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Abstract: In the last decade, environmental protection is one of the major challenges. It is necessary 

to ensure the protection of the environment and the conservation of natural resources, in accordance 

with the requirements of a sustainable economic and social development. The most important impact 
of modern human activities is the release of large amounts of different compounds after fossil fuels 

burning; these compounds are responsible for increasing of greenhouse gases (GHG) concentrations in 

the atmosphere. The depletion of fossil fuels and necessity to increase energy reserves, especially for 

the propulsion of transport, contributed to search and use of alternative fuels. Partially or completely 
substitution of gasoline with bioethanol is an alternative method to reduce GHG emissions. Currently, 

biofuels (first generation) are produced from sources used to feed the population. The competition 

food vs. biofuel could be solved if biofuels were obtained from renewable resources such as 
lignocellulosic biomass (LCB). Second-generation biofuels are obtained from raw materials such as 

agricultural residues (straws, sugarcane bagasse, corn stalks and cobs) and forestry residues (sawdust, 

bark, branches, etc.) which do not interfere with global food production. In 2019, the main producers 

of bioethanol were USA, Brazil and EU which produced about 54%, 30% and 5% respectively of the 
worldwide bioethanol. 

This paper reviews one of the most important steps of bioethanol production which is the pretreatment 

of LCB. Numerous pretreatments are available, as follows: physical, chemical, physico-chemical, 
biological and combined pretreatments. The combined pretreatments were found to be more effective 

when compared to single pretreatments, and there is a wide range of combinations that can be applied 

in the future. 
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1. Introduction 

The term biofuel often refers to liquid or 

gaseous fuels that are used in the transport 

sector and are obtained mainly from 

biomass. The main characteristics of 

biofuels are related to sustainability, 

reduction of greenhouse gas emissions, 

development of economic, social and 

agricultural sector, and food security [1]. 

In the last century, increasing of global 

energy consumption has implicitly led to 

increasing in CO2, SO2 and NOx emissions  

 

 

 

 

due to the burning of fossil fuels which is 

the main cause of air pollution [2]. 

The reduction of fossil fuel deposits, but 

also their negative effects on the 

environment led to the exploration of 

alternative energy resources which are 

environmentally friendly [3,4]. Regarding 

the sources of bioenergy, lignocellulosic 

biomass (LCB) is an important raw 

material that can be used for biofuels 

production and also for extraction of high 

value compounds [5]. 
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 Annually, large amounts of LCB are 

generated, and these include forest, 

agricultural and agro-industrial residues 

that can be capitalized in bioethanol 

production [6]. 

The most important polymers present in 

LCB are cellulose (32% – 51%), 

hemicellulose (19% – 35%) and lignin 

(10% – 30%) [7,8]. Compared to 

agricultural biomass (AB), the physical 

properties but also the chemical 

composition of wood biomass (WB) are 

different. WB has a more pronounced 

recalcitrance than microbial and enzymatic 

actions when compared to AB [9]. 

Currently, critical concerns are focused on 

the sustainability of bioethanol production, 

as it is obtained mostly from cereal crops 

that contain starch and sugar. For this 

reason, the irrational use of these crops can 

create competition between food and 

biofuels [10,11]. The main advantage of 

lignocellulosic materials (CML) are that 

they are renewable sources that do not 

compete with food for human consumption 

[12-14], thus using these resources may 

avoid food security issues [6]. Other 

advantages include the extraction of high 

value substances [15] and the relatively 

low cost of processing, which is cheaper 

than that of crude oil [8,16].  

However, LCB also has an important 

disadvantage that refers to its complex 

structure, which is resistant to chemical 

and enzymatic degradation [17]. Therefore, 

in order to modify the physicochemical 

properties of the lignocellulosic matrix, 

various pretreatment methods must be 

applied to the LCB; these pretreatments are 

considered to be expensive [18-20].  

The aim of this review was to identify the 

physical and chemical methods of 

pretreatment of LCB and establish which 

of these pretreatment methods can disrupt 

the complex structure of LCMs and 

remove lignin most efficiently. The 

pretreatment process conditions must to be 

given special attention because at this step 

the selection of the best choice can lead to 

a significant increase in the yield of 

fermentable sugars and also reduce the 

formation and release of toxic compounds. 

