three-dimensional geometry. 
 

Dimension 
σeff,IG σeff,int σeff,sum Error 

[MPa] [MPa] [MPa] [%] 
2D 1.86 1.65 1.65 -0.24 
3D 1.81 1.62 1.71 5.52 

 

Table 5: Comparison between 2D-3D of the same geometry. 
 
 
CONCLUSIONS 
 

he Implicit Gradient method has already been demonstrated to be effective particularly in fatigue strength 
assessment of notches or joints. What was not available was a sound procedure for the effective stress evaluation 
in most FEM software, without integration or a PDE solver. With this method, through the definition of proper 

weighted coefficients N, it is possible to determinate the integral approximation σeff,sum. This quantity is related to the 
Implicit Gradient effective value and their relations depends on local geometry; such relationship has been investigated in 
this paper.  
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