

Journal homepage: www.fia.usv.ro/fiajournal Journal of Faculty of Food Engineering, Ştefan cel Mare University of Suceava, Romania Volume XIII, Issue 1 – 2014, pag. 80 - 86

HEAVY METALS IN TOBACCO

*Sonia AMARIEI¹, Cristina-Elena HRETCANU¹, Gheorghe GUTT¹, Alexandra AGACHI¹

¹Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania <u>gutts@fia.usv.ro</u> *Corresponding author Received 25th February 2014, accepted 15th March 2014

Abstract: Heavy metals in cigarettes were determined considering that the number of smokers of both sexes is growing. Besides air, water, food raw materials, foodstuff, dietary supplements, the human body can accumulate heavy metals from tobacco. Tobacco samples from Romanian and Ukrainian market were analyzed using inductively coupled plasma mass spectrometry (ICPMS). The results showed that the Romanian samples have lower content of heavy metal than the Ukrainian samples. Tolerable weekly intake of cadmium was over in the case of two samples for minimum and maximum consumption and in the case of three samples for maximum consumption.

Key words: tobacco, heavy metals, risk assesment, tolerable weekly intake.

1. Introduction

It is estimated that the actual number of substances in tobacco varies between 2000 and 3000, half of them existing in tobacco and the remainder resulting from the conversion into chemical processes that occur from burning tobacco. Hundreds of additives to improve the taste, odor, flavor of different varieties of tobacco are added these. Besides these substances to carcinogen acting radioactive isotopes (Pb210, Po201, K30 etc.) have been found in tobacco. An important factor in heavy metal uptake is the soil composition. The chemical composition of soil, pH, the humus content influenced Pb and Cd accumulation in leaves [1], [2], [3]. These elements were captured mainly by tobacco radioactive substances plants from forming the environment fund. The humus influenced content Pb and Cd accumulation in [1]. Industrial emissions,

phosphate fertilizers containing cadmium [2], [3], insecticides based on heavy metals or metallic compounds of cadmium, mercury, lead, arsenic constitutes a health hazard to the consumer [5], [6], [7].

Cigarette smoking and tobacco chewing are a major source of cadmium exposure [8], [9].

Cigarette smoke is a very dangerous source of poisoning with Cd for both active smokers and passive ones. To highlight the heavy metals content in cigarettes 14 varieties of cigarettes, both Romanian and Ukrainian market, were analyzed.

2. Matherials and methods

2.1 Materials

Tobacco samples are presented and coded in Table 1.

Table 1.

Sample **Country of** Sample cigarettes code origin Romania Kent Nanotek Neo 1 Kent Nanotek 2 Ukraine 3 Kent 8 Romania Kent Clik 4 Romania 5 Winston Blue Romania Winston Balanced 6 Ukraine Blue 7 Фэсt Ukraine Mallboro RED 8 Romania 9 Malboro Gold Romania 10 Monte Carlo RED Ukraine 11 Pall Mall Ukraine Pall Mall 3TEK 12 Romania Charcoal Filter 13 L&M Red Label Romania 14 L&M Tune Slims Romania

Codification of samples

2.2 Sample preparation

Sample preparation is carried out in accordance with the standard SR EN ISO 14082:2003, Determination of trace elements by atomic absorption spectrometry after ashing.

Moisture content of tobacco samples was determined by oven drying method.

Ash content for each sample was determined by ashing in the furnace Nabertherm P330. Dissolving of ash is carried out according to SR EN ISO 14082:2003.

Ash of cigarettes taken from each sample was dissolved in 5 ml of hydrochloric acid concentration of 6 mol / L, the acid is evaporated in a water bath, and the residue was dissolved in a volume of 10 ml of nitric acid 0.1 mol / l

2.3 Reagents

All solutions were prepared with reagent grade chemicals and ultra-pure water (18 $M\Omega$ cm). Nitric acid and hydrochloric acid were purchased from Sigma Aldrich.

2.4. Apparatus

The analysis of samples was performed with mass spectrometry inductively coupled plasma ICP-MS Agilent Technologies 7500 Series precisely to 10⁻¹²

2.5 Calculation of results

Concentration (C) of the heavy metals in samples is expressed in $\mu g/g$ sample and is calculated using the formula:

$$\mathbf{C} = a \cdot \frac{V}{m} \qquad (1)$$

where:

a - concentration value measured by the device, [ppb];

V - volume of acid dissolving the sample [ml];

m - mass of sample mineralized, [g].