 

2. Overview of sources and bioethanol 

production 

2.1. Clasification of biofuels 

Biofuels are classified into two broad 

groups: primary and secondary. Primary 

biofuels are used in crude form for heating, 

cooking or electricity production. 

Secondary biofuels are products resulting 

from biomass processing and can be used 

for transport or various industrial 

processes. Depending on the raw material 

and the technology used for the production 

of secondary biofuels, they divide into 

three subgroups: first generation, second 

generation and third generation (Figure 1) 

[21-24]. 

 

2.2. Global Ethanol Production   

Renewable Fuels Association (RFA) 

argues that the largest worldwide producer 

of ethanol is the US (corn), followed by 

Brazil (sugar cane). In 2018, the United 

States and Brazil produced about 16.1 

billion gallons and 7.95 billion gallons, 

respectively (28%). This means that these 

two countries produced aproximatively 

84% of global ethanol production [25]. 

Figure 2 shows the global ethanol 

production from 2007 to 2018. 

 

2.3. Structure of lignocellulosic biomass  

Cellulose is a linear polymer composed of 

D-glucose units linked by β-1,4 glycosidic 

bonds. The hydroxyl groups of each 

glucose unit form intra- and inter-

molecular hydrogen bonds and give the 
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cellulose chain a rigid and partially 

crystalline structure. This crystallinity 

indicates that the structure of cellulose is 

more orderly, but limits the action of 

enzymes during saccharification [27-28]. 

By removing water from each molecule of 

glucose, long chains of cellulose that 

contain 5000 - 10000 units of glucose are 

formed. 

 

 
Fig 1. Clasification of biofuels [21-24] 

 

 

Fig 2. Global Ethanol Production  [26] 
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The basic unit of cellulose consists of two 

units of anhydrous glucose, also called 

cellobiose units [29]. 

Hemicellulose is a carbohydrate that 

contains different types of sugars: with 5 

carbon atoms (β-D-xylose, α-L-arabinose 

and rhamnose) and with 6 carbon atoms 

(β-D-glucose, β-D-mannose and α-D-

galactose [30]. 

Lignin is the second most abundant 

biopolymer of LCB, after cellulose. In 

combination with hemicellulose it is 

distributed around the cellulose fibers in 

both the primary and secondary cell walls. 

Lignin has three basic monomers: p-

coumaryl alcohol, coniferyl alcohol and 

sinapyl alcohol [31]. Figure 3 shows the 

structure of LCB. The chemical 

composition of LCMs used for production 

of second-generation bioethanol is shown 

in Table 1. 

. 

 
Fig 3. Structure of LCB [32] 
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Table 1 

The chemical composition of LCMs 

Biomass 
Cellulose 

(%) 

Hemicellulose 

(%) 
Lignin (%) 

Extractable 

substances (%) 
Ash (%) References 

Agricultural biomass/residues 

Corn stalks 38.0 26.0 18.5 6.0 5.1 [33] 

Corn cobs 36.75 ± 0.54 29.98 ± 3.60 23.13 ± 3.40 6.76 ± 1.52 0.95 ± 0.03 [34] 

Wheat straws 43.1 27.7 17.5 5.5 5.3 [35] 

Rice straws 35.63% 18.06% 31.97% n.a 10.24% [36] 

Barley straws 33.25 20.36 17.13 5.64 2.18 [37] 

Rye straws 35.8 14.5 3.5 n.a n.a [38] 

Triticale 

straws 
33 23 29 n.a 3 [39] 

Oat straws 37.60 23.34 12.85 7.11 2.19 [37] 

Sorghum 

straws 
35.87 26.04 7.52 n.a n.a [40] 

Sugarcane 

bagasse 
45.5 ± 1.1 27.0 ± 0.8 21.1 ± 0.9 2.2 ± 0.1 4.6 ± 0.3 [41] 

Rapeseed 37.0 19.6 18.0 19.7 5.7% [42] 

Canola straws 42.39 16.41 14.15 
7.56 

 
2.10 [37] 

Cotton stalks 31.1 10.7 27.9 9.0 6.0 [43] 

Hemp 74 18 13 n.a n.a [44] 

Hemp fiber 56.1 - 58.7 10.9 -  14.2 6 - 4.3 [45] 

Kenaf 31 – 57 21.5 – 23 15 – 19 n.a n.a [46] 

Jute 72 13 13 n.a n.a 
[44] 

