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ABSTRACT 

The international food production is reason of almost one-third of the 

total humans caused Greenhouse Gas (GHG) emissions. The Sustainable 

Development Goals (SDGs) include agriculture sector growth and 

management of climate change. Carbon footprint is an indicator of GHG 

intensity, created from different economic actions. It represents more 

than fifty percent of the total ecological footprint and used as managing 

tool for estimating environmental pollution. The current study 

investigates the relationship between agriculture sector specific 

indicators and carbon footprint in fifty-six countries by using panel 

econometrics. The outcomes of the study provide strong evidence on the 

presence of Environmental Kuznets Curve (EKC). The analysis also 

shows that there exists negative association between carbon footprint 

and agricultural development. However agriculture sector expansion by 

employing environment friendly methods and technologies decreases 

carbon footprint in selected countries. Furthermore, the relationship 

between carbon footprint and agricultural exports is found positive. It 

implies that agricultural exports encourage the carbon footprint growth 

by stimulating the production and transport of agricultural commodities. 

Finally, there is positive relationship between carbon footprint and high 

scale of agricultural production, which supports the concept of 

production-based emission. These findings emphasizes that too much use 

of fertilizers in agriculture sector fosters the carbon footprint growth and 

damages natural environment of countries. 
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1. Introduction 

Serious efforts are required in current decade to achieve SDGs, as deadline is 

approaching in year 2030. Sustainable development relies on the three domains: social, 

economic, and environment, which perform the important part in decision making for 

the policymakers (Dernbach and Mintz, 2011). Sustainable development through 

environmental sustainability requires that use of resources must be less than refill rate, 

even though population is raising carbon emissions, but overall level should remain low 

(Khan, 1995). Green growth, environmentally sustainable economic growth is 

considered a main tool to accomplish sustainable development. Economic growth with 

help of ecological and environmental sustainability is regarded as key goal of 

development policies across world. To attain green growth, control of CO2 emissions is 

necessary, which is only possible with innovations in methods of supply and use of 

green technologies to help cleaner production (Wiebe and Yamano, 2016).  

The second and thirteenth SDGs state that the world needs urgent work on climate 

change and agriculture sector growth. Improvements and rearrangements are required 

in food production, distribution, and consumption to achieve sustainable economic 

growth. Current picture of world climate advocates that zero net GHG emissions are 

required to prevent the world from being adversely affect by climate change in future. 

International climate policy formulated in the twenty-first Congress of the Parties 

(COP21) of the UNFCCC in Paris aims to control the rise in the worldwide temperature 

to sufficiently below two degrees Celsius above preindustrial levels and taking efforts 

to limit the temperature increase to one and half degree Celsius above preindustrial 

levels (UNFCCC, 2015). Policy emphasis the part of different sectors in climate change 

mitigation, particularly focusing on agriculture sector. 

Agriculture has been always main part of debate on carbon emission, its sources and 

effects, and carbon sink. In the past, agriculture production was household-based with 

short distance transportation, little energy consumption and little use of fuel (Amate and 

De Molina, 2013). According to Krey et al. (2012) agriculture consumes less electricity 

and heat, transportation, and industry.  Currently, agriculture sector is a major 

contributor of climate change as it produces a large quantity of GHG emissions. Almost 

one-third of the total GHG emissions originates from the agriculture sector (Gilbert, 

2012). In last decade, GHG emissions has increased due to large scale production in 

agriculture (Calvin et al., 2016).  Mbow et al., 2021 report that the global food system 

produces twenty-one percent to thirty-seven percent annual GHG emissions. According 

to International Atomic Energy Agency (IAEA) agricultural activities generates almost 
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thirty percent of total GHG emissions, which are reason of climate change and global 

warming.  

The food system is main reason of CO2 emissions due to change in land-use, which 

is result of clearing land for pastures and crop production. Fourteen percent of annual 

human caused CO2 emissions are due to change in net land-use (Le Quéré et al., 2018) 

and ten percent of these are from agriculture (Mbow et al., 2021). Application of urea 

and lime in agriculture also originate CO2 emissions. High demand of food by world 

population, the greater demand for meat and dairy products, and the intensification of 

agricultural methods has increased rate of GHG emissions. The international food 

system including fertilizer production, storage of food and its packing is reason for 

thirty-three percent of total human caused GHG emissions (Gilbert, 2012). These 

emissions comprise of three gases i.e., N2O, CH4, and CO2. 

CO2 emissions in agriculture sector has increased due to more use of energy in the 

sector. These include emissions from either tractor and other machines fuel or from 

fertilizers manufacturing and their transportation (Vermeulen et al., 2012). These 

emissions are measured as transport and energy emissions in the accounting framework 

of Intergovernmental Panel on Climate Change (IPCC). These emissions can be reduced 

by decarbonization of energy generation sources. Agriculture sector consumes around 

eleven percent of the total land of earth for yield production and employs seventy 

percent of the entire water surface (FAO, 2003; FAO, 2011). Current scenario of global 

warming and climate changes has a great impact on the sustainability of agricultural 

systems. Therefore, Springmann et al. (2018) describe the need to reduce agricultural 

emissions to maintain world environment. Poore and Nemecek (2018) investigate 

efforts on reducing environmental effects of food through consumers and producers. 

Use of carbon footprint and its estimations in literature has been increased in last 

decade. The carbon footprint determines the carbon amount being produced by 

economic activity. The carbon footprint is a demand for biologically productive space, 

and it is major component of the ecological footprint (GFN, 2018). It is used as 

managing tool for evaluating the environmental impact of different nations and main 

indicator of pollution in the environmental economics, as it is significant factor to 

improve the understanding of environmental degradation. Ecological footprint estimates 

a nation’s usage of grazing land, cropland, forests, and fishing grounds to supply 

resources and to absorb CO2 from the burning of fossil fuels (GFN, 2018). Notably, the 

carbon footprint describes greater than fifty percent of all ecological footprint in several 

countries. Moreover, the carbon footprint is generally accepted indicator of GHG 
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concentration, resulting from different economic actions. Scientists and policymakers 

treat it as a control indicator due to its increasing importance. 

The paper examines the agriculture specific determinants of carbon footprint, 

specifically aiming on the economic growth and development, agricultural 

development, agricultural trade (in terms of agricultural exports) and agricultural 

production. Next section of paper provides a systematic review of past literature on 

carbon footprint especially with respect to agriculture and Agri-related subsectors. Third 

section is development of a conceptual framework to examine agriculture-specific 

determinants of carbon footprint. Fourth section describes estimation technique 

including a detailed account of indicators and methodological framework. Fifth section 

provides estimates of econometric models. It comprises of discussions on findings and 

determinants of carbon footprint. Last section concludes analysis of the current study. 