2.6 Assesment of risk

The Estimated Daily Intake (EH s) was calculated for heavy metals and compared with tolerable Daily Intake (TD / S). The data is based on the assumption that body weight is 60 kg:

EDI=(CxFDC)/BW (2) where:

C - the concentration of contaminant $(\mu g/g)$,

FDC - stand for tobbaco daily consumption (g/d)

BW - the body weight (kg) [10].

The current tolerable weekly intake (TWI) of 2.5 $\mu g/kg$ body weight (*b.w.*) for cadmium is established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 2010, and the CONTAM Panel of European Food Safety Authority EFSA reassessed the TWI in 2011 and concluded that the TWI of 2.5 $\mu g/kg$ *b.w.* is still appropriate.

Sonia AMARIEI, Cristina-Elena HRETCANU, Gheorghe GUTT, Alexandra AGACHI, Heavy metals in tobacco, Issue 1 - 2014, pag. 80 - 86

2.6. Statistical analysis

All analyses were carried out in triplicates with replication. The mean and standard deviation of the data obtained were calculated. Principal component analysis (PCA) was used to aggregate variables obtained from the amount of heavy metals (corresponding to a daily consumption of minimum 10 and maximum 20 cigarettes per day) into a smaller number of orthogonal factors. Principal Component Analysis was carried out with the software Unscrambler X 10.1 (Camo, Norway).

3. Results and discussions

Samples were always analyzed in triplicates. Ash content and moisture of the samples is shown in Figure 1.

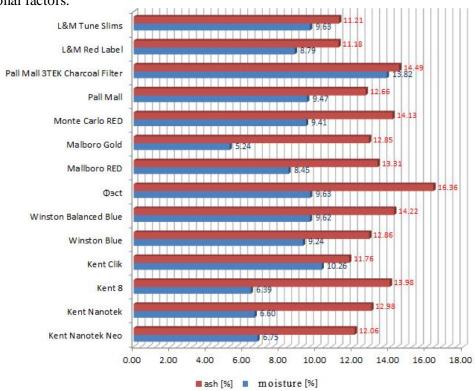


Fig. 1 Ash content and moisture of cigarettes samples

Heavy metal analysis was performed using ICP-MS device.

Taking into account the masses of samples and using equation (1), the amount of heavy metals corresponding to a daily consumption of minimum 10 and maximum 20 cigarettes per day was calculated [8]. As shown in Table 3, the content of the elements As, Pb, Hg is not exceeded even a consumption of 20 cigarettes per day, conclusions drawn also by other authors after analyzing a number of samples of tobacco [11-12].

Sonia AMARIEI, Cristina-Elena HRETCANU, Gheorghe GUTT, Alexandra AGACHI, Heavy metals in tobacco, Issue 1 - 2014, pag. 80 - 86

