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ABSTRACT. Stress and displacement fields in multilayered composites with interfacial imperfections, such as 
imperfect bonding of the layers or delaminations, or where the plies are separated by thin interlayers allowing 
relative motion, have large variations in the thickness, with characteristic zigzag patterns and jumps at the layer 
interfaces. These effects are well captured by a model recently formulated by the author for multilayered plates 
with imperfect interfaces and affine interfacial traction laws (Massabò & Campi, Meccanica, 2014, in press; Compos 
Struct, 2014, 116, 311-324). The model defines a homogenized displacement field, which satisfies interfacial 
continuity, and uses a variational technique to derive equilibrium equations depending on only six generalized 
displacement functions, for any arbitrary numbers of layers and interfaces. The model accurately predicts 
stresses and displacements in simply supported, highly anisotropic, thick plates with continuous, sliding 
interfaces. In this paper the model is applied to wide plates with clamped edges and some inconsistencies, which 
have been noted in the literature for models based on similar approaches and have limited their utilization, are 
explained. A generalized transverse shear force is introduced as the gross stress resultant which is directly 
related to the bending moment in the equilibrium equations of multilayered structures with imperfect interfaces 
and substitutes for the shear force of single-layer theory. An application to a delaminated wide plate highlights 
the potential and limitations of the proposed model for the solution of fracture mechanics problems.   
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INTRODUCTION  
 

tress and displacement fields in multilayered composites with interfacial imperfections, such as imperfect bonding 
of the layers or delaminations, or where the plies are separated by thin interlayers allowing relative motion, have 
large variations in the thickness, with characteristic zigzag patterns and jumps at the interfaces. These effects cannot 

be captured using classical first- or higher-order single-layer theories and require models based on a discrete-layer 
approach, where the number of unknowns is typically large and depends on the number of layers/interfaces and on the 
layer kinematic fields. This limits the range of problems which can be solved analytically and makes computational 
solutions necessary for most cases, in particular when the status of the interfaces evolves during loading due to 
delamination fracture [1-7]. 
Zigzag theories [8-10] were originally proposed for multilayered systems with perfectly bonded interfaces in order to 
overcome the limitations of discrete-layer approaches and satisfy continuity of transverse and normal stresses at the 
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interfaces. The theories, through the imposition of interfacial continuity conditions, define a homogenized displacement 
field which depends on a limited number of unknowns and is able to reproduce through-thickness zigzag patterns due to 
the material inhomogeneities. Later, the zigzag theories were extended to describe plates and shells with imperfectly 
bonded, purely elastic interfaces in [11-14]. The extended theories however manifest a number of inconsistencies: (i) they 
are unable to reproduce the expected transitions in the internal gross stress resultants on varying the stiffness of the 
imperfect interfaces (first noted in [11,15,16]); (ii) they  give rise to unrealistic effects in the transverse displacements, 
which are larger than those of fully debonded plates in partially bonded plates (this effect was defined shear-locking in 
[15]); (iii) they show some inconsistencies in plates with clamped edges (noted in [17]). Recently the author formulated in 
[18,19] a theory which, starting from those in [11-14], extends the formulation to plates and beams with interfaces 
characterized by affine interfacial traction laws (to describe piecewise linear cohesive functions) and accounts for the 
energy contribution of the imperfect interfaces in the derivation of the equilibrium equations. This contribution was 
erroneously omitted in the original theories and in all theories derived later from the original models (see [18] for a list). 
Corrected formulations of the models [11-14] are presented in the Appendices in [18]. 
The accuracy of the theory proposed in [18,19] has been verified against exact 2D elasticity solutions in highly anisotropic, 
simply supported, multilayered plates, with continuous sliding interfaces and deforming in cylindrical bending. The model 
accurately describes stress and displacement fields in plates with different numbers of interfaces, equally and unequally 
spaced in the thickness, over the whole range of interfacial stiffnesses, from fully bonded to fully debonded. A limitation 
of the theory has been observed when dealing with very thick, highly anisotropic plates with compliant interfaces, where 
the shear deformations are underestimated in the derivation of the transverse displacements as a consequence of the 
assumed continuity between interfacial tractions and shear stresses. It is expected that this problem could be solved using 
a shear correction factor which depends on the interfacial properties (work in progress).  
In this paper, the issues noted in [17] in beams with clamped ends, where the zigzag theory proposed in [9,10] for fully 
bonded systems shows some apparent inconsistencies in the transverse shear force, are discussed; and the equilibrium 
equations derived in [19] for plates in cylindrical bending are restated to clarify the problem. The  new formulation 
introduces a generalized transverse shear force, which is the gross stress resultant directly related to the bending moment 
in the equilibrium equations of multilayered plates with imperfect interfaces and substitutes for the shear force of single-
layer theory. Finally, a delaminated cantilevered wide plate with a clamped edge is studied as a preliminary investigation of 
the applicability of the model to fracture mechanics problems.   
 