2.  Literature Review 

Current literature on agriculture sector emissions focuses on estimations or 

measurement of emissions (Castesana et al., 2018; Rehman et al., 2019). Different 

works exist on the macro level estimation methods of GHG emissions. There are two 

methods to estimate GHG emissions: the production-based and consumption-based 

approach (Mózner, 2013). The consumption-based method declares emissions are 

emitted-emissions, which occur during the supply-chain of commodities utilized within 

a country, regardless of their production tertiary.  Therefore, countries are liable for 

emissions caused somewhere else due to its consumption, while the production-based 

method is based on domestic emission due to inventories (Peters and Hertwich, 2008; 

Mózner, 2013).  

The association between consumption-based emissions and GDP is higher than the 

GDP’s association with territorial emissions (IPCC, 2014). So, carbon footprint and 

consumption expenditure strongly correlate. The IPCC (2014) identifies various income 

and non-income features as main cause of carbon emissions in the recent years, like 

consumption expenditures, production methods, transport infrastructure, waste 

management, energy systems, population growth and trends in demographic structure 

(urbanization). Per capita emission of carbon footprint also depends on some other non-

income factors like geography, diet, and lifestyle (GAIA, 2012; Corsten et al., 2013). 

Empirical investigations to assess agriculture related determinants of carbon 

footprint at the nations level are rare in the past works, particularly from global point of 

view. Only a few studies explore the factors of agriculture sector emissions.  Kastratović 

(2019) examines the consequences of foreign direct investment on agricultural 
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emissions. He only considers CO2 emissions but does not estimate long run and short 

run links. Due to globalization, foreign direct investment (FDI) inflows and trade 

openness has increased. These are also major reasons of gas emissions for the host 

nations (Pao and Tsai, 2011; Naranpanawa, 2011; Ren et al., 2014; Le et al., 2016). 

International trade is also a reason of the difference in carbon emissions (Peters and 

Hertwich, 2008; Bows and Barrett, 2010). 

Agriculture is a main cause of nitrogen dioxide emissions to the environment (Audet 

et al., 2017). Fertilizer and cattle are the key determinants of CO2 emissions in 

agriculture sector (Luo et al., 2017). Mineral fertilizers, agriculture waste burning, and 

manure management are the main causes of ammonia for Argentina. Different studies 

report their findings related to growth of population in poor and rich countries, which 

causes to increase GHG emissions. According to Jorgenson and Clark (2010) population 

elasticity of GHG emissions for developed countries is 1.65 percent and for developing 

countries it is 1.27 percent.  Poumanyvong and Kaneko (2010) estimate the value of 

population elasticities of GHG emissions as 1.75 for low-income, 1.23 for middle-

income, and 1.12 for high-income nations. Furthermore, increase in labor productivity 

decreases intensity of gas emissions.  

Most of past studies only measures gas emissions or don’t provide theoretical 

background for the empirical examination. Robaina-Alves and Moutinho (2014), Luo 

et al. (2017) and Castesana et al. (2018) analyze the determinants of CO2 emissions from 

agriculture sector. Robaina-Alves and Moutinho (2014) decompose agriculture sector 

emissions into factors like economic growth, human capital accumulation, energy 

structure, energy intensity, emissions components, and labor productivity. They find 

that nitrogen use per cultivated area is main determinant of gas emissions. Ben Jebli and 

Ben Youssef (2019) find that agriculture sector value addition, and per capita increase 

in renewable combustible material and consumption of waste decrease CO2 emissions 

in the long run. They provide long run and short run factors of agricultural emissions at 

world level instead of individual country. 

Studies on carbon footprint also report product-level data and certain geographical 

area. According to Muthu (2014) among three major Chinese crops rice is producing 

highest percentage of carbon footprint, wheat is second in the list and maize is third. 

Fodders of agricultural farms produce more than two-third of the carbon footprint.  The 

work of Jacobsen et al. (2014) on livestock shows that one kg of pig’s meat produces 

carbon footprint equivalent to almost 5.7 kg CO2. According to Verge et al. (2008) and 

Desjardins et al. (2014) beef produces largest amount of carbon footprint among meat 
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production of different animals. Among the dairy products, milk powders generate 

highest carbon footprint in dairy production, butter is second and cheese is third in the 

list. 

Past literature also provides cross-country differences in carbon footprint. In 

addition to this, within a country agriculture seems to produce varied amount of carbon 

footprint. Carbon footprint of countries depends on country size, role of agriculture in 

country, agricultural production, population, and use of technology (Balogh, 2019).  

China is main producers of the worldwide carbon footprint and contributor of climate 

change. Carbon footprint of China’s crop output are more than eight percent of the 

country’s overall emissions and sixty-six percent of the carbon footprint are of the 

agrochemical origin. Energy consumption and irrigation produces twenty-two percent 

on average, while machinery management and plastic film contributes below ten percent 

of the overall carbon footprint in country’s crop output (Muthu, 2014). 

Agriculture sector performs an important part in the economy by providing food and 

nutrition, alongside further environmental, social, and economic effects (Li et al., 2016), 

but this area of economy is also a major cause of CO2 emissions causing climate change 

and global warming (Oenema et al., 2001; Tubiello et al., 2013; Calvin et al., 2016; 

Agovino et al., 2019). Technological advancement can reduce CO2, ammonium cation 

and nitrogen dioxide emissions from the agriculture sector (Cole et al., 1997). Strategies 

to lessen the gas emissions from agriculture sector can be formed by focusing on 

demand side factors (Franks and Hadingham, 2012) rather than supply side factors like 

land use, crop production decisions, soil fertility and forests (De Pinto et al., 2016). 

Sebri and Abid (2012), Chen et al. (2017), Waheed et al. (2018) and Paul et al. (2018) 

work on the demand side economic factors of agriculture sector GHG emissions. 

Ben Jebli and Ben Youssef (2017) find bidirectional causality between CO2 

emissions and agriculture sector in the long run and short run. GHG emissions from 

agricultural output per unit have been decreased globally (Bennetzen et al., 2016). The 

fast growth in technology and economic integration in last decade produced high 

emissions from agriculture sector (WRI, 2015).  Agriculture sector emissions varies 

country to country (Dace and Blumberga, 2016). Li et al. (2016) work on the importance 

of long run and short run factors of agriculture sector gas emissions.  

Giannadaki et al. (2018) find that agriculture sector ammonia gas emissions increase 

particulate matter air pollution, have significant harmful effects on human being health 

and increases rate of mortality. Fifty percent decrease in agriculture sector emissions 

can save more than two hundred thousand lives per year in the selected fifty-nine 

countries and can provide economic benefits of billions of US dollars. The mortality 
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rate can be decreased eighteen percent with an annual economic benefit of billions of 

US dollars. Decrease in agriculture sector emissions creates social and financial 

benefits. Hence, an analysis of the agriculture-specific determinants of emissions across 

different income level nations is useful. The topic of the current study is so crucial that 

it must be focused because reduction in agriculture sector emissions gives significant 

social and economic benefits. Identification of agriculture-specific factors of gas 

emissions is important for policy making in this area.  