Tabel 2

Elemental concentrations of samples

Sample	Kent Nanotek Neo RO 10/20 cigarettes [ppb]	Kent Nanotek RU 10/20 cigarettes [ppb]	Kent 8 10/20 cigare ttes [ppb]	Kent Clik 10/20 cigarettes [ppb]	Winston Blue RO 10/20 cigarettes [ppb]	Winston Balanced Blue RU 10/20 cigarettes [ppb]	Фэсt RU 10/20 cigarettes [ppb]	Mallboro RED 10/20 cigarettes [ppb]	Malboro Gold 10/20 cigarettes [ppb]	Monte Carlo RED RU 10/20 cigarettes [ppb]	Pall Mall RU 10/20 cigarettes [ppb]	Pall Mail 3TEK Charcoal Filter RO 10/20 cigarettes [ppb]	L&M Red Label 10/20 cigarettes [ppb]	L&M Tune Slims 10/20 cigarettes [ppb]
Li7	12.98943 / 25.97887	11.72699 / 23.45398	14.38711 / 28.77422	11.13898 / 22.27796	15.36353 / 30.72706	13.79028 / 27.58055	9.93768 / 19.87535	11.00166 / 22.00332	6.65879 / 13.31757	17.11050/ 34.22100	3.63803/	10.91738/	18.31804/ 36.63608	9.25871/
B 11	14.17029 / 28.34058	7.94209/ 15.88418	7.81884/ 15.63767	8.14046/ 16.28093	10.88631/ 21.77261	8.71705/ 17.43409	5.93768/ 11.87535	6.33753/ 12.67505	5.96270/ 11.92540	8.20324/ 16.40649	16.65138/ 33.30276	4.80487/ 9.60973	13.17226/ 26.34452	3.16007/ 6.32014
Mg 24	2639.32049/ 5278.64098	2428.12823/ 4856.25646	2223.97476/ 4447.94953	2022.57439/ 4045.14879	1662.9682/ 3325.93656	1727.00644/ 3454.01289	2350.14164/ 4700.28329	1986.70781/ 3973.41562	1174.1528/ 2348.30575	2422.20182/ 4844.40363	2113.52288/ 4227.04576	1899.64521/ 3799.29042	1479.84667/ 2959.69334	1585.94211/ 3171.88423
AI 27	903.87404 /	1791.72699/	750.67598/	1 124.50120/	282.33912/	206.56122/	165.77904/	375.38571/	192.14605/	149.27048/	1219.09712/	655.1444/	471.94796/	378.47017/
A1 47	1807.74808	3583.45398	1501.35196	2249.00239	564.67824	413.12244	331.55807	750.77142	384.29209	298.54097	2438.19423	1310.28890	943.89592	756.94034
K 39	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ca 43	11412.8858 / 22825.77170	10566.7011/ 21133.40228	9361.19874/ 18722.3974	7763.08289/ 15526.1657	6929.9047/ 13859.8094	8329.23257/ 16658.4651	8962.03966/ 17924.07932	7843.57940/ 15687.1587	4083.2676/ 8166.53533	8783.79757/ 17567.59514	6327.32090/ 12654.64180	6699.44247/ 13398.88495	4772.91207/ 9545.82414	5772.29770/ 11544.59539
Cr 53	2.19598/ 4.39196	1.36505/ 2.73009	0.96890/	1.66458/	1.12257/ 2.24514	0.77329/	1.08782/ 2.17564	0.90197/ 1.80394	0.72235/	0.73462/	1.89544/ 3.79089	0.77040/	0.51109/	0.54637/ 1.09273
	113.09302/	98.42813/	78.40243/	73.64041/	89.53139/	41.69889/	98.11898/	88.52362/	37.54925/	90.38874/	81.10670/	62.43284/	52.95621/	46.64796/
Mn 55	226.18604	98.42813/ 196.85626	156.80487	147.28081	89.53159/ 179.06279	41.09889/ 83.39777	98.11898/ 196.23796	88.52362/ 177.04723	57.54925/ 75.09850	90.38874/ 180.77747	162.21339	124.86569	105.91242	46.64796/ 93.29592
Fe 56	381.18914/ 762.37829	380.55843/ 761.11686	241.09959/ 482.19919	243.98586/ 487.97173	201.01814/ 402.03629	168.71705/ 337.43409	231.16147/ 462.32295	491.33634/ 982.67268	34.14762/ 68.29525	218.34507/ 436.69013	228.26862/ 456.53725	196.65484/ 393.30968	101.05703/ 202.11407	153.57354/ 307.14708
Co 59	0.87632/ 1.75264	0.79214/ 1.58428	1.51307/ 3.02614	0.59628/ 1.19257	0.53909/ 1.07819	0.49561/ 0.99121	0.66062/ 1.32125	0.58509/ 1.17019	0.26661/ 0.53323	0.68666/	0.55335/ 1.10670	0.57070/ 1.14141	0.44488/ 0.88977	0.44743/ 0.89486
Ni 60	3.02465/ 6.04931	1.98552/ 3.97104	3.67283/ 7.34565	1.77859/ 3.55718	1.90576/ 3.81151	1.47627/ 2.95255	1.88102/ 3.76204	1.49537/ 2.99074	0.99816/ 1.99632	2.10183/ 4.20365	1.89544/ 3.79089	1.78409/ 3.56817	0.99895/ 1.99791	1.12227/ 2.24454