 
MODEL 
 

onsider a rectangular multilayered plate of thickness h  and in-plane dimensions 1L  and 2 L L , with 

1 2L L . A system of Cartesian coordinates, 1 2 3 x x x , is introduced with the axis 3x  normal to the 
reference surface of the plate, which is arbitrarily chosen, and measured from it (Fig. 1). The plate consists of n  

layers exhibiting different mechanical properties and joined by 1n  interfaces, which are described as mathematical 
surfaces where the material properties and the displacements may change discontinuously while the interfacial tractions 
are continuous. The layer k, where the index 1 ,..,k n  is numbered from bottom to top, is defined by the coordinates 

1
3
kx and 3

kx  of its lower and upper interfaces, S( )k  and S( )k , and has thickness ( )k h , Fig. 1 (the k superscript in 
brackets identifies affiliation with layer k). Each layer is linearly elastic, homogeneous and orthotropic with material axes 
parallel to the geometrical axes. The displacement vector of an arbitrary point of the plate at the coordinate 

 1 2 3x , ,
T

x x x  is  1 2 3 v , ,
T

v v v w . 

The plate is subjected to distributed loads acting on the upper and lower surfaces, S  and S , and on the lateral 
bounding surface, B , is in plane strain conditions parallel to the plane 2 3x x  and deforms in cylindrical bending. In 
addition, the plate is assumed to be incompressible in the thickness direction and the interfaces to be rigid against mode I 
(opening) relative displacements. This latter assumption, which is often used in the literature, is rigorously correct only in 
problems where the conditions along the interfaces are purely mode II. The assumption, however, is acceptable in the 
presence of continuous interfaces, when the interfacial normal tractions are small compared to the tangential tractions and 
interfacial opening is prevented, e.g. by a through-thickness reinforcement or other means. To describe cohesive 
delaminations under general mixed mode conditions, the general treatment, which has been proposed in [18], for plates, 
and in [19], for wide plates in cylindrical bending, and accounts for interfacial opening, must be applied. Based on the 
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assumptions above, the displacement components then simplify in 1 0v , 2 2 2 3 ( , )v v x x  and 3 2 ( )v w x .  
Following the classical assumption of lower-order plate theories, in the constitutive relationships for the generic layer k 
the normal stresses, 33( )k  for k =1..n-1, are assumed to be negligibly small compared to the other components. This 
yields: 

 

22 22 22 ( ) ( ) ( )k k kC      and  23 55 232 ( ) ( ) ( )k k kC       (1a) 


2222 22 
( )( ) ( )kk kA      and  23 55 232  ( ) ( ) ( )k k kA       (1b) 

 

with  22 22 23 32 33 ( )( ) /
kk C C C C C  and  22 22 21 12 11

( )( ) /
kk A A A A A  , where the ( )k

ijC  and ( )k
ijA  are the coefficients 

of the 6×6 stiffness and compliance matrices (engineering notation). Transverse normal tractions will then be derived a 
posteriori from local equilibrium. 
The interfaces are described by interfacial traction laws which relate the interfacial shear tractions, acting along the surface 

of the layer k at the interface with unit positive normal vector, S( )k ,  
 

23 2 23 2 3 3    ( )ˆ ˆ ( ) ( , )k k k k
S x x x x         (2) 