3. Theoretical framework 

Consumption side analysis reveals that high income, developed and populated 

countries consumes processed food products, more meat and demand great amount of 

food products that cause greater carbon footprint. There exists a positive association 

between CO2 emissions per person and GDP per person (Ang, 2007). The EKC 

hypothesis has been proposed by Grossman and Krueger (1995) for examining the 

relationship between ecological pollution and economic growth like Kuznets (1955)1 

inverted U-hypothesis for income inequality and economic development. Grossman and 

Krueger (1995) state that pollution increases and environmental quality decreases at 

early stage of economic growth, but after achieving certain level of per capita income, 

environment quality improves with economic growth. Therefore, per capita pollution 

emissions are the inverted U-shaped function of income per person (Stern, 2004; Ozturk 

and Acaravci, 2010; Al-Mulali, Saboori, and Ozturk, 2015; Hussain and Dey, 2021). 

Economic development and industrial growth increase the use of natural resources, 

which damages environment, but after development environmental quality increases 

due to usage of cleaner technologies in the post-industrial stage (Munasinghe, 1999). 

The present study examines EKC hypothesis on carbon footprint. Presence of inverted 

U-shaped long run link between countries’ carbon footprint and economic growth (GDP 

per capita) suggests:  

 Carbon footptint = f(GDP per capita, GDP per capita2)           (1) 

Balogh and Jambor (2017) finds that agricultural development by engaging 

environment friendly technologies reduces agricultural CO2. The relationship between 

carbon footprint and agricultural development implies: 

 Carbon footptint = f(Agricultural value added)            (2) 

 
1 Kuznets (1955) suggests that inequality increases in the country at the early stage of income growth, but it moves back towards 

greater equality as economic growth endures. 
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Trade of processed meat products and animal feed has increased due to globalization 

(Kearney, 2010). It has reduced burden on environment (Balogh and Jambor, 2017) and 

decreased carbon footprint of countries through technological improvements. 

Agriculture sector trade effects carbon footprints by increasing food production and 

transport use. So, the relationship between carbon footprint and agricultural exports 

declares:   

 Carbon footptint = f(Agricultural exports)    (3) 

Environmental degradation increases with higher scale of agricultural production 

(Foley et al., 2011; Baccini et al., 2012; Grace et al., 2014; Henders et al., 2015). So, 

carbon footprint rises with increase in agricultural production, which depends on 

agricultural machinery and use of fertilizers. Effect of tractors and fertilizers use on 

carbon footprint propose: 

 Carbon footptint = f(Fertilizers, Tractors)     (4) 

Consumption habits of urban and rural populations have varied effect on the natural 

resources use. More urbanization in the countries also effect carbon emissions and 

spatial development of cities cause global warming through GHG emissions (Sethi, 

2017). So, countries with greater percentage of rural population have less carbon 

footprint as compared to a country that has more urban population. Therefore, carbon 

footprint also depends on percentage of rural population in the country. 

 Carbon footptint = f(Rural population)      (5) 

Figure 1 provides framework to find agriculture-specific determinants of carbon 

footprint. 

Figure 1: Carbon Footprint, GDP per capita and Agriculture Sector 
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Source: Authors’ developed theoretical framework based on literature review. 
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4. Data and Methods 

This section describes the path of empirical estimation of discussed phenomena. It 

includes details of data and methods employed in the analysis.  

4.1. Data and variable selection 

Data consists of seven indicators for fifty-six countries selected from Barilla Center 

for food and nutrition list for reference years 1980 to 2017. The list of sample countries 

with their respective sustainable agriculture index is provided in Table A (appendix). 

Food and Agriculture Organization (FAO) of the United Nations, World Development 

Indicators (WDI) of World Bank, and Global Footprint Network (GFN) are the sources 

of data. Selection of indicators is based on framework developed in last section. Detail 

description of the selected variables is mentioned in Table B (appendix). 

4.2 Econometric specifications 

This study employed panel data models in examining the association between the 

carbon footprint and its determinants. Panel data provides more observations with the 

help of pooling time series information across cross-sections and permits for 

informative data, high efficiency, high variability, more degrees of freedom and lesser 

collinearity among indicators (Gujarati, 2004). These advantages are possible if and 

only if individual heterogeneity does not exist in the data (Baltagi, 2008). This empirical 

study is conducted by using the following econometric techniques (also mentioned in 

Table 1). 

Table 1: Methodological framework to study the relationship between the carbon 

footprint and its determinants 

Step  Inquiry Test/ Method Objective 

1 
Cross-sectional 

Dependence (CD) 

CD test by Pesaran 

(2015) 

To unveil cross-country dependence 

between indicators. 

2 Slope homogeneity 

Slope homogeneity test 

by Pesaran and 

Yamagata (2008) 

To reveal the heterogeneity between the 

cross-sections. 

3 Unit root problem 
CADF and CIPS tests 

by Pesaran (2007) 
To verify order of integration of variables. 

4 
Long run 

cointegration 

Westerlund (2007) 

cointegration tests 

To confirm presence of cointegration 

between variables.  

5 
Estimation of long 

run relationship 

DCCE MG by Chudik 

and Pesaran (2015) 

To decide long run link between the 

variables. 

6 Granger causality 
Dumitrescu and Hurlin 

(2012) causality test 

To study the direction of relationship and 

causal links between the variables. 

Source: Authors’ developed framework. 
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4.2.1  CD test 

Firstly, CD test is required to examine cross-country dependence as CD analysis is 

the basic step in the study of panel data. Cross-correlation between error terms of 

econometric model and existence of non-zero error covariance between them indicates 

CD. Presence of CD is crucial problem in panel unit root and cointegration tests. These 

tests are irrelevant if CD assumption does not hold due to correlations among individual 

cross-sections (Chang, 2002). Second-generation tests like Cross-sectionally 

Augmented Im, Pesaran, Shin (CIPS) and tests of Westerlund cointegration assume 

heterogeneity and dependence among cross-sections. Different factors such as common 

shocks or model misspecification may cause CD dependence (Cerrato, 2002). If CD 

exists among units but not considered, results can be significantly biased (Breusch and 

Pagan, 1980; Pesaran, 2004).    

CD is defined as error term of panel individuals is related in the econometric model. 