	15.26828/	11.72699/	9.88058/	9.88485/	12.23078/	7.69772/	17.41643/	7.91597/	24.12661/	16.70238/	6.89901/	4.73391/	4.72761/	5.27171/
Cu 63	30.53657	23.45398	19.76115	19.76970	24.46156	15.39543	34.83286	15.83195	48.25322	33.40475	13.79802	9.46782	9.45522	10.54341
Zn 66	24.03149/ 48.06298	19.85522/ 39.71044	17.57548/ 35.15097	16.64576/ 33.29153	15.14163/ 30.28325	11.24780/ 22.49561	17.67705/ 35.35411	17.32732/ 34.65464	11.29498/ 22.58997	13.87614/ 27.75227	14.87822/ 29.75645	12.77243/ 25.54486	9.98955/ 19.97909	9.30301/ 18.60602
	3.70831/	3.08170/	0.85624/	1.24273/	1.13562/	0.38664/	0.30595/	0.59340/	0.19701/	0.27548/	0.65220/	1.51039/	0.25555/	0.75310/
Ga 69	7.41661	6.16339	1.71248	2.48546	2.27124	0.77329	0.61190	1.18680	0.39401	0.55096	1.30439	3.02078	0.51109	1.50620
As 75	0.60079/	0.49638/	0.63091/	0.51305/	0.36549/	0.60926/	0.70255/	0.65274/	0.28894/	0.78563/	0.59105/	0.49671	0.34847/	0.36917/
As /5	1.20157	0.99276	1.26183	1.02611	0.73098	1.21851	1.40510	1.30548	0.57788	1.57127	1.18211	0.99341	0.69695	0.73833
Se 82	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Br 79	22.58131/ 45.16263	14.68459/ 29.36918	8.90041/ 17.80081	13.56744/ 27.13488	10.44250/ 20.88500	16.28588/ 32.57176	13.48442/ 26.96884	7.35818/ 14.71635	1.97006/ 3.94011	6.12182/ 12.24365	8.15245/ 16.30490	9.02179/ 18.04359	3.02010/ 6.04019	3.54400/ 7.08801
Ag 107	60078.7238/ 120157.447	37228.5418/ 74457.0837	-	2280.2417/ 4560.48341	-	-	-	7120.8165/ 14241.6330	-	-	-	-	-	-
Cd 111	8701.05656/ 17402.1131	9720.78594/ 19441.5718	9689.0491/ 19378.0982	5472.5800/ 10945.1601	4568.5941/ 9137.1883	5858.2308/ 11716.4616	19943.3427/ 39886.6855	6883.4559/ 13766.9119	656.68505/ 1313.37011	10815.2229/ 21630.44587	7744.82829/ 15489.65658	3345.15966/ 6690.31931	3368.56778/ 6737.13556	_
Sn 118	-	-	-	-	-	-	-	-	-		-	-	-	<u> </u>
	191257.509/	205418.821/	168228.93/	136039.22/	155749.90/	71845.342/	93280.4532/	129741.27/	43761.491/	73788.3889/	152165.494/	100679.168/	71227.78488/	65445.95393/
Ce 140	382515.019	410837.642	336457.863	272078.440	311499.804	143690.685	186560.906	259482.554	87522.9839	147576.777	304330.989	201358.3375	142455.5697	130891.9078
Pt 195	0.00021/ 0.00041	0.00012/ 0.00025	0.00007/ 0.00014	0.00011/ 0.00023	0	0	0	0.000024/ 0.000047	0	0	0.00011/ 0.00022	0.000051/ 0.000101	0	0
Au 197	0.00056/ 0.00112	0.00141/ 0.00281	0.00025/ 0.00050	0.00025/ 0.00050	0.00035/ 0.00070	0.00009/ 0.00019	0.00008/ 0.00016	0.00017/ 0.00033	0.000066/ 0.000131	0.000031/ 0.000061	0.00036/ 0.00071	0.00002/ 0.00004	0.00028/ 0.00056	0.00028/ 0.00056
Hg 202	0.00601/ 0.01202	0.00786/	-	0.00160/	0.00026/	0.00269/	-	-	-	-	0.06950/	0.00030/	-	0.03869/ 0.07738
Pb 208	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	0.05(52)	0.01020/	0.010.47/	0.00727/	0.00550/	0.00.109/	0.00510/	0.00220.1	0.00224/	0.002521	0.01455/	0.00272/	0.00451/	0.00174/
Bi 209	0.05652/ 0.11303	0.01030/ 0.02060	0.01947/ 0.03894	0.00727/ 0.01455	0.00559/ 0.01117	0.00408/ 0.00815	0.00519/ 0.01038	0.00330/ 0.00660	0.00234/ 0.00468	0.00253/ 0.00506	0.01455/ 0.02910	0.00373/ 0.00746	0.00451/ 0.00901	0.00174/ 0.00348
U 235	0.05179/ 0.10358	0.02482/ 0.04964	0.01915/ 0.03831	0.01938/ 0.03876	0.02741/ 0.05482	0.01640/ 0.03281	0.01700/ 0.03399	0.02492/ 0.04985	0.00867/ 0.01734	0.01530/ 0.03061	0.02446/ 0.04891	0.01723/ 0.03447	0.02672/ 0.05343	0.02215/ 0.04430
	1	1						1		1				i