 

to the interface relative sliding displacement: 
 

        1
2 2 2 2 2 3 3 2 2 3 3

    ˆ ˆ ( ) , ,k kk k k kv v x v x x x v x x x       (3) 
 

The  interfacial traction law is generally nonlinear to represent different physical mechanisms, which may include the 
elastic response of thin interfacial layers, cohesive/bridging mechanisms developed by trans-laminar reinforcements or 
other means, material rupture, elastic contact along the delamination surfaces [3-7,20,21]. The law can be approximated as 
a piecewise linear function so that the arbitrary branch i is described by an affine function of the relative displacement: 
 

 23 2
ˆ ˆ ˆi k i k i k k i k

S S SK v t                (4a) 
  

  2  ˆˆk i k i k i k
S S Sv B t               (4b) 

 

where i k
SK  and i k

SB  are the interface tangential stiffness and compliance and i k
St   is a constant interfacial traction which is 

assumed to act when 2 0ˆkv  , and is typically positive/negative for positive/negative 2̂
kv , i.e.  2 2    ˆ ˆ( ) H( )i k k k i k

S St H v v t  

with H  the Heaviside step function. A purely elastic interface is described by a single branch with 0k
St , perfectly 

bonded interfaces are defined by 0k
St  and k

SB 0, which yields 2 ˆkv 0, and fully debonded interfaces by 0k
St  and 

k
SK 0, which yields  ˆ k

S 0. For  0k
St , the affine law of Eq. (4) could describe the bridging mechanisms developed by 

a through-thickness reinforcement, e.g. stitching, applied to a laminated composite [21].  If the relationship (4) is used to 
represent branches of cohesive  traction laws, different linear functions may be needed to represent processes inducing 
loading and unloading of the delaminations and the associated sliding and reverse-sliding mechanisms. In this paper, 
equilibrium equations will be derived for plates with interfaces described by the arbitrary branch i of Eq. (4) and, for the 
sake of simplicity, the superscript i will be removed. 
 
Two length-scales displacement field 
The displacement field is assumed to be given by the superposition of a global field and local perturbation terms (or 

enrichments). The nonzero components of the displacement vector at an arbitrary point  1 2 3x , ,
T

x x x  are: 
 

 
1 1

2 2 3 02 2 3 2 3 3 2
1 1


 

 

       ˆ( , ) ( )
n n

k k k k k

k k

v x x v x x x H v H       (5a) 

 

3 2 2 0( ) ( ) v x w x w                    (5b)      
 

where 3 3 ( )k kH H x x  3 30 ,   ;kx x 3 31 ,   kx x  and the terms on the right hand side of Eq. (5a) denote different 

contributions in the displacement representation: 02 02 2 ( )v v x , 0 0 2 ( )w w x  and 2 2 2( )x   define standard first order 

shear deformation theory terms, which are continuous with continuous derivatives in the thickness direction, 1
3C , and, 
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when the reference surface coincides with the mid-surface of the bottom layer, define the generalized displacement 
components of its points. The third term in Eq. (5a), with summations on the n-1 of interfaces, supply the zig-zag 

contributions, 2k , [9,10], which are continuous in 3x  but with jumps in the first derivatives at the interfaces, 
0
3C , and are 

necessary to satisfy continuity of the shear tractions at the interfaces in plates with arbitrary stacking sequences; the fourth 
term, with summations on the n-1 interfaces, define a discontinuous field and supply the contribution of the relative 
displacements (jumps) at the cohesive interfaces. Eq. (5) define a first order model, since the displacements are piecewise 
linear functions of 3x . Higher order models have been proposed in the theories in [11,13], which however have no 
advantages over I order models in the presence of imperfect interfaces, as it was proven in [18].   
The linear infinitesimal nonzero strain components at the coordinate 3x  within layer k are derived using Eq. (5):  