Sisal 73 13 11 n.a n.a 

Grape stalks 
16.7 ± 0.2 - 

18.0 ± 0.2 
2.6 - 5.7 

19.2 - 

24.2 ± 0.5 
22.6 n.a [47] 

Nut shells 25 – 30 25 – 30 30 – 40 n.a n.a [48,49] 

Coconut 33.29 ± 0.09 33.61± 0.07 19.87 ± 0.08 1.27± 0.05 5.5± 0.05 [50] 

Coir 43 <1 45 n.a n.a [44] 

Banana waste 13.2 14.8 14 n.a n.a [51] 

Grasses 

Miscanthus 41.9 20.6 23.4 3.7 3.0 [52] 

Switch grass 
 

34.6- 45 
23.5 - 31.4 12.0-21.0  20.9 [49,53] 

Forestry biomass/ residues 

Hardwoods 

Quercus 

robur 
48–49 18–22 29–34 n.a n.a 

[54] 
Fagus 

sylvatica 
47–48 18–22 

30–35 

 
n.a n.a 

Populus 

tremula 
48–49 

21–25 

 
26–31 n.a n.a 

Eucalyptus 

gigantea 
49 23 22 n.a n.a 

[55,56] 

Alnus rubra 44 30 24 n.a n.a 
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Softwoods 

Picea abies 42 20 27 n.a 8 [39] 

Abies alba 35–37 24–26 37–41 n.a n.a 

[54] Tillia 

cordata 
48–51 20–22 27–32 n.a n.a 

Salix 37.1 17.8 27.0 3.8 1.1 [52] 

Larix 

occidentalis 
48 17 27 n.a. n.a. [55,56] 

Pinus 
sylvestris 

32.5 - 50 24 - 39.7 16.3 - 20 n.a. n.a. [57,58] 

Pseudotsuga 

menziesii 
44.0 11.0 27.0 n.a. n.a. [58] 

Other residues 

Newspaper 0-55 25-40 18-30 5-8 n.a. 

[48,59,60] 

Waste 

papers from 

chemical 

pulps 

60-70 10-20 5-10 n.a. 2 

n.a. – not analyzed 

 

3. The impact of pretreatments on 

LCMs 

The pretreatment step has an important 

role in the biofuel production process 

because by pretreating LCB there can be 

obtained yields of up to 90% as compared 

to 20% in the case of untreated LCB. [61]. 

The pretreatment step was introduced to 

separate LCB into the main constituent 

biopolymers and to facilitate hidrolysis. 

The pretreatment step should allow an easy 

recovery of lignin and other non-

fermentable constituents that can be used 

for the synthesis of other chemical 

compounds [62,63]. The pretreatment 

methods used for bioethanol production 

from LCB are shown in Figure 4. 

 

3.1. Physical methods for pretreatment 

of LCB 

Physical pretreatments include processes 

such as mechanical, pressure, microwave, 

ultrasonication, pyrolysis, pulsed electric 

field, etc. 

 

3.1.1. Mechanical pretreatment 

Mechanical pretreatments of LCB include 

chipping, grinding and milling. These 

methods are used for releasing biomass 

fragments with small particle size, 

disruption of cell structure, decreasing the 

crystallinity of cellulose in biomass, and to 

facilitate further chemical and biological 

treatments [64]. For raw materials, a 

certain pretreatment method is required to 

minimize substrate degradation and 

improve carbohydrates yield [61,63]. 

Grinding biomass facilitates the access of 

enzymes and steam. The energy consumed 

to reduce the particle size represents 

approximately 30% of the total energy 

consumption of the process. The 

extractable substances can be removed 

using steam (~160 °C) [61]. 

Mechanical pretreatment of LCMs is an 

important step in the technological process 

of obtaining biofuels because it contributes 

to improving bioconversion by reducing 

cellulose crystallinity, particle size, degree 

of polymerization [65], particle density and 
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distribution, while increasing enzymatic 

accessibility and transformation of LCMs. 

[66]. LCM has a complex composition, 

thus different types of mills are used to 

decompose and reduce its crystallinity. The 

most common types of mills are ball mills, 

centrifugal mills, colloidal mills, hammer 

mills, knife mills, pin mills and vibratory 

mills [67]. Milling is used to reduce the 

crystallinity and size of LCB particles and 

can result in particles with a size of 0.2 

mm [68].  