Per day levels were calculated considering a consumption of minimum 10 cigarettes and maximum 20 cigarettes

Sonia AMARIEI, Cristina-Elena HRETCANU, Gheorghe GUTT, Alexandra AGACHI, Heavy metals in tobacco, Issue 1 - 2014, pag. 80 - 86

In contrast, the Cd content is exceeded in the case of three samples for a minimum consumption of 10 cigarettes per day, and the content is exceeded for five samples at a consumption of 20 cigarettes per day, figure 2.

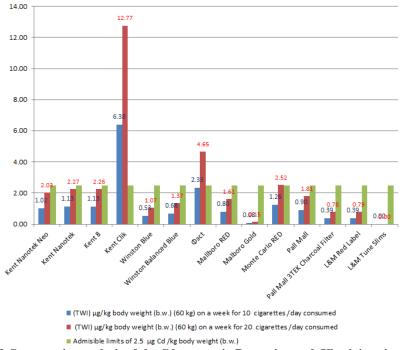
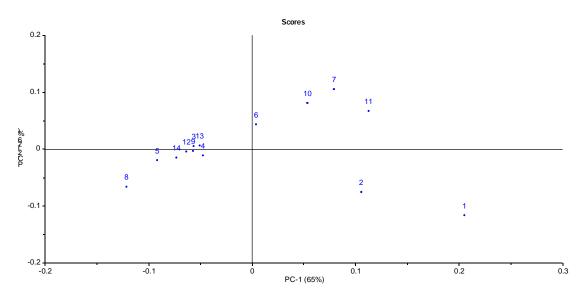



Fig. 2 Comparative analysis of the Cd content in Romanian and Ukrainian cigarettes

Principal Component Analysis was carried out according to the moisture content, ash and mineral concentrations in different samples of cigarettes. The scores of samples in the reduced space and the influence of chemical composition of the main component analysis are presented in figure 3 and figure 4.

Sonia AMARIEI, Cristina-Elena HRETCANU, Gheorghe GUTT, Alexandra AGACHI, Heavy metals in tobacco, Issue 1 - 2014, pag. 80 - 86

Fig. 3 Principal Component Analysis in different samples of cigarettes, according to the moisture and ash

This analysis identifies some kinds of cigarettes chemically similar. Principal Component Analysis was performed to assess the overall effect of chemical composition on the origin of cigarettes. Principal component 1 (PC1) explained 65% of variance, while component (PC2) explains 26% of variation, the overall percentage of variation of the two main components being 91% (figure 4).

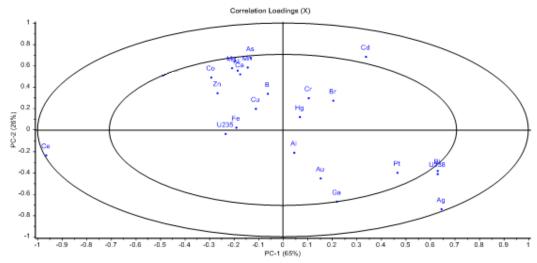


Fig. 4 Principal Component Analysis in different samples of cigarettes, according to the mineral concentrations

Component by PC1 distinguishes samples according to the content in Ag, Bi, U235 while PC2 component distinguished samples according to the content in As, Mn and Cd. The Hg and Al concentrations and proximity to the origin of the coordinates indicates that these parameters are not useful in the total variation. Component PC2 distinguishes types of cigarettes in