 

    
1 1

22 02 2 2 2 3 2 2 3 3 2 2
1 1

 
 

 

      , , , ,ˆ
k k

k j j j

j j

v x x x v         (6a) 

 

  
1

23 0 2 2 2
1

2  




   ,

k
k j

j

w            (6b) 

  

where the comma followed by a subscript denotes a derivative with respect to the corresponding coordinate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 1: (a) Composite plate showing discretization into layers, imperfect/cohesive interfaces and delaminations. (b) infinitesimal 
element of layer k showing stress resultants and couples and interfacial tractions. 
 
Homogenized displacement field 
The n-1 unknown zigzag functions 2 2 ( )k x  for k = 1..n-1 in Eq. (5a) are determined as functions of the global 
displacement variables and displacement jumps by imposing continuity of the shear tractions, Eq. (2), across the layer 
interfaces, which yields: 

 

1
23 3 23 3 ( ) ( )( ) ( ),   k k k kx x         for k =1..n-1.       (7) 

 

Through Eq. (7), (6) and (1) the kth zig-zag function is defined in terms of the global displacement variables: 
 

   1
2 0 2 2 22    ;

,
kk w             (8) 

 

where: 
 

 
22 55 55   ; ( )i j i jC A  and  1    ( ) ( )k k k

ij ij ijA A A .      (9) 
 

Once the functions 2 2 ( )k x , for k =1...n-1, have been defined, the relative displacement at each cohesive interface, 2ˆ
kv , is 

defined through the constitutive law of the interface, Eq. (4b), using Eq. (1a), (2), (6b) and (8). The expression for the 

displacement jump at the S( )k  interface at the coordinate 3
kx  in terms of the global displacement variables is: 

x3
k-1

x3
k

p (x2, t)

kth layer

cohesive
interfaces

delaminations

x1

x3

x2

h

L2

L1
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  2 0 2 2 22   ,ˆ         k k k k
S Sv w B t         (10) 

 

with  
 

    11
22 55 22

1

1



 
    

 
 ;

k
jkk k

S
j

C B          (11)  

Eq. (8) and (10) can then be inserted into Eq. (5) to obtain the homogenized displacement field. The displacement 
components within layer k are: 
 

     1

2 02 2 3 0 2 2 22
1

 




    ,

k
k k i i

S S S
i

v v x w R B t                          (12a) 
 

  
0k w w                                        (12b) 

 

where: 
 

     1
1

22 22 3 22 3 3 22
1





 
      

 
 ;( )
k

ik k i i
S S

i

R R x x x        (13) 

 

Eq. (12) highlight that the displacement field is fully defined by the 3 displacement variables, 02 0 2,   ,  v w , which describe 
the global part of the field, and are underlined in the equations, and by parameters which depend on the elastic constants 
of the material, the layup and the geometry (no line) and parameters depending on the properties of the interfaces through 
the assumed interfacial traction laws (curved line on top). For perfectly bonded layers, when k

SB 0 for k = 1..n-1, all 
terms with the curved line on top vanish and the equations are those of first order zig-zag theory [9,10].  
The strain components in the layer k in terms of the homogenized displacement variables are: 
 

        
1

1
23 0 2 2 22 3 0 2 2 22

1

2 1 1 ;
, , ,

k
k ik

S
i

w R w  




 
       

 
       (14a) 

 
22 02 2 2 2 3 2 2 0 22 22, , , ,( )k k

Sv x w R              (14b) 
 

The interfacial tractions at the ( )k S  interface at the coordinate 3
kx , in terms of the homogenized displacements are: 

 

  23 0 2 2 22,
ˆ ˆk k k k

S SK w               (15) 

  
Equilibrium equations 
Equilibrium equations and boundary conditions are derived in weak form through the Principle of Virtual Works: 
 

   
1

22 22 23 23 2 3 3 3 3
1

2 0        
  


 



          


V S S S B( )
ˆ ˆ

k

n
k k k S S B
S S i i

k

dV t v dS F v dS F v dS F v dB  (16) 