Shock of economy effects individuals and influence other units in the panel. This has 

been described in following equation: 

 y(i,t) = α(i) + β(i)x(i,t) + u(i,t)       (6) 

where cov(u(i,t), u(j,t))  ≠ 0       (7) 

In all equations of paper, the subscripts ‘i’ and ‘j’ show the cross-sections i.e., i = 1, 

2, …, N and j = 1, 2, …, N and the subscript ‘t’ shows the time i.e., t = 1, 2, …, T.  

The Lagrange multiplier CDLM test by Pesaran (2015) is applied to exam CD. This 

CDLM test is effective when N is greater than T. Null hypothesis of CDLM test considers 

weak CD across countries against the alternative hypothesis in which the strong CD is 

present. Statistics of CD test is: 

 CD = √
2T

N(N−1)
∑ ∑ ρ̂(i,j)

N
j=i+1

N−1
i=1   ~N(0,1)i, j   (8) 

Here ρ̂(i,j)is the sample approximation of the pairwise correlation of errors.  

  ρ̂(i,j) =
∑ û(i,t)

T
t=1 û(j,t)

√(∑ û(i,t)
2T

t=1 )√(∑ û(j,t)
2T

t=1 )
       (9) 

Here û(i,t)
2 is estimate of u(i,t) in equation 6.  
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4.2.2  Slope homogeneity test 

The second step is application of slope homogeneity test (Pesaran and Yamagata, 

2008) to reveal the existence of slope homogeneity among units. This test does not allow 

CD (Atasoy, 2017). Tests statistics can be expressed as:  

 ∆̃SH= √N √2k
−2

(
1

N
S̃ − k)       (10) 

 ∆̃ASH= √N √
2K(T−k−1)

T+1

−2
(

1

N
S̃ − k)      (11) 

Here ∆̃SH is delta tilde and ∆̃ASH is the adjusted delta tilde.  

4.2.3 Unit root tests 

The third step employs panel unit root tests to confirm integration order of variables. 

Literature reports two kinds of panel unit root tests. The first type is described as first-

generation unit root tests; this type does not allow for CD and may offer deceptive 

results (Dogan and Seker, 2016). The second type is termed as second-generation unit 

root tests; which considers CD (e.g., Phillips and Sul 2003; Bai and Ng 2004; Smith et 

al. 2004; Moon and Perron 2004; Pesaran, 2007). Khan et al. (2020) recommend use of 

second generation non-parametric and parametric tests to avoid from being wrong.    

The current study employed Cross-sectionally Augmented Dicky-Fuller (CADF) 

and Cross-sectionally Augmented Im Pesaran Shin (CIPS) tests by Pesaran (2007). 

CIPS test also encounters CD heterogeneity and provides reliable results. Panel unit root 

test of Pesaran (2007) permits  
N

T
⟶ σ  to obtain a positive real value.  The equations of 

CADF test can be written as: 

∆Y(i,t) = α(i) + β(i)Y(i,t−1) + γ(i)Y̅(i,t−1) + δ(i)∆Y̅(i,t−1) + e(i,t)  (12) 

The t-ratio of OLS estimates β(i) in equation 12, defined by t(i)(N, T), referred as a 

CADF statistics for i, and the average of its t-ratios is 

CIPS(N, T) = N−1 ∑ t(i)(N, T)N
i=1       (13) 

This equation provides the panel unit root test statistic. CIPS(N, T) is a cross-

sectionally augmented edition of the test statistic suggested by Im, Pesaran and Shin 

(2003) and is described as a CIPS statistic.  
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4.2.4 Westerlund panel cointegration tests 

 The fourth step entails the analysis of the long run relationship among carbon 

footprint and its determinants. The panel cointegration tests given by Westerlund’s 

(2007) have been used in the current study. These tests check presence of cointegration 

by deciding whether the error correction exists for individual panel members and for 

panel. These tests show high power and improved size accuracy as compared to the 

methodology developed by Pedroni (2004), which are error-based tests. These tests 

provide robust and reliable results and managing cross-sectional dependency of the 

residual terms (Kapetanios et al., 2011). 

 The panels tests and the group-mean tests use null hypothesis of no cointegration 

to decide existence of cointegration. Westerlund (2007) suggests four panel 

cointegration test statistics i.e., Ga, Gt, Pa, and Pt. These are normally distributed and 

based on Error Correction Mechanism (ECM). The logic here is to check the lack of 

cointegration by deciding whether error correction occurs for individual panel members 

and for whole panel. The Westerlund cointegration equations can be written as: 

Without intercept: 

Y(i,t) = β(i)∆Y(i,t−1) + γ(i)∆X(i,t−1) + δ(i)(Y(i,t) − θ(i)X(i,t−1)) + u(i,t)  (14) 

With intercept: 

∆Y(i,t) = α(i) + β(i)∆Y(i,t−1) + γ(i)∆X(i,t−1) + δ(i)(Y(i,t−1) − θ(i)X(i,t−1)) + u(i,t)  (15) 

With intercept and trend: 

∆Y(i,t) = α(i) + β(i)∆Y(i,t−1) + γ(i)∆X(i,t−1) + ω(i)t + δ(i)(Y(i,t−1) − θ(i)X(i,t)) + u(i,t) 

           

 (16) 

Here δi provides an estimation of the error-correction speed toward the long run 

equilibrium. The two statistics Gt and Pt are calculated with the standard errors of the 

parameters of error correction, calculated in normal way. The other two tests, Ga and Pa 

are based on two standard errors developed by Newey and West (1994). These statistics 

are adjusted standard errors for autocorrelations and heteroskedasticity. The test 

statistics can be described as: 

Gt =
1

N
∑

δ(i)

S.E(δ(i))

N
i=1         (17)
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Ga =
1

N
∑

Tδ(i)

δ(i)(1)

N
i=1         (18 

Pt =
δi

S.E(δ(i))
         (19) 

Pa = Tδ(i)         (20) 

4.2.5 Long run estimation 

Final step is evaluation of long run relationship among carbon footprint and 

agriculture sector variables, in the presence of cointegration. For this purpose, this study 

estimates different models with Chudik’s and Pesaran’s (2015) Dynamic Common-

Correlated Effects Mean Group (DCCE MG) method. It is extension of CCE method 

developed by Pesaran (2006) to heterogeneous panel models along with lagged 

dependent regressor and/or weakly exogenous regressors. This approach involves two 

conditions: first, enough lags of cross-section means should be involved in individual 

equations of the panels; and second, the number of cross-section means should be equal 

to or greater than the number of unobserved common factors.  

DCCE MG estimation method requires sufficiently large time series length of the 

panel. This method also deals CD and heterogenous slope coefficient. The CD is shaped 

using cross-sectional means of the dependent variable and regressors to account for the 

unobserved common factors. Estimations are also robust to structural breaks in DCCE 

MG method. In this approach, set of unobservable common factor is considered as a 

common dynamic process, which provides useful interpretations. Different models of 

carbon footprint need to be assessed to ensure long run relationship between variables. 