Mani et al. [69] used a hammer mill with a 

screen opening of 0.8 mm, 1.6 mm and 3.2 

mm and determined the specific energy 

consumption for grinding wheat straws, 

barley straws, corn stover and switchgrass 

that had a humidity of 8.3 – 12.1 %wb, 6.9 

– 12.0 %wb, 6.2 – 12.0 %wb and 8.0 – 

12.0 %wb, respectively. The average 

specific energy consumption for wheat 

straws, barley straws, corn stover and 

switchgrass was 11.36±1.02 – 51.55±2.93 

(kWh t−1), 13.79±0.18 – 99.49±7.35 (kWh 

t−1), 6.96±0.75 – 34.30±1.47 and 

23.84±0.63 – 62.55±0.63 (kWh t−1), 

respectively [69]. Bitra et al. [70] directly 

measured the mechanical energy used by 

the knife mill to reduce the size of 

switchgrass, wheat straw and corn stover. 

In the case of the knife mill, for a screen 

size of 25.4 mm and an optimum speed of 

250 rpm, the optimum feed speed obtained 

was 7.6, 5.8 and 4.5 kg/min, the 

corresponding total specific energies were 

7.57, 10.53, and 8.87 kWh/Mg, and the 

efficient specific energies were 1.27, 1.50 

and 0.24 kWh/Mg for switchgrass, wheat 

straw and corn stover, respectively. Energy 

use ratios were determinated and were, as 

follows: 16.8%, 14.3% and 2.8% for 

switchgrass, wheat straw and corn stover, 

respectively [70]. 

 

 
Fig. 4. Pretreatments applied to LCB [49,68,71]. 
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3.1.2. Microwave pretreatment 

Microwave irradiation is considered an 

alternative method to conventional heating 

[72] and present interest in different 

domains. The use of microwave irradiation 

has some advantages such as reduced 

process energy requirements, uniform and 

selective processing and the ability to start 

and interrupt the process instantly [73]. 

There are numerous studies that have 

shown that microwave irradiation could 

contribute to the disruption of the complex 

structure of LCMs [74] and facilitate their 

enzymatic hydrolysis [75]. Combined 

pretreatments (microwave irradiation + 

chemical pretreatment) can also be applied 

to LCMs, and can contribute to the 

acceleration of the chemical reaction rate 

[76]. Also, microwave irradiation reduces 

time, and the severity of liquid ionic and 

alkali pretreatment [77,78]. 

Ma et al. [79] pretreated the rice straws 

using microwave irradiation with a 

maximum power of 800 W. The optimal 

conditions identified were a microwave 

power (MP) of 680 W, irradiation time 

(IT) of 24 min and substrate concentration 

(SC) of 75 g/L. Under these optimal 

conditions, cellulose saccharification (CS), 

hemicellulose saccharification (HS) and 

total saccharification (TS) reached 37.8%, 

20.2% and 31.8% with increased rates of 

30.6%, 43.3% and 30.3% as compared to 

the straw of raw rice. Therefore, 

microwave irradiation is an effective 

pretreatment method and could disrupt the 

silicified waxed surface, decompose the 

complex structure of lignin-hemicellulose, 

and partially remove silicon and lignin thus 

facilitating the action of cellulases [79]. 

In the study conducted by Liu et al. [80] on 

poplar sawdust (80 mesh) it was applied a 

combined pretreatment using as solvent 

choline cloride/oxalic acid dihydrate 

(ChCl/OA) deep eutectic (DES) with pH= 

1.31 + microwave treatment and solid to-

liquid ratio of 1:20. 80% of total lignin was 

removed from the samples pretreated only 

with ChCl/OA after being maintained for 9 

hours at 110 °C, while the same results 

were obtained by applying microwave 

irradiation for 3 minutes at 800 W [80]. 

Chen et al. [81] analyzed the impact of 

microwave-assisted (10 %wt solid loading) 

pretreatment using a radiation power 

of 800 W, temperature of 152 °C, and time 

of 45 s on corn stover, Switchgrass and 

Miscanthus. After pretreatment, significant 

amounts of lignin and xylan were 

identified in the liquid fraction. The lignin 

content removed from corn stover, 

Switchgrass and Miscanthus was 79.60%, 

72.23% and 65.18%, respectively [81]. 