 

where V  is the volume of the plate and i = 2,3; the virtual displacements are assumed to be independent and arbitrary 
and to satisfy compatibility conditions. The first term on the left hand side defines the strain energy in the volume of the 
body; the second term, with the flat line on top, the energy contributions due to the interfacial tractions on the n-1 
interfaces. The last terms define the work done by the external forces, with 3

SF   (top), 3
SF   (bottom) and B

iF  (lateral) 

the components of the forces acting along the bounding surfaces of the plate, S , S  and B . Tangential forces 

acting on  S  and S  have been assumed to be zero (refer to [18,19] for more general loading conditions).  
The term related to the interfacial tractions was not present in the models where this approach was first proposed for 
plates with linear-elastic interfaces [11-14]. The terms were also missing in all subsequent models which extended the 
theories to different problems (see list in [18]). It has been recently proved in [18] that, in the absence of these terms, the 
solutions are accurate only in the limiting cases of fully bonded and fully debonded interfaces. 
Virtual strains and displacements in Eq. (16) are defined as functions of the global displacement variables using Eq. (10), 
(12) and (14). Then, by applying Green’s theorem wherever possible and after lengthy calculations, Eq. (16) yields the 
equilibrium equations and boundary conditions. Dynamic equilibrium equations and boundary conditions for multilayered 
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plates with arbitrary stacking sequences, mixed mode interfaces and under arbitrary loadings have been derived in [18]; a 
particularization of the equations to plates deforming in cylindrical bending have been presented in [19].  
The equilibrium equations for wide plates with sliding only interfaces and quasi-static loading with 2 0  ,S SF  are 
presented here in a form that highlights similarities and differences with respect to single-layer theory: 
 

02 :v  22 2 0,N           (17a) 
 

2 :  
22 2 2 0 ,
b

gM Q           (17b) 
 

0 :w  2 2 3 3 0   ,
S S

gQ F F          (17c) 
 

where 22N  and  22
bM  are normal force and bending moment in the 2x  direction and 2 gQ  is a generalized transverse 

shear force which is statically equivalent, at any arbitrary sections of the plate with outward normal n = 20 1 0 , ,
T

n , to 
the vertical equilibrant of the external forces acting on the portion of the plate to the right of the sections (Fig. 1a): 
 

 normal force:     
 3

1
3

22 22 3
1







k

k

n x k

x
k

N dx           (18a) 

 bending moment:   
 3

1
3

22 22 3 3
1







k

k

n x kb

x
k

M x dx          (18b) 

 generalized shear force:   

 1
2 2 2 22 2 22 2 2    , ,

ˆb z z S
gQ Q Q M M         (18c) 

 

where 
 

 transverse shear force:  
 

 3

1
3

2 23 3
1

k

k

n x kb

x
k

Q dx




           (18d) 

 

 gross resultants and couples associated to the multilayered structure: 
 

    3

1
3

1
1

2 23 22 3
1 1






 

   ; ,
k

k

n kx k iz

x
k i

Q dx           3

1
3

1
1

22 22 22 3 3 3
1 1






 

    ;
k

k

n kx k iz i

x
k i

M x x dx    (18e) 

 

 gross resultants and couples associated to the cohesive interfaces:  
 

    3

1
3

1

22 22 22 3
1 1

k

k

n kx kS i

x
k i

M dx




 

   ,     


 
11

2 22
1

 




   ˆ ˆ
n

l l l
S S

l

t      

 (18f) 
 