DCCE MG specification for estimated models of carbon footprint are:  

ln_CarbonFP(i,t) = α0(i) + α1(i)ln_CarbonFP(i,t−1) + α2(i)ln_GDPpC(i,t) +

α3(i) ln_GDPpC(i,t)
2 + α4(i)AgriVA(i,t) + ∑(d(i)z(i,s)) + εr1(i,t)   (21) 

ln_CarbonFP(i,t) = β0(i) + β1(i)ln_CarbonFP(i,t−1) + β2(i)ln_GDPpC(i,t) +

β3(i) ln_GDPpC(i,t)
2 + β4(i)AgriVA(i,t) + β5(i)ln_AgriExp(i,t) + ∑(d(i)z(i,s)) + εr2(i,t) (22) 

ln_CarbonFP(i,t) = γ0(i) + γ1(i)ln_CarbonFP(i,t−1) + γ2(i)ln_GDPpC(i,t) +

γ3(i) ln_GDPpC(i,t)
2 + γ4(i)AgriVA(i,t) + γ5(i)ln_AgriExp(i,t) + γ6(i)ln_Fer(i,t) +

γ7(i) ln_Trac(i,t) + ∑(d(i)z(i,s)) +  εr3(i,t)      (23) 
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ln_CarbonFP(i,t) = δ0(i) + δ1(i)ln_CarbonFP(i,t−1) + δ2(i)ln_GDPpC(i,t) +

δ3(i) ln_GDPpC(i,t)
2 + δ4(i)AgriVA(i,t) + δ5(i) ln_Trac(i,t) + δ6(i)RuralPop(i,t) +

∑(d(i)z(i,s)) +  εr4(i,t)         (24) 

ln_CarbonFP(i,t) = λ0(i) + λ1(i)ln_CarbonFP(i,t−1) + λ2(i)ln_GDPpC(i,t) +

λ3(i) ln_GDPpC(i,t)
2 + λ4(i)AgriVA(i,t) + λ5(i)ln_AgriExp(i,t) + λ6(i)ln_Fer(i,t) +

λ7(i) ln_Trac(i,t) + δ8(i)RuralPop(i,t) + ∑(d(i)z(i,s)) +  εr5(i,t)   (25) 

Here, natural log of carbon footprint ln_CarbonFP(i,t) is dependent variable, 

ln_CarbonFP(i,t−1) is lag of the dependent, ln_GDPpC(i,t) is natural log of GDP per 

capita, ln_GDPpC(i,t)
2  is square term of natural log of GDP per capita, AgriVA(i,t) is 

agricultural value added, ln_AgriExp(i,t) is natural log of agricultural exports, ln_Fer(i,t) 

is natural log of fertilizers quantity used in agriculture, ln_Trac(i,t) is natural log of 

tractors employed in agriculture and RuralPop(i,t) is rural population percentage in total 

population. Furthermore z(i,s) is a (1 x k+1) vector including the cross-sectional 

averages at time ‘s’ and the sum is over s = t, t-1, ..., t-p (p are the lags of the cross-

sectional means). While εr1(i,t), εr2(i,t), εr3(i,t), εr4(i,t), and εr5(i,t) are the error terms in 

DCCE MG equations.  

4.2.6 Dumitrescu-Hurlin (D-H) causality test 

Application of Dumitrescu-Hurlin causality test (2012) ensures the direction and 

causal association between indicators after the estimation of long run relationship. The 

null hypothesis of the D-H causality says that there is no causal association between 

indicators against the alternative hypothesis, which reflects that there is causal link 

between indicators. The model can be written as: 

 Y(i,t) = βi + ∑ δ(i)
j

Y(i,t−j)
p
j=1 + ∑ θi

j
T(i,t−j)

p
j=1      (26) 

Here, j donates the lag length, while δ(j)
j

 represents the autoregressive parameters. 

5. Results and findings 

Analysis begins with averages and standard deviations estimates of indicators 

(reported in Table 2). Selected countries have on average 1.36e+08 global hectors carbon 

footprint, 17353.33 US dollars (constant 2010) GDP per capita, agriculture value added 

equals to 10.58 percent of GDP, 9.1e+12 US dollars agricultural exports, 503.13 tractors 

per hundred square kilometer of (arable) land, 145.43 Kg fertilizers per hectare of arable 

land, and 39.53 percent rural Population out of total population. 
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Table 2: Descriptive statistics of indicators 

Variable 
All countries 

Mean Standard deviation 

Carbon footprint (global hectors) 1.36e+08 3.80e+08 

GDP per capita (constant 2010 US$) 17353.33 19259.24 

Agriculture value added (% of GDP) 10.58 12.23 

Agricultural exports (1000 US$) 9.1e+09 1.7e+10 

Tractors (per 1002 km of (arable) land) 503.13 929.70 

Fertilizers (kg per hectare of arable land) 145.43 152.46 

Rural population (% of total population) 39.53 23.23 

Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN.  

Due to globalization and liberalization, world has developed a replica of small town. 

Actions in one economy impact nearby countries. Hence, it is necessary to address the 

CD in the analysis of panel data. So, application of Lagrange multiplier test of error CD 

checks CD in carbon footprint model. CDLM statistics values of the Lagrange multiplier 

test by Pesaran (2015) displays that there is CD in carbon footprint model. P-values of 

CDLM test statistics reject the null hypothesis of not any cross-sectional independence 

at one percent significance level. In other words, there exists dependency across nations. 

Table 3 displays the results of CD tests.  

Table 3: Lagrange multiplier tests of error CD 

Variables CD statistics P-value 

ln_CarbonFP(i,t) 241.811 0.00*** 

ln_GDP(i,t) 241.747 0.00*** 

ln_GDP2
(i,t)

 241.277 0.00*** 

AgriVA(i,t) 231.824 0.00*** 

ln_AgriExp(i,t) 241.692 0.00*** 

ln_Fer(i,t) 218.005 0.00*** 

ln_Trac(i,t) 194.359 0.00*** 

RuralPop(i,t) 239.339 0.00*** 

Overall Model 37.496 0.00*** 

Note: H0: Errors are weakly cross-sectional dependent. 

*** indicates significant at 1% level. 

 Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN. 

Figure 2 reports Kernel density estimates and graph of residuals of carbon footprint 

regression model. Density graph confirms that residuals do not follow normal 

distribution.  
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Figure 2: Kernel density estimates and graph 

 

Source: Graph is based on authors’ estimates of carbon footprint model. 

Table 4 reports results of homogeneity Pesaran and Yamagata (2008) test and 

confirms that there is heterogeneity in the data. It suggests that the panel data constants 

are heterogeneous, and the slopes differ across cross-sections. It also suggests that 

relationships of economic variables can be distinct in different countries. So, assumption 

of homogeneity in model estimation can provide ambiguous and biased results (Alam 

et al. 2018). 