 

3.1.3. Ultrasonic pretreatment 

The use of ultrasound is an effective 

method for separating constituents from 

LCMs. Ultrasonic treatment is based on 

the working principle of the acoustic 

cavity, which is described as spontaneous 

formation, growth and subsequent collapse 

of the microsize cavities/bubbles caused by 

the propagation of ultrasonic waves in the 

liquid medium. The implosion of these 

cavities generates high temperatures and 

pressure gradients locally for microsecond 

conditions, creating the effect of hot-spot 

in the liquid [82,83]. 

Esfahani et al. [84] pretreated sugarcane 

bagasse (particle size >1, 1-0.5, 0.5-0.18, 

<0.18 mm) using ultrasound-assisted 

diluted H2SO4 pretreatment (20 kHz, 50, 

80, 120 and 200 W; 0, 1, 3 and 5% (v/v) 

H2SO4) for 0, 60, 12 and 180 s, 

respectively. The most significant impact 

was recorded when the ultrasound power 

was 120 W [84]. 

Yuan et al. [85] have applied an 

ultrasound-assisted organic solvent 

pretreatment to delignify poplar wood at 

20 kHz, 570 W and 25 °C for 30 min using 

three organic solvents – 95% ethanol, 
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methanol, and dioxane. Following the 

application of ultrasound-assisted organic 

solvents pretreatment, approximately 

25.7% of the original lignin was extracted 

[85]. 

Sun et al. [86] have pretreated wheat 

straws using ultrasound-assisted alkali 

pretreatment at 20 kHz and 100 W with 0.5 

M KOH at 35 °C for 2.5 h, and after 35 

min of ultrasound irradiation 

approximately 8.4% of lignin was 

extracted [86]. 

 

3.1.4. Pulsed electric field (PEF) 

pretreatment 

Pulsed electric field (PEF) is a very short 

non-thermal treatment (from a few 

microseconds to a few milliseconds) with a 

pulse amplitude from about 300 V/cm to 

20-40 kV/cm. By comparison to other 

treatments, the damage caused to cell 

membranes or tissue matrix is lower. In 

other words, PEF penetrates the biological 

membrane which temporarily or 

permanently loses its semi-permeability 

[87]. The electrical permeability of 

biological membranes is called 

electroporation and can be reversible or 

irreversible [88]. Electrical permeability of 

different species of Switchgrass and wood 

chips using PEF can be applied to facilitate 

the hydrolysis of cellulose to glucose in 

order to obtain fuels [89]. 

Almohammed et al. [90] analyzed the 

impact of pulsed electric field intensity E 

and duration tPEF on the expression kinetics 

of dissolved substances in sugar beet tails 

(SBT). In regards to the intensity and 

optimal duration of PEF, it was established 

that E = 450 V/cm and tPEF= 10 ms 

corresponded to an energy input Q= 1.91 

Wh/kg, as the yield of dissolved 

substances increased from 16.8% to 

79.85% by comparisson to untreated SBT. 

Also, the liquid fraction resulting from the 

PEF pretreatment was more concentrated 

(10% vs. 5.2%) and implicitly higher 

sucrose content was obtained (8.9 °S 

compared with 4.5 °S in the juice from 

untreated SBT). Therefore, it was found 

that by applying the PEF pretreatment it 

would be achieved an ethanol content of 

6.1% v/v, as compared to 2.95% v/v for 

the untreated SBT [90]. 

Kumar et al. [89] investigated the impact 

of PEF on untreated and treated samples of 

Switchgrass using 1000, 2000 and 5000 

pulses of 2.5, 5, 8 and 10 kV/cm with a 

pulse width of 100 μs and a frequency of 3 

Hz, and samples of untreated and treated 

wood chips (Southern pine), for which 

they applied 1000 and 2000 pulses of 1 

kV/cm and 1000, 2000, and 5000 pulses of 

10 kV/cm, the pulse width and frequency 

being similar. To indicate the impact of 

PEF on internal diffusion in the tissues of 

the samples, the absorption of a neutral red 

dye C15H17ClN4 (MW ∼ 289) was studied. 

In the case of Switchgrass samples, no 

structural changes were recorded at low 

field intensities up to 5 kV/cm. Changes in 

the structure were recorded at field 

intensities of 2000 and 5000 pulses of 8 

kV/cm and 10 kV/cm, respectively. 

Changes were observed for wood chips 

treated at 10 kV/cm [89]. 

 

3.2. Chemical pretreatments 

3.2.1. Acid pretreatment 

Compared to the alkali pretreatment which 

removes more lignin, the acid pretreatment 

removes more hemicellulose, while 

cellulose and lignin fractions are less 

affected [90,92]. 

Regarding the acid pretreatment of 

lignocellulosic biomass, mineral acids 

(HCl, HNO3, H2SO4 and H3PO4) and 

organic acids (e.g. CH2O2, C2H4O2, 

C3H6O2 and C4H4O4) can be used 

successfully [93]. As their use affects the 

environment, it is necessary to find 
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pretreatment techniques to optimize yields 

and reduce costs [94]. Table 2 presents 

different acids used for pretreatment of 

LCMs. 
Table 2 

Different acids used for pretreatment of LCMs  

Type of acid LCM Process conditions Reference 

HCl 
corn stover 1 % (w/w) HCl at 100 - 130 °C for  20 - 40  min [95] 

grass 1 % (w/w) HCl boiled at 100 °C for 30 min [96] 

HNO3 

corn stover 
0.2 - 1 % (w/w) HNO3 at 120, 140 and 160 °C for  

1, 5.5 and 10 min 
[97] 

oat hulls 4 % (w/w) HNO3 at 94 - 96 °C for  4 h [98] 
sugarcane bagasse 1 % (w/v) HNO3 autoclaved at 121 °C for  30 min [99] 

H2SO4 

sugarcane bagasse 
2 - 6% (w/w) NaOH at 100 - 128 °C for  0 - 300  

min 
[100] 

corn stover 
0.71 - 1.41% (w/w) H2SO4 at 165–195°C for  2.9 

– 12.2  min 
[101] 

wheat straws 
0.75 – 2.25% (v/v) H2SO4 at 120, 140 and160 °C 

for  10, 20 and 30  min 
[102] 

rice straws 
0.5% (w/v) H2SO4 autoclaved at 120 °C (15 lb 

pressure) for  60  min 
[103] 

sugarcane bagasse 
0.5 - 3% (w/v) H2SO4 at 112.5  - 157.5 °C  for  5 - 

35  min 
[104] 

H3PO4 

corn stover 
0.16 – 1.84 % (v/v) H3PO4 at 126.36 – 193.63 °C  

for  1.59 – 18.41 min 
[105] 

wheat bran 
0.5 - 3% (w/v) H3PO4 at 150 - 210 °C  for  5 - 20 

min 
[106] 

sugarcane bagasse 1 % (w/w) H3PO4 at 170 and 180 °C  for  4 h [107] 
Eucalyptus 

benthamii 

1% (w/w) H3PO4 at 180 - 200 °C  for  5 - 15 min 
[108] 

CH2O2 
Scots pine 
sawdust 

0.5 – 2.5% (w/v) H2SO4 at 100, 120, or 140 °C  

for  1, 1.5, and 2 h 
[109] 

15 – 40% (w/v) CH2O2 at 100, 120, or 140 °C for  

1, 1.5, and 2 h 

C2H2O4 

corn cob 
0.015 – 0.037 g/g C2H2O4 at 120 - 180 °C for  10 

- 90 min 
[110] 

Yellow poplar 

sawdust 

24 – 139 mM C2H2O4 at 160 °C for  2 - 58 min 
[111] 

 

3.2.2. Alkali pretreatment 

Alkali pretreatment is based on the use 

of hydroxides such as NaOH, KOH, 

Ca(OH)2 and NH4OH for the pretreatment 

of lignocellulosic biomass, cellulose 

swelling, partial decrystallization of 

cellulose [112-115] and partial removal of 

hemicellulose [115-116]. By applying the 

alkali pretreatment, lignin can be extracted; 

this is the basis of the pulping process in 

order to obtain high quality paper (Kraft 

process) [91-92]. Most studies were 

performed on the impact that NaOH has on 

the complex structure of LCB and it was 

found that this hydroxide can remove 

lignin and facilitate the activity of 

cellulolytic enzymes [117]. Numerous 

LCMs were subjected to alkali 

pretreatment methods and these include 

corn stover, sugarcane bagasse, wheat 

straws, rice straws, Switchgrass, and 

sawdust [117-119]. Table 3 presents 

different hydroxides used for pretreatment 

of LCMs. 
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Table 3 

Different hydroxides used for pretreatment of LCMs 

Type of hydroxide LCM Process conditions Reference 

NaOH 

corn stover 0.25, 0.5, 1 % (w/v) NaOH at 21 °C for 3, 6, 9 h [120] 

wheat straws 
0.25 - 1.5% (w/v) NaOH was  at 121 °C/15 psi for  

0.5 - 2.5  h 
[121] 

sugarcane bagasse 
3% NaOH and thermostated in oven at 121 °C, 60 

min 
[122] 