The terms in the Eq. (18e) vanish in unidirectionally reinforced systems and those in Eq. (18f) vanish in fully bonded 
systems. The generalized shear force then coincides with the resultant of the transverse shear stresses, 2 2

b
gQ Q , when 

the layers have the same elastic constants, namely when  1
22 0; j   so that 22 0zM  and 2 0zQ  , and the interfaces are 

perfect, namely when 0k
St  , k

SB  0 and 2ˆkv  0 so that  22 0SM   and 
1

2 0̂  ; in this case the equilibrium equations 
coincide with those of single layer theory.  In all other cases, the generalized shear force depends on the multilayered 

structure, through 2
zQ  and 22

zM  , and on the status of the cohesive interfaces, through 22
SM  and 

1

2̂ ,  and the classical 
relation between bending moment and shear force of single-layer theory is modified as in Eq. (17b). 
The mechanical/geometrical boundary conditions on C , at 2 0 ,x L , with n =  20 1 0 , ,

T
n  the outward normal, are: 
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02 :v  22 2 2   BN n N  or 02 02 v v          (19a) 
 

2 :  22 2 2 b bBM n M  or 2 2            (19b) 
 

0 :w  
2 2 3  B

gQ n N  or 0 0 w w          (19c) 
 

0 2 , :w   
22 2 22 2 2 2   z S zB SBM n M n M M  or 0 2 0 2 , ,w w        (19d) 

 

where  
 

  3

1
3

3
1

2 3,   for ,
k

k

n x kB B
i ix

k

N F dx i
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Terms with the tilde define prescribed values of generalized displacements and gross forces and couples applied to B  . 
Equilibrium and boundary conditions can be expressed in terms of the homogenized displacement variables using the 
constitutive and compatibility Eq. (1), (12), (14) and (15). The equations are presented in [19]. 
Eq. (14a) and (9) show that the transverse shear stress, 23 , obtained from the shear strains, 23 , through the constitutive 

Eq. (1), is constant in the thickness and related to the transverse shear force, Eq. (18d), through 23 2  /bQ h . This stress 
does not describe the effective status of the material, but for the limit case of a system with perfectly bonded interfaces 

and layers with the same elastic constants, where 
1

2 22 2 22 2 2 0, ,
ˆz z SQ M M      and 2 2b

gQ Q . In the presence of 

imperfect interfaces, 23  follows the dependence of the interfacial tractions on the stiffness of the interfaces, due to the 
imposed continuity, Eq. (7)-(10), and progressively goes to zero when the stiffness of the interfaces decreases; in fully 
bonded systems with a multilayered structure, where 

2 2 2 22 2   ,
b z z

gQ Q Q M  , 23 2  /bQ h  again does not describe the 

actual stress distribution but for the special case of layers with the same elastic constants where 2 22 2 0 ,
z zQ M .  

Based on the observations above, a  generalized transverse shear stress can be introduced, which is the relevant internal 
stress for strength predictions, 23 2g gQ h  . The generalized transverse shear stress, 23 g , averages the actual shear 

stress distribution which can be obtained a posteriori from the bending stresses by satisfying local equilibrium, 

22 2 23 3 0  ( ) ( )
, ,

k k post , so that 
3
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g x

k

h dx .  Similarly, the transverse shear strain, which is related to the 

transverse shear stress through the constitutive Eq. (1), 23 23 552 / C  , only partly describes the shear deformations of 

the plate whose correct measure within this model is given by a generalized shear strain 23 23 552 /g g C  . In order to 

account for the correct shear deformations in the solution of the differential equations, a shear correction factor, 2K , can 

be introduced such that  2
23 23 552 /( )K C  . 2K  is equal to 5/6 in fully bonded unidirectionally reinforced plates, to 

account for the approximated constant distribution of 23  in the thickness, and it becomes a problem dependent 
parameter in multilayered plates, e.g. [22]; in [9] it was shown that, for simply supported plates with common layups and 

geometrical/loading conditions, the homogenized zigzag theory with  2K  = 1 leads to accurate predictions of the 

displacement field. In plates with imperfect interfaces, 2K  must depend on the stiffness of the interfaces. Work in in 

progress on the derivation of 2K  and results are presented here for 2K =5/6  (see also [18-19]).  
 