Table 4: Slope homogeneity test by Pesaran and Yamagata 

Test-statistics Value P-value 

∆̃SH 46.371 0.00*** 

∆̃ASH (adjusted) 53.081 0.00*** 

Note: *** indicates significant at 1% level. 
Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN. 

 The presence of dependence and panel data heterogeneity requires the second-

generation unit root tests and the panel cointegration method of DCCE MG for the 

estimations. Order of integration has been confirmed to avoid spurious regression 

estimations (Ulucak and Bilgill, 2018). Therefore, CADF and CIPS have been used. 

Table 5 shows the CADF test results. Stated statistics of unit roots are for logged values 

except agriculture value added and rural population.  
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Table 5: CADF unit root tests 

Variables 

Level First difference 

Order 
Intercept 

Intercept 

and trend 
Intercept 

Intercept 

and trend 

ln_CarbonFP(i,t) -1.994** -2.048   I(0) 

ln_GDP(i,t) -2.131*** -2.619***   I(0) 

ln_GDP2
(i,t) -2.113*** -2.559**   I(0) 

AgriVA(i,t) -2.475*** -2.813***   I(0) 

ln_AgriExp(i,t) -2.204*** -2.652***   I(0) 

ln_Fer(i,t) -1.824 -2.423   -4.693*** -4.830*** I(1) 

ln_Trac(i,t) -2.214*** -2.700***   I(0) 

RuralPop(i,t) -2.359*** -2.665***   I(0) 

Note: H0: All series are non-stationary.  

*** and ** imply significant at 1%, and 5% level respectively. 

Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN. 

Result confirms that carbon footprint, GDP per capita, GDP per capita square, 

agriculture value added, agriculture exports, tractors and rural population indicators are 

level stationary as p-values of test statistics reject null hypothesis of unit root for all 

indicators. So, order of integration for all these indicators is zero i.e. I(0). Only fertilizers 

variable is first difference stationary as p-values of statistics accept null hypothesis of 

unit root at level and reject at first difference. So, order of integration for fertilizers 

indicator is one i.e. I(1). 

Table 6 displays the results of CIPS tests at level and at first difference. Stated unit 

root statistics are for logged values except agriculture value added and rural population. 

Result confirms that carbon footprint, agriculture value added, agriculture exports, 

fertilizers, tractors, and rural population indicators are level stationary as p-values of 

test statistics reject null hypothesis of unit root for all indicators. So, order of integration 

for all these indicators is zero i.e. I(0). Indicators GDP per capita and GDP per capita 

square are first difference stationary as p-values of test statistics accept null hypothesis 

of unit root at level and reject at first difference. So, order of integration for GDP per 

capita and GDP per capita square is one i.e. I(1).  

Table 6: CIPS panel unit root tests 

Variables 

Level First difference 

Order 
Intercept 

Intercept 

and trend 
Intercept 

Intercept 

and trend 

ln_CarbonFP(i,t) -2.337*** -2.363   I(0) 

ln_GDP(i,t) -1.638 -2.287 -4.264*** -4.612*** I(1) 

ln_GDP2
(i,t) -1.634 -2.260 -4.161*** -4.547*** I(1) 

AgriVA(i,t) -2.545*** -2.769***   I(0) 

ln_AgriExp(i,t) -2.570*** -2.991***   I(0) 

ln_Fer(i,t) -2.239*** -2.871***   I(0) 

ln_Trac(i,t) -2.456*** -2.789***   I(0) 

RuralPop(i,t) -1.561*** -2.354   I(0) 

Note: H0: Homogeneous non-stationary. 

*** indicates significant at 1% level. 

Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN. 
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Here, results of CIPS are important as compared to the estimates of CADF, because 

it provides more consistent results in case of CD and panel data slope heterogeneity. 

Results of CIPS tests provides mixed order for integration for indicators and requires 

application of Westerlund’s (2007) panel cointegration tests to ensure long run 

association between indicators.  

Statistics of cointegration tests are shown in Table 7 for carbon footprint models. 

Statistics Gt and Pt provide evidence of cointegration between carbon footprint and its 

determinants for all models of Westerlund i.e., without intercept, with intercept, and 

with intercept and trend. So, confirmation of cointegration suggests that there exists 

long run association between carbon footprint, GDP per capita, GDP per capita square, 

agriculture value added, agriculture exports and fertilizers. 

Table 7: Westerlund’s panel cointegration tests 

Specification Statistic Statistics Z-value P-value 

without intercept 

Gt -2.623 -3.123 0.001*** 

Ga -8.021 3.609 1.000 

Pt -18.216 -3.385 0.000*** 

Pa -7.106 0.871 0.808 

with intercept 

Gt -2.872 -1.776 0.038** 

Ga -8.576 5.809 1.000 

Pt -19.552 -1.660 0.049** 

Pa -7.756 3.196 0.999 

with intercept and trend 

Gt -3.343 -2.666 0.004*** 

Ga -9.474 7.947 1.000 

Pt -22.133 -1.291 0.098* 

Pa -9.613 5.033 1.000 

Note: H0: No integration. 

***, ** and * mean significant at 1%, 5% and 10% level. 

Source: Author’s calculations using the dataset from FAOUN, WDI and GFN. 

Table 8 shows the correlation between carbon footprint indicator and other 

variables. Correlation estimates confirm that carbon footprint has positive association 

with indicators of GDP per capita, agriculture exports, tractors, and fertilizers; and 

negative association with indicators of GDP per capita square, agriculture value added 

and rural population. 

Table 8: Correlation between ln_CarbonFP(i,t) variable and other indicators 

Variable Measure 

ln_GDP(i,t) 0.5620 

ln_GDP2
(i,t) -0.5461 

AgriVA(i,t) -0.5377 

ln_AgriExp(i,t) 0.7720 

ln_Fer(i,t) 0.4468 

ln_Trac(i,t) 0.5672 

RuralPop(i,t) -0.5090 

 Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN. 



Journal of Applied Economics and Business Studies, Volume. 5, Issue 4 (2021) 111-140    https://doi.org/10.34260/jaebs.546 

129 
 

Ratification of cointegration between variables allow estimation of long run 

relationship with the help of DCCE MG. Table 9 reports heterogeneous parameter 

estimates by using DCCE MG approach. Results of estimations include estimated 

coefficients, their P-values and post estimation tests of DCCE MG models (model I to 

V). Estimation of different models with DCCE MG technique confirms long run 

relationship between variables. 

Coefficient of GDP per capita is statistically significant and its positive sign in 

estimated models shows that carbon footprint increases with increase in GDP per capita. 

Coefficient of GDP per capita square is also statistically significant, but its sign is 

negative in all models. This implies that carbon footprint increases with increase in 

countries’ income in the developing phase of economic growth (GDP per capita), but 

later it begins to decrease in the developed period, confirming the EKC hypothesis 

(Grossman and Krueger, 1995).  

Coefficient of agriculture value added is also significant and negative, which 

suggests inverse relationship between carbon footprint and agriculture value added. This 

inverse relationship indicates agricultural development decreases carbon footprint 

accordance with Balogh and Jambor (2017) and Balogh (2019). Improved technologies 

due to agriculture growth provide grounds for negative relationship between carbon 

footprint and agriculture development. Therefore, it helps to lower resource usage and 

environmental pollution through environment-friendly technologies and methods 

(Munasinghe, 1999). Agricultural exports coefficient is also significant, but it is 

positive, which means agricultural exports brings increase in carbon footprint. 

Therefore, results are in line with Ang (2009), Chebbi et al. (2011), Balogh and Jambor 

(2017) and Balogh (2019) declare that agricultural export quantity burdens environment 

by increasing carbon footprint in exporting country.  

Agriculture sector production variable tractor does not affect carbon footprint, but 

coefficient of fertilizers is statistically significant and positive. So, results of models 

only confirm the fertilizers as significant determinant of carbon footprint from the 

selected agricultural sector inputs. Therefore, agricultural production heavily based on 

fertilizer increases carbon footprint, which certifies production-based emission 

approach (Foley et al., 2011; Grace et al., 2014; Henders et al., 2015; Balogh, 2019). 

Moreover, the carbon footprint does not depend on the share of rural population or urban 

population in the total population of country, which is contrary to the results of Sethi 

(2017) and Balogh (2019).  
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Table 9 also reports results of F tests and CD tests by Pesaran (2015) for all 

estimated models. F test estimates the overall significance of econometric model. 

Reported F-statistics and their respective P-values for all estimated models reject the 

null hypothesis ‘estimated model is statistically insignificant’ and accept the alternative 

hypothesis ‘estimated model is statistically significant’. CD-statistics of all estimated 

models and their respective P-values do not reject the null hypothesis of weak CD 

against the strong cross-sectional dependency in the variables. CD test results guarantee 

that there is a presence of weak cross-sectional dependency in the data, which will not 

persist in the long run. 

Additionally, Table 9 also provides the estimate of turning point of GDP per capita 

of sample countries, where carbon footprint is at a maximum level. Turning point 

estimate of GDP per capita is approximately US$ 39940 for selected countries. Carbon 

footprint declines when the value of GDP per capita becomes US$ 39940 or greater. 

Therefore, the relationship between carbon footprint and GDP per capita follows the 

pattern of inverted U-shaped curve.  

Table 9: Heterogeneous parameter estimates by using DCCE MG 

Variables 
Functional forms (dependent variable: ln_CarbonFP(i,t)) 

    I     II    III    IV     V 

ln_GDP(i,t)  17.50 

(0.000)*** 

 13.45 

(0.002)*** 

 15.29 

(0.013)** 

 8.831 

(0.028)** 

 17.82 

(0.029)** 

ln_GDP2
(i,t) -0.774 

(0.001)*** 

-0.614 

(0.008)*** 

-0.777 

(0.025)** 

-0.428 

(0.072)* 

-0.959 

(0.041)** 

AgriVA(i,t) -0.027 

(0.023)** 

-0.035 

(0.001)*** 

-0.346 

(0.006)*** 

-0.020 

(0.025)** 

-0.038 

(0.001)*** 

ln_AgriExp(i,t)   0.053 

(0.012)** 

 0.052 

(0.050)** 

  0.055 

(0.036)** 

ln_Fer(i,t)    0.046 

(0.024)*** 

  0.041 

(0.028)** 

ln_Trac(i,t)    2.265 

(0.563) 

 9.848 

(0.363) 

 5.512 

(0.454) 

RuralPop(i,t)    -0.006 

(0.766) 

 0.004 

(0.882) 

Constant -0.093 

(0.022)** 

-0.097 

(0.019)** 

-0.141 

(0.058)* 

-0.052 

(0.516) 

-0.088 

(0.370) 

l.ln_CarbonFP(i,t)  0.023 

(0.008)*** 

 0.025 

(0.008)*** 

 0.079 

(0.038)** 

 0.224 

(0.000)*** 

 0.066 

(0.079)* 

Post Estimation Tests 

F- Statistics 
  7.500 

(0.000)*** 

 3.220 

(0.000)*** 

 1.330 

(0.000)*** 

 5.120 

(0.000)*** 

1.990 

(0.000)*** 

CD- Statistics 

(Pesaran, 2015) 

  1.170 

 (0.240) 

-0.250 

(0.804) 

-0.570 

(0.572) 

-1.560 

(0.118) 

-1.310 

(0.121) 

Inflection point on EKC 
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Turning Point2 39940$ 𝜏3 = exp (
−ω̂1

2ω̂2
) 

ω̂1= 8.90 

ω̂2= -0.42 

Note: P-values of test statistics of DCCE MG estimators are in the parenthesis.  

***, ** and * suggest significant at 1%, 5% and 10% level. 

Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN.  

Lastly, the findings of Dumitrescu-Hurlin panel causality tests given in the Table 10 

confirms that GDP per capita, GDP per capita square, agriculture value added, 

agricultural exports and fertilizers have acausal relationship with the carbon footprint in 

selected economies. Table contains statistics and P-values of Dumitrescu-Hurlin 

causality tests. 

Table 10: Dumitrescu-Hurlin panel causality tests 

Null hypothesis W-bar Z-bar P-value Remarks 

ln_GDP(i,t) does not cause ln_CarbonFP(i,t) 
2.88 9.98 0.00*** 

It does Granger-

cause 

ln_GDP2
(i,t) does not cause ln_CarbonFP(i,t) 

2.80 9.51 0.00*** 
It does Granger-

cause 

AgriVA(i,t) does not cause ln_CarbonFP(i,t) 
2.84 9.76 0.00*** 

It does Granger-

cause 

ln_AgriExp(i,t) does not cause ln_CarbonFP(i,t) 
2.22 6.45 0.00*** 

It does Granger-

cause 

ln_Fer(i,t) does not cause ln_CarbonFP(i,t) 
3.47 13.09 0.00*** 

It does Granger-

cause 

Note: Statistics and P-values of Dumitrescu-Hurlin causality test results are reported.  

*** suggests significant at 1% level. 

Source: Authors’ calculations using the dataset from FAOUN, WDI and GFN. 

6. Conclusion 

Macroeconomic analysis of agriculture sector inputs and outputs in the study 

contributes to the existing literature by evaluating agriculture-specific determinants of 

carbon footprint. The study investigates the relationship between agriculture sector 

indicators and carbon footprint by using panel econometrics. This study finds that 

carbon footprint depends on economic development of countries and confirm EKC 

hypothesis. Therefore, early stage of economic growth and development upsurge carbon 

footprint and damages environment, then later, after a turning point, carbon footprint 

decrease and environmental quality increases.  

 
2 Turning point is based on the DCCE MG specification: 

ln_CarbonFP(i,t) = ω0(i) + ω1(i)ln_CarbonFP(i,t−1) + ω2(i)ln_GDPpC(i,t) + ω3(i) ln_GDPpC(i,t)
2 + ω4(i)AgriVA(i,t)

+ ω5(i)ln_AgriExp(i,t) + ω6(i)ln_Fer(i,t) + ∑(d(i)z(i,s)) + 𝑒(i,t) 

3 Estimation formula by Stern (2004). 
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The study finds that there is a long run relationship between agriculture value added 

and carbon footprint. Rise in value addition of agricultural sector in country reduces 

carbon footprint. Therefore, agriculture sector expansion by employing environment 

friendly methods and technologies decreases carbon footprint in countries. Furthermore, 

the positive relationship between carbon footprint and agricultural exports proves that 

there exists a long run relationship between agriculture sector exports and carbon 

footprint. It implies that agricultural exports encourage the carbon footprint growth by 

stimulating the production and transport of agricultural commodities. Finally, the 

current study also assures that there exists a long run relationship between high scale of 

agricultural production and carbon footprint. Carbon footprint has positive relationship 

with high scale of agricultural production, which supports the concept of production-

based emission. This relationship underlines that too much use of fertilizers in 

agriculture sector fosters the carbon footprint growth and damages natural environment 

of countries. 

The conclusion of the current study has some strong implications for policy 

formulation by suggesting that in agricultural production processes, innovative 

techniques should be introduced that could ensure less environmental damage and bring 

considerable decrease in carbon footprint. Departments related to agriculture sector 

must promote research and development culture for innovative solutions to the current 

issues in production practices. Furthermore, trade sector must devise policies to 

incentivize green agricultural exports. Finally, such production techniques must be 

adopted which are environment friendly and may contribute to reducing carbon 

footprint i.e. the use of organic fertilizers may provide eco-friendly agriculture. 
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Table A: List of sample countries 

Sustainable Agriculture Index (for high-income countries)  

1. Austria 79.9 2. Denmark 79.6 

3. Israel 78.3 4. Germany 78.0 

5. Poland 78.0 6. Netherlands 77.1 

7. Belgium 74.6 8. Czech Republic 74.5 

9. Australia 73.4 10. Japan 73.4 

11. South Korea 73.4 12. Canada 73.0 

13. Sweden 72.7 14. France 71.0 

15. Italy 70.2 16. Portugal 69.7 

17. Estonia 69.6 18. United States 68.6 

19. Argentina 66.9 20. Spain 66.6 

21. Lithuania 66.5 22. Croatia 66.3 

22. Greece 65.1 24. Slovenia 63.0 

25. United Kingdom 61.5 26. United Arab Emirates 56.9 

27. Slovakia 54.6 28. Latvia 53.7 

29. Luxembourg 53.6 30. Saudi Arabia 52.4 

Sustainable Agriculture Index (for middle-income countries) 

31. Colombia 76.5 32. Cote d'Ivoire 73.9 

33. Zambia 72.7 34. Cameroon 72.2 

35. Tunisia 70.1 34. Mexico 61.3 

37. Turkey 68.3 38. Romania 68.0 

39. Kenya 66.6 40. Nigeria 66.6 

31. India 65.5 42. Lebanon 65.1 

43. Brazil 64.2 44. Jordan 64.0 

45. Indonesia 61.1 46. China 60.7 

47. Ghana 57.4 48. Russian Federation  53.9 

49. South Africa 52.4   

Sustainable Agriculture Index (for low-income countries) 

50. Rwanda 71.0 51. Tanzania 70.5 

52. Zimbabwe 70.5 53. Uganda 68.9 

54. Mozambique 68.4 55. Burkina Faso 67.5 

56. Ethiopia 66.6   

Note: Index values are ranked: zero to hundred, while hundred is maximum 

sustainability value and best progress to meet societal, economic, and environmental 

main indicators of performance. 
Source: Economist Intelligence Unit, Food Sustainability Index 2018 

Table B: Indicators selected for the estimation 
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Sr. 

no. 

Indicator (unit) Abbreviation and Description 

1 

 

 

 

 

 

 

 

Carbon Footprint 

(Global hectors) 
CarbonFP: It evaluates CO2 emissions related with use 

of fossil fuel. In the ecological footprint4 estimates, 

emission quantities are estimated into biologically 

productive areas required for absorbing this CO2 

emission. The carbon footprint is considered in the 

ecological footprint because it is a rival user of bio 

productive space. Increasing CO2 concentrations in the 

atmosphere represent an increase of ecological debt. It 

is generally quantified in global hectares. 

2 

 

 

GDP per Capita 

(Constant 2010 US$) 

 

GDPpC: GDP (gross domestic product) per capita is the 

GDP divided by midyear value of population. It is total 

of values added by all producers in the country and taxes 

on product, excluding subsidies not included in the 

value of products. 

3 

 

Agriculture Value Added 

(Percentage of GDP) 
ln_AgriVA: Agriculture value added is measured as 

percentage of GDP of country. Value added of 

agriculture is the net output value of sector after totaling 

all final outputs and deducting intermediate inputs.  

4 

Agricultural Exports 

(1000 US$) 
ln_AgriExp: Agricultural exports indicator measures 

value of agriculture sector exports in thousand US 

dollars. 

5 

Tractors 

(Per 100 sq. km of arable 

land) 

Trac: Tractors are the indicator of machinery employed 

in agricultural sector. This indicator measures tractors 

per 100 square km of arable land. 

6 

Fertilizers 

(Kg per hectare of arable 

land) 

Fer: Fertilizer indicator measures utilization of 

fertilizers in kilograms per hectare of arable land of 

agriculture sector. 

7 

Rural Population 

(Percentage of total 

population) 

RuralPop: Rural population is percentage of total 

population who lives in rural parts of country.  

Note: Current study uses natural log of indicators of Carbon Footprints, GDP per Capita, 

Agricultural Exports, Tractors, and Fertilizers in the estimations.  
Source: FAOUN, WDI and GFN. 

 
4 It is an estimate of area consists of water and biologically productive land, which a population, individual, or action requires to 

create the natural resources it utilizes and to take in the waste it creates, employing resource management practices and existing 
technology. It is estimated in global hectares. Nation's Footprint include sea and land from all other countries. It normally mentions 

Ecological Footprint of consumption. 