Sugarcane tops 
3% (w/w) NaOH and thermostated at 121, °C (15 

lb pressure), 60 min 
[123] 

cotton stalk 
1, 2, 3, 4, 5% (w/w) NaOH at 120, 150,180, 200 

°C, 45 min 
[124] 

spruce sawdust 

- 3%, 7%, and 10% (w/w) NaOH at 60 °C for 0.5, 

1, and 2 h 

 - 7% NaOH (w/w) at −20 °C and 121 °C for 0.5, 

2, and 24 h 

[125] 

bamboo 2% NaOH at 120, 140,160, 180 °C, 60 min [126] 

KOH switchgrass 

- 0.5, 1.0, 2.0% KOH at 21°C for 6, 12, 24, 48 h 

- 0.5, 1.0, 2.0% KOH at 50°C for 6, 12, 24 h 

- 0.5, 1.0, 2.0% KOH at 121°C for 0.25, 0.5, 1.0 h 

[127] 

Ca(OH)2 

corn stover 
0.0 - 0.30 g Ca(OH)2 (g/dry biomass) at 120 °C 

for 5 h 
[128] 

Poplar 
0.1 - 0.3 g Ca(OH)2 (g/dry biomass) at 60 – 250 

°C for 0.25 - 24 h 
[129] 

newspaper 
0.05 - 0.3 g Ca(OH)2 (g/dry biomass) at 60 – 150 

°C for 1 - 24 h 

NH4OH 

corn stover 0.5 - 50.0 wt.% NH4OH at 30 °C for 4 - 12 weeks [130] 

wheat straws 

6.2, 15.4, 24.6 and 30.8% (w/v) NH4OH at 20, 

32.2, 50, 67.8 and 80 °C for 6, 14.5, 27, 39.5 and 

48 h 

[131] 

 

3.2.3. Ozonolysis pretreatment 

Ozone (O3) is considered a strong oxidant 

and has high solubility in water. It converts to 

oxygen and has a strong affinity for C-C 

double bonds in the structure of lignin as 

opposed to carbohydrates where these bonds 

are missing. For this reason, ozone can be 

used for the pretreatment of different 

agricultural residues and energy crops. The 

most used ozone pretreatment method is the 

one made in a fixed bed reactor (with 

humidity of 20-40%) for 60-180 min, under 

room conditions [132]. Even if the 

ozonolysis is exothermic, different pressures 

and temperatures can be applied [133]. By 

applying ozone pretreatment, approximately 

50% of the lignin present in LCB is 

depolymerized and removed [134], and the 

pH of LCB drops to 2-3. By increasing the 

pH it was observed that the depolymerization 

of lignin is reduced [133]. 

Travaini et al. [132] reported that ozone 

pretreatment of sugarcane bagasse slightly 

reduced carbohydrates, with cellulose and 

xylan recovery rates being greater than 92%. 

In this study the following parameters were 

varied: 1.37 ± 0.03 - 3.44 ± 0.11% (v/v) O3, 

humidity 28 ± 0.11 - 80 ± 0.32% (w/w), and 

ozonolysis time 45 ± 0.02 - 195 ± 0.02 min. 

Also, ozonolysis facilitated the enzymatic 

hydrolysis obtaining the yields of glucose 

and xylose [132]. 

In the study by Garcia-Cubero et al. [133] the 

ozonolysis pretreatment was applied on 

wheat straws, rye straws, oat straws, barley 
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straws using 2.7% (w/w) O3 and 40% (w/w) 

humidity under room conditions [133]. 

 

3.2.4. Organosolv pretreatment 

Organic solvents are used to extract/remove 

lignin from LCB before performing 

enzymatic hydrolysis of the cellulose 

fraction. In the case of pretreatment with 

organosolv, single organic