 
 



 

                                                                       R Massabò, Frattura ed Integrità Strutturale, 29 (2014) 230-240; DOI: 10.3221/IGF-ESIS.29.20 
 

237 
 

 
APPLICATIONS 
 
Highly anisotropic, simply supported, multilayered wide plates with imperfect interfaces 

he homogenized model for multilayered plates with imperfect interfaces has been verified against exact 2D 
elasticity solutions in [18,19]. Simply supported, highly anisotropic multilayered plates, loaded quasi-statically, with 
one or more weak layers have been examined on varying the properties of both layers and interfaces. The whole 

transition between fully bonded and fully debonded plates has been considered. The diagrams in Fig. 2 show exemplary 
results taken from [19] and refer to a highly anisotropic, thick plate, with two imperfect interfaces having different 
stiffnesses.  
 
 
 
 
 
 
 
 
 
 
 
                               (a)                                      (b)                                      (d)                                      (e) 

Figure 2. Simply supported wide plate with L/h = 4 subjected to a sinusoidal transverse load,  0 2 sinq q x L . Stacking 

sequence: three layers, (0/90/0), elastic constants: 25/T LE E , 50/LT LG E , 125/TT LG E  and 0 25.LT TT    [1]. (a) 
Longitudinal displacements and (b) transverse shear stresses at the end support, (c) bending stresses and (d) transverse normal stresses 
at mid-span. Stresses are shown through the thickness (transverse shear/normal stresses derived a posteriori from equilibrium). Lower 
interface, 1 4S TB E h   (very compliant), with 21/ ( )T T TTE E   , upper interface, 2 4 11 10S SB B   (almost fully bonded). 
(modified after [19]).                                                             
           
Wide plates with clamped edges 
The zigzag theory  for fully bonded plates [9,10] was applied in [17] to a multilayered cantilever beam subjected to a 
concentrated force F at the free end. The authors noted that the shear force was not constant along the beam length, as 
they would have expected given the linear distribution of the bending moment. In addition, the shear force increased from 
zero (at the clamped edge) to an asymptotic value higher than F. These apparent inconsistencies are explained by Eq. 
(17b), (18c) and (19c), which show that the internal gross stress resultant related to the bending moment, through Eq. 
(17b), is the generalized transverse shear force, Eq. (18c), which is statically equivalent to the vertical equilibrant of the 
external forces acting on the portion of the plate to the right of each arbitrary cross section, 2 gQ F . 

The diagrams in Fig. 3 refer to a cantilevered wide plate of length L/h = 10 made with two unidirectionally reinforced 
layers with elastic constants, 25/T LE E , 50/LT LG E , and 0 25.LT TT   , connected by a linearly elastic weak 

layer with 1 1 1
23 2

ˆ ˆ ˆS SK v   . Diagram (a) depicts the transverse shear force, 2
bQ  Eq. (18d), along the plate length for 

different values of the elastic interfacial stiffness and highlights the apparent inconsistency noted in [17] for a fully bonded 
multilayered plate. Note that 2

bQ  is forced to be zero at the boundary by the geometric boundary conditions at 2 0x  , 

0 2 0 2 0  ,w w  Eq. (19c,d),  which yield 23 23 2 0bQ    . Diagram (b) highlights that the generalized transverse 

shear force in Eq. (18c), 2 gQ , correctly coincides with the external applied force F at all coordinates and 
1

2 22 2 2,
ˆb SQ F M     (in the example 2 22 2 0,

z zQ M   since the layers are equals; in [17] 2 2 2 22 2,
b z z

gQ Q Q M    and 
1

22 2 2 0,
ˆSM     since the plate is multilayered and fully bonded). Diagram (c) compares the values of the interfacial 

tractions along the plate length, obtained a posteriori from local equilibrium, with those obtained with a classical discrete 
layer approach [6-8] and shows the existence of a boundary region near the clamped edge where the interfacial tractions 
predicted through the homogenized approach are not correctly described (bending stresses, not shown, are accurately 

T 
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predicted in all cases). This is a consequence of the geometric boundary conditions imposed at the clamped boundary. 
The size of this boundary region depends on the interfacial stiffness and is negligible for very stiff and very compliant 
interfaces. In a multilayered plate the size of the boundary region is nonzero even when the layers are fully bonded, since 

2 22 2 0,,z zQ M  , Eq. (18c). The diagrams (d) and (e) show bending and transverse shear stresses at the mid-span for 
different values of the interfacial stiffness. Predictions are accurate in all cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a)                                 (b)                   (c) 
 
 
 
 
 
 
 
 
 
 
 
 
          (d)      (e) 
 
Figure 3. Wide plate clamped at 2 0x  and subjected to a concentrated force F at 2x L . Two layers, unidirectionally reinforced 

with 25/T LE E , 50/LT LG E , 125/TT LG E  and 0 25.LT TT   , 1/ ( )L L LT TLE E    ; interface at the 
midplane. (a) Transverse shear force along plate length. (b) Generalized transverse shear force, shear force and equilibrating resultants. 
(c) Interfacial tractions along plate length; homogenized model (thick lines), discrete-layer model (thin lines). (d-e) Bending (d) and 
shear (e) stresses through thickness at 2 2/x L  . (shear stresses calculated a posteriori from local equilibrium).  

 
Plates with delaminations  
As a preliminary investigation of the applicability of the theory to fracture problems, the interface in the cantilevered plate 
studied before has been assumed to be fully bonded, for 20 2/x L  , and fully debonded, for 22/L x L  . 
Homogenized equilibrium equations have been derived for the two regions in terms of the homogenized displacement 
variables, 02 0 2,   , v w  , and continuity conditions applied at the delamination tip, at 2x L . The model accurately 
predicts gross stress resultants/couples and stress components. Bending and transverse shear stresses are depicted by the 
solid curves (thick lines for 2 2/x L and thin lines for 2 2/x L ) in Figs. 3d,e. Incompatible displacements are 

predicted in the layers to the immediate right and left of the cross section at 2 2/x L , for 3 0x  ; this is due to the 
imposition of the continuity conditions on the homogenized displacement variables only (see Eq. (12a) and (19)). The 
incompatibility produces unreliable predictions of the stresses in a very small region localized at the crack tip, of size 

50/L . Accurate predictions of energy release rate and stress intensity factors are obtained using expressions derived 
for orthotropic layers in [23], which depend on stress resultants and couples at the crack tip.    
 

0 1.  and fully bondedS LK h E 
0 01.S LK h E 
0 001.S LK h E 

fully debonded
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CONCLUSIONS 
 

quilibrium equations were derived in [18,19] for multilayered composite plates with cohesive interfaces and 
delaminations which depend on only six unknown displacement functions (three for wide plates) for any arbitrary 
numbers of layers and interfaces. The equations have been particularized here to plates deforming in cylindrical 

bending and restated in a form similar to that of single-layer theory. This introduces a generalized transverse shear force 
which is directly related to the bending moment, as the shear force is in single-layer theory, and depends on the 
multilayered structure of the material and the status of the interfaces. The new equations explain the apparent 
inconsistencies which have been observed in the shear force when using zigzag theories to model plates with clamped 
edges. Applications to cantilevered wide plates with imperfect interfaces and delaminations confirm the accuracy of the 
proposed model in predicting stress and displacement fields in thick, highly anisotropic, multilayered plates. They also 
highlight the existence of boundary regions, near the clamped edges and at the delamination tips, where gross stress 
resultants and couples are accurately predicted, while stresses and displacements in the layers are not, as a consequence of 
the imposition of boundary/continuity conditions on the global displacement variables only. The size of the boundary 
region at the delamination tip in a unidirectionally reinforced laminate is very small, 50/L  with L  the characteristic 
inplane dimension. The presence of the boundary regions must be accounted for in the solution of the problems and 
fracture mechanics predictions must rely on expressions depending on gross stress resultants and couples, which should 
be calculated at the boundary of the region surrounding the crack tip. It is expected that improvements in the prediction 
of stresses and displacements in the boundary regions may be obtained through the introduction of a shear factor which 
depends on the status of the interfaces. 
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