4. Conclusion

The metals Cu, Ni, Cr, Se, Hg, Pb were found to be neglijible. For cadmium, TWI was exceeded for Kent Clik cigarettes of 2.52 times, at a rate of 10 cigarettes per day, and of 5.10 times at a consumption of 20 cigarettes per day. In the case of Φ oct cigarettes, TWI has been exceeded of 1.86 times at a consumption of 20 cigarettes per day. The penetration of toxic elements in two categories: on the left side there are Romanian cigarettes, while on the right side there are Ukrainian cigarettes. Cigarettes Kent Nanotek Neo Romania are in discordant note to the other Romanian cigarettes being placed close to the Ukrainian cigarettes because of metal content.

the body is influenced by the moisture content of tobacco [9]. In the case of a high tobacco moisture more and more water vapor are generated which allows a drive of several toxic substances to the mouth end of the cigarette. Smoking of the last third of cigarette lead to increasing the ingestion of toxic substances from its total content determined.

Sonia AMARIEI, Cristina-Elena HRETCANU, Gheorghe GUTT, Alexandra AGACHI, Heavy metals in tobacco, Issue 1 - 2014, pag. 80 - 86

5. References

[1]. ZAPRJANOVA Penka, IVANOV Krasimir, ANGELOVA Violina, DOSPATLIEV Lilko, *Relation between soil characteristics and heavy metal content in Virginia tobacco*, World Congress of Soil Science, Soil Solutions for a Changing World, 1 – 6 August 2010, Brisbane, Australia. Published on DVD, 205-208

[2]. PELIT Füsun Okçu, DEMIRDÖĞEN Ruken Esra, HENDEN Emür, *Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke*, Environ Monit Assess (2013) 185:9471–9479

[3]. ZHANG Y., YANG X., ZHANG S., TIAN Y., GUO W., The influence of humic acids on the accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils, Journal of Soil Science and Plant Nutrition, 2013, 13(1), 43-53
[4]. LUGON-MOULIN N., RYAN L., DONINI P., ROSSI L., Cadmium content of phosphate fertilizers used for tobacco production, Agron. Sustain. Dev. 26 (2006), 151–155

[5]. BECCALONI Eleonora, VANNI Fabiana, BECCALONI Massimiliano, CARERE Mario, Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: Estimated intake by population in an industrialized area of Sardinia, Italy, Microchemical Journal 107, (2013) 190–195

[6]. MUSHARRAF Syed Ghulam, SHOAIB Muhammad, SIDDIQUI Amna Jabbar, NAJAM-UL-HAQ Muhammad, AFTAB Ahmed, *Quantitative analysis of some important metals and metalloids in tobacco products by inductively coupled plasma-mass spectrometry (ICP-MS)*, Chemistry Central Journal, (2012) [7]. R.S. PAPPAS, S.B. STANFILL, C.H. WATSON, D.L. ASHLEY, Analysis of Toxic Metals in Commercial Moist Snuff and Alaskan Iqmik, Journal of Analytical Toxicology, Vol. 32, May 2008, p.281-290

[8]. ASHRAF Muhammad Waqar, *Levels of Heavy Metals in Popular Cigarette Brands and Exposure to These Metals via Smoking*, The Scientific World Journal, (2012), Article ID 729430, p.1-5

[9]. PRABHAKAR V, JAYAKRISHNAN G, NAIR SV, RANGANATHAN B, Determination of trace metals, moisture, pH and assessment of potential toxicity of selected smokeless tobacco products, Indian Journal of Pharmaceutical Sciences, volume75, Issue 3, 9 (2013), 262-269

[10]. YARED Beyene Yohannes, YOSHINORI Ikenaka, SHOUTA M.M. Nakayama, AKSORN Saengtiencha, KENSUKE Watanabe, MAYUMI Ishizuka, Organochlorine pesticides and heavy metals in fish from Lake Awassa, Ethiopia: Insights from stable isotope analysis, Chemosphere 91 (2013), 857–863

[11]. LAZAREVIĆ Konstansa, NIKOLIĆ Dejan, STOŠIĆ Ljiljana, MILUTINOVIĆ Suzana, VIDENOVIĆ Jelena, BOGDANOVIĆ Dragan, Determination of lead and arsenic in tobacco and cigarettes: an important issue of public health, Cent Eur J Public Health (2012); 20 (1): 62–66

[12]. DHAWARE Dhanashri, DESHPANDE Aditi, KHANDEKAR R.N., CHOWGULE Rohini, *Determination of Toxic Metals in Indian Smokeless Tobacco Products*, The Scientific World, 9 (2009), 1140–1147