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ABSTRACT. In this article we propose a new auxetic periodic lattice with negative Poisson's ratio which tends to 
the limit ν=-1 under particular conditions. We have studied its generation and kinematic, and we give a full 
description of the mechanical properties of this innovative model. Calibrating the geometrical configuration of 
the lattice and the mechanical properties of the constituent material we are able to have a Poisson's ratio which 
is arbitrarily close to -1. 
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INTRODUCTION  
 

oisson's Ratio, usually represented by ν, is defined as the ratio of transverse contraction strain to longitudinal 
extension strain with respect to the direction of stretching force applied. Since tensile deformation is considered 
positive and compressive deformation is considered negative in the definition of Poisson's ratio is introduced a 

minus sign, so that common materials have a positive ratio. However, there are particular materials that expand laterally 
when stretched longitudinally with a negative Poisson's ratio, they were named for the first time auxetic materials by Ken 
Evans in an article in Nature (1991). For isotropic materials it may be shown that Poisson's ratio is between -1≤ν≤ ½ in 
3D and -1≤ν≤1 in 2D, for anisotropic materials ν is not restricted by the above limits. The value of the Poisson's ratio has 
also important consequences for other aspects of the behavior of materials, in fact the most materials resist a change in 
volume as determined by the bulk modulus K more than they resist a change in shape, as determined by the shear 
modulus μ, the values of K are typically larger than the values of μ. By changing the microstructure of a material in such a 
way that the Poisson's ratio ν is lower, the values of K and μ can be altered. Decreasing the value of ν to negative value, it 
would result into a material with a higher shear modulus μ than the bulk modulus K. Different geometrical structures and 
models are created trying to reproduce some observed feature in auxetic materials, ranging from the macroscopic to 
microscopic and to the molecular levels. A simple classification can be based on mechanical considerations. Almost all of 
these models are based on a simple mechanism that is treated as a unit cell leading to a global stiffening effect. One of the 
earliest models used to describe these special materials was that with re-entrant structure, firstly suggested in [1]. Over the 
years, many more sophisticated models have been proposed. Another model is based on chiral structure, the researchers 
in this area use the adjective "chiral" to mean a physical property of spinning. In this type of structures, basic chiral units 
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are firstly formed by connecting straight ligaments to central nodes which may be circles or rectangles or other 
geometrical forms. The auxetic effects are achieved through wrapping or unwrapping of the ligaments around the nodes 
in response to an applied force, as shown in [2], the Poisson's ratio ν of a chiral structure for in-plane deformations, with 
flexible ribs and rigid node, can be tailored to be around -1. Later Ruzzene and Spadoni, in [3], have considered the 
behavior of structures by introducing the flexibility of the nodes. 
Other models, as in [4], derive the auxetic behavior by the rotation of rigid or semi-rigid shapes (triangle, squares, 
rectangles and tetrahedron) when loaded, this type of structures has been developed to reproduce the behavior of foams 
and hypothetical nanostructure networked polymers. A different approach is followed by Bathurst and Rothenburg in [5], 
they formulate the incremental response of an assembly of elastic spheres, considering an isotropic distribution of 
contacts around a particle. Since the negative Poisson's ratio is a scale independent property the auxetic behavior can be 
achieved at a macroscopic or microstructural level, or even at the mesoscopic and molecular levels, many models were 
developed to simulate polymeric structure or anisotropic fibrous composites. The first auxetic microporous polymeric 
material was investigated in [6]. It was an expanded foam of PTFE which has a highly anisotropic negative ν =-12. Several 
cases of negative Poisson's ratios have been discovered in the analysis of anisotropic fibrous composites. In these 
composites there is a high degree of anisotropy and the negative Poisson's ratio only occurs in some directions; in some 
cases only over a narrow range of orientation angle between the applied load and the fibers. In a recent advance, laminate 
structures have been presented which give rise to intentional negative Poisson's ratios combined with mechanical isotropy 
in two dimensions or in three dimensions. These laminates have structure on several levels of scale; they are hierarchical. 
By appropriate choice of constituent properties one can achieve Poisson's ratios approaching the lower limit of -1. 
Auxetic systems perform better than classical material in a number of applications, due to their superior properties. They 
have been shown to provide better indentation resistance [7, 8 and 9] for their property of “densification” in the vicinity 
of an impact. The auxetic materials form dome shaped structures [10, 11] when they are subjected to out of plane bending 
moments instead the saddle shape adopted by the common materials. Also, they can be useful when we need better 
acoustic and vibration properties than the conventional materials [12, 13 and 14].  
 
 
MODEL OF PERIODIC LATTICE WITH AUXETIC MACROSCOPIC BEHAVIOR 
 

e consider radially foldable structure formed by two angulated elements ABC and DBE, shown in Fig. 1, 
connected together through a hinge in B.  
 

 
 

Figure 1: Pair of linkages movable with a single degree of freedom. The two rigid linkages ABC and EBD are shown in grey and black, 
respectively. They are constraint at the “coupler” point B to have the same displacement components. Points A and D and E and C 
can only move along straight lines. 
 
The coupled angulated elements ABC and DBE can roto-translate with a single degree of freedom and the end point A, 
C, D and E can only translate along to Ox-axis and the axis inclined by the angle α with respect to the Ox-axis, 
respectively. 
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In analyzing the trajectory of the central point B, we also follow the more general formulation given in [15]. In Fig. 1, p is 
the length of the arms, θ the internal angle between them and α is the angle between the two straight lines along which the 
points A, D and C, E are constrained to move. B is the “coupler” point of the linkage. The equation for the one-
parameter trajectory followed by the point B is obtained fixing the values of the geometric variables p, θ, α; then, the 
position of B is determined by the angle γ. When we couple the movement of the linkage ABC with the linkage EBD, we 
obtain a relation between angles θ and α. The common point B follow the radial line OB: 
 

x
cosθ1

sinθ
y


            (1) 

 

The two linkages are assembled in order to create a radially foldable structure, as depicted in Fig. 2 and to avoid crossover 
with other pairs in a polar arrangement of the fully radially foldable structure the angle γ has to satisfy the bound  

 

ηπγηα  ,                                                                                    (2) 
 

where EDBCAB


 . Different configurations are shown in Fig. 2b; the point B for each pair of linkages moves radially 
and the corresponding Poisson's ratios is equal to -1. We consider the triangular geometries with α=2π/3.  
 

 
                (a)                                                                                (b)                                                                                   (c) 
 

Figure 2: (a) Radially foldable structure with geometric parameters. (b) Configurations of the single degree of freedom lattices at 
different values of the geometrical parameter. (c) The radial distance OB as a function of γ is also given for p=1. 
 
Construction of periodic lattice 
The kinematically compatible periodic structures shown in Fig. 3 is obtained by a periodic distribution of the single cell 
elements shown in Fig. 2 as in [16].  
 

 
 

Figure 3: Periodic microstructure. Three different configurations, for different values of α are shown. The grey dashed region is the 
unit cell of the Bravais lattice where t1 and t2 are the primitive vectors. 
 
The microstructure is composed of shaped elements with 12 arms of the same length. A system of cross couple is built 
where two elements are disposed in two different planes. Each cross couple is mutually constrained to have the same 
displacement at the central point where a hinge is introduced. Different couples of crosses are then constrained each other 
by internal hinges at the external end of each arm. The periodic structures have a Bravais periodic lattice [17] consisting of 
points: 
 

R = n1t1+n2t2              (3) 
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where n1,2 are integers and t1,2 the primitive vectors spanning the lattice.  
 
 
EFFECTIVE PROPERTIES OF THE PERIODIC AUXETIC LATTICE 
 

acroscopic properties are derived analytically for our lattice. The triangular lattice have three-fold symmetries 
and basic considerations on the symmetry group of the material lead to the conclusion that its constitutive 
behavior is isotropic (in the plane of deformation). Therefore, it will be necessary to compute two effective 

elastic constants. Stability constraints the in-plane Poisson's ratio to range between -1 and 1. Effective properties are 
denoted as K*(bulk modulus), E*(Young's modulus), μ*(shear modulus) and ν*(Poisson's ratio) and macroscopic stress 
and strain as σ and ε , respectively. The structure is composed of slender crosses and classical structural theories can be 
conveniently applied to analyze the response of the elastic system. In particular, each arm of a single cross is modeled as 
an Euler beam undergoing flexural and extensional deformations. Each beam have Young's modulus E, cross-sectional 
area A and second moment of inertia J. Additional springs have longitudinal stiffness equal to kL or rotational stiffness 
equal to kR (see Fig. 4). We also introduce the non-dimensional stiffness ratio parameters α1=kLp/(EA), α2=kLp3/(EJ), 
α3=kR/(pEA) and α4=kRp/(EJ). 
Macroscopic stresses are computed averaging the resultant forces on the boundary of the unit cell. Periodic boundary 
condition have been applied on the boundary of the unit cell so that displacements are periodic and forces are anti-
periodic. Additional constrains are introduced to prevent rigid body motions. To solve the structure we apply the 
Principle of Virtual Work (PVW). It states that, if a structure is in equilibrium, then, for any arbitrary small virtual 
displacement satisfying kinematic boundary conditions, the work done by the external forces must equal the work done by 
the internal forces. In the following, we apply the PVW in two steps: in the first we find the internal actions (bending 
moments M, axial forces P and spring forces SL or moments MR) of the structure searching for the kinematic admissible 
configuration in the set of statically admissible ones (Flexibility Method) and in the second step we compute the 
macroscopic displacements. 
 

 
                                                                   (a)                                                                   (b) 
 

Figure 4: Lattice reinforced with elastic springs. (a) Longitudinal springs of stiffness kL. (b) Rotational spring of stiffness kR. The 
dashed contour indicates a typical unit cell of the periodic elastic system. 
 
This procedure has the advantage to maintain the analytical treatment sufficiently simple. We point out that all the results 
have been also verified numerically implementing a finite element code in Comsol Multiphysics®. We consider the elastic 
structure as in Fig. 5a, subjected to normal and tangential external forces supposed to be known and corresponding to a 
macroscopic stress having components 11 and 22 different from zero. We define an equivalent statically determined 
system disconnecting two springs and introducing the dual static parameter as unknown X, equal for the two springs, as 
shown in Fig. 5b. Then, the general field of tension Ξ (Ξ=M, N, SL or MR) in equilibrium with the external loads is: 
 

Ξ= Ξ0 + XΞ1           (7) 
 

where Ξ0 is the solution of the static scheme in equilibrium with the external loads and X=0; while the field Ξ1 is the 
solution of the static scheme in equilibrium with zero external loads and X=1. The deformed configurations of the 
isostatic equivalent structure violate the internal constraint in the two springs suppressed in the structure made isostatic. 
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(a) (b)

  
(c) (d)

 

Figure 5: Application of the Principle of Virtual Displacements. Lattice reinforced with longitudinal springs. (a) Simplified structured 
analyzed for the computation of the effective properties. The applied forces FN, FV, FT1 and FT2 correspond to macroscopic stresses 
components. (b) Disconnected statically determined structure introduced for the determination of the internal actions (M,N,SL). (c-d) 
Statically determined structure adopted for the computation of the displacement of the points A and B. 

 
Such kinematic constraints must be restored imposing the kinematic compatibility equation that determines the values of 
the unknown X and uniquely defines the elastic solution of the problem, as follows: 
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  (8) 

 

We note that for sufficiently slender beam structures, the contribution due to the shear deformation is negligible 
compared to that due to flexural and axial deformations and, therefore, it has been neglected. 
We reconstruct the distribution of internal actions by a linear combination of partial diagrams of N and M and of the 
spring forces SL, as functions of external forces FN, FT=(FT1+FT2)/2 and FV:  
 

N = N  + X N0 1
M = M  + X M0 1
L L LS  = S  + X S  0 1







          (9) 

 

Applying a second time the PVW we calculate the displacement of the point A and B (center of the spring) as shown in 
Fig. 5c-5d. To do this we consider as kinematically admissible structure the real structure and as statically admissible 
structure, an isostatic structure subjected to horizontal and vertical forces of magnitude equal 1/4, respectively, so that the 
virtual external works coincide exactly with the horizontal and vertical displacement of the point B (u1 and u2 in Fig. 5c), 
and we calculate the displacement of the point A (u3 in Fig. 5d ) considering a vertical forces of unitary magnitude, so that 
the virtual external works coincide exactly with the vertical displacement of the point A. In particular the PVW equations 
have the form:  
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beam

p
0 spring /2Lk

LS*L
iS)dξ

EA

N*
iN

EJ

M*
i(Miu ,  (i=1, 2 and 3),     (10) 

 

where Mi*, Ni* and SiL* (with i=1, 2 and 3) are the internal actions of the statically admissible structures subjected to forces 
applied in the point B in horizontal and vertical direction, and the internal actions of the statically admissible structure 
subjected to a vertical forces applied in the point A in vertical direction. The corresponding displacement are: 
 

u1 = A1 FN + B1 FT+C1 FV           u2 = A2 FN + B2 FT+C2 FV           u3 = A3 FN + B3 FT+C3 FV (11) 
 

where A1-3, B1-3, C1-3 are coefficients arising from the integrations. Previous equations are explicit linear relations between 
the forces FN, FT and FV associated to macroscopic stresses 
 

3F FN Tσ11
psin γ

4F 2 3F 2FV NTσ22
2 3psinγ




 


           (12) 

 

and the displacements of the points A and B associated to macroscopic strains: 
 

A F B F F2u 1 N 1 1 V1 Tε 211
3psin γ 3psin γ

A F B F Fu 3 N 3 3 V3 Tε 222
psin γ psin γ

C

C

 
 

 
 

                    (13) 

 

Solving previous relations (13) in term of FN, FT, and FV and substituting the result into eqn. (12) leads to the macroscopic 
constitutive relation between the macroscopic stress σ and macroscopic strain ε . Clearly, appropriate choices of the forces 
FN, FT, and FV can be considered in order to set to zero some components of the stress. 
The in-plane mechanical properties of the lattice with extensional springs are: 
 Poisson's ratio 
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   (14) 

 

where: 
 

d1=-9cos4γ 
d2=sin4γ    
d3=9(cos6γ -4 cos4γ +2cos2γ-1)    
d4=sin4 γ cos2γ    
d5=3(6cos4γ-7cos2γ-2cos6γ+1)            (15) 
d6=-9cos2γ 
d7=-3cos2γ    
d8=3(4sin2γcos2γ+1)    
d9=9(3cos6γ-4cos4γ+2cos2γ+1)  
d10=3(10cos4γ-6cos6γ-5cos2γ+3)    
    

 Bulk modulus 
 

)1α   γ2(cos 2
Lk  γ2sin 3

22ε11ε
22σ11σ

2

1
 LK







         (16) 

 

 Young's modulus 
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2 2σ σ11 22E 2K (1 - ν)L Lσ ε σ ε11 11 22 22
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            (17) 

 

where the constants d1, d2, d4, d6-10 are given in Eq. (15). 
 Shear modulus 

 

σ σ1 1 ν11 22μ KL Lε ε2 1 ν11 22
4 2 4 2 2 2 23 (9cos γ α sin γ α   3(2cos γ sin γ  1)α α  9α  3α )sin γ k1 2 1 2 1 2 L

2 2 2 2 2 2 2 2 212cos γα α  4sin γα α 9sin 2γ 6(2 sin 2 )α α  sin 2γ1 2 1 2 1 1 2 2
  

 
  

 

    


    

    (18) 

 

When rotational springs are considered the effective constants are as follows:  
 Poisson's ratio 

 

2 2e α e α  e α α  e α  e α1 3 2 4 3 3 4 4 3 45ν  R 2 2e α  e α  e α α e α - e α6 3 7 4 8 3 4 4 3 45

   


  
                     (19) 

 

where: 
e1=9 (2cos4γ-3cos2 γ+1) 
e2=(2cos4γ-cos2γ) 
e3=3(4cos2γ sin2γ-1) 
e4=27cos2γ           (20) 
e5 =9cos2γ 
e6=9(2cos4γ-cos2γ-1) 
e7=2cos4γ-3cos2γ 
e8=12cos2γ sin2γ-9    

 
 Bulk modulus 

23 3 (k / p )RK  R 2 2 22 (3sin γ α cos γ α 9cos γ)3 4


 
        (20) 

 Young's modulus 
 

26 3 (3α α )(k / p )3 4 RER 2 2 e α  e α  e α α  - e α - e α6 3 7 4 8 3 3 4 3 35




 
        (21) 

 

 Shear modulus 
   

23 3 (3α α )(k / p )3 4 RμR 2 2 2 2 2 9sin 2γ sin 2γ 6(2 sin 2 )3 4 3 4    




  
       (22) 

 
 
ANALYSIS OF EFFECTIVE PROPERTIES 
 

e analyze now the effective properties of the microstuctured media. We consider the case of vanishing stiffness 
of the springs kL, kR →0. We have that: W 
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* 2ν* 1 ν k O(k )1 L,R L,R
* 2K* 0 K k O(k )1 L,R L,R
* 2E* 0 E k O(k )1 L,R L,R

* * 2μ* μ μ k O(k )1 L,R L,R0

   

  

  

  

                                               ;                                       (23) 

where the coefficient ν1*, K1*, E1*, μ0*>0 are shown in Tab. 1. 
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Table 1: Explicit expression of the coefficients in the asymptotic formulae in eqn. (23). In the table η1=3EJ+p2EA, 
η2=3EJsin2γ+p2EAcos2γ, η3=3EJcos2γ +p2EAsin2γ. 
 
It is shown in (23) that also for deformable structures the Poisson's ratio remains -1 when the stiffness of the springs is 
zero, while the effect of the springs is to increase the value of ν*. In such a limit, the bulk and the Young's moduli vanish 
while the shear modulus remains finite. The limiting behavior described in (23) can also be understood in term of relative 
stiffness between the spring elements and the elements of the lattice as described by the coefficients α1…..4. In this respect, 
when α1…..4→0, the same outcomes of eqns. (23) are obtained.  
The dependence of the Poisson's ratio on the stiffnesses kL and (kR/p2) is shown in Fig. 6. Results confirm that the 
Poisson's ratio approaches -1 when the spring constants are zero. It is worthwhile to mention the maximum theoretical 
values that can be reached by the Poisson's ratios at the limit kL, kR/p2 →∞; the limiting expressions are: 
 

22 21 1 sin γ cos γ s 4ν* O(( )
23 psin γ

2 21 2 cos γ (s / p) 4ν* 1 O(( )
2 23 2 cos γ 3 2 cos γ

s / p)

s / p)


  


  

 

 
 
 

 
 
 
 

               (24) 

 

where we have considered, for simplicity, rectangular cross-sections of the arms, so that A=ts and J=ts3/12, where s and t 
are the in-plane and out-of-plane thicknesses, respectively. In the following Fig. 6 we compare the effective Poisson’s ratio 
ν* of the triangular lattice in function of the stiffness of the longitudinal springs kL, see Fig. 6a, and in function of the 
slenderness λ=p/s of the arms, see Fig. 6b. In each figure we consider three different materials with Young's modulus 
E=3000 MPa for thermoplastic polymer (ABS), E=60000 MPa for granite and E=200000 MPa for steel, the geometric 
configuration considered is given by the angle γ=4π/9. All the computations are performed considering a thickness t of 
the lattice out of plane of 1 mm. In Fig. 6a we have considered arms with length p=50 mm and in-plane thickness s=10 
mm. In Fig. 6b the values of the Poisson’ ratio are significant when λ=p/s≥5, in the range of validity of the beam theory 
which has been used for the computation of the effective behavior, anyway we show with dotted line the values of the 
Poisson’ ratio even for λ <5. The value of the stiffness of the springs has been set equal to kL=1 N/mm. As it is possible 
to see in Fig. 6, when the contribution of the spring is less relevant the Poisson’s ratio approaches -1, as confirmed by 
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analytical formulae, both when the stiffness of the spring kL→0, and when the slenderness of the arms λ→0. On the 
contrary  when the stiffness of the springs is big the Poisson’ s ratio approaches 1/3, as in the case of the classical 
triangular lattice used in several physical models and engineering.  
 

 
                                                 (a)                                                                                     (b) 
 

Figure 6: Effective Poisson’s ratio ν* for three different materials in the case of longitudinal springs. (a) Poisson’s ratio as a function of 
the stiffness kL. (b) Poisson’s ratio as a function of the slenderness λ=p/s.  
 
In the Fig. 7 we show the same results in the case of the lattice with rotational springs, for which the same considerations 
of the previous case are still valid. 
 
 

 
                                                 (a)                                                                                     (b) 

 

Figure 7: Effective Poisson’s ratio ν* for three different materials in the case of rotational springs. (a) Poisson’s ratio as a function of 
the stiffness kR/p2. (b) Poisson’s ratio as a function of the slenderness λ=p/s. 
 
 
CONCLUSIONS 
 

he constitutive properties of a new auxetic material are obtain analytically by using classical beam theory in the 
analysis of the microstructure of the lattice. Result show that the effective Poisson’ ratio of the lattice is arbitrarily 
close to -1. 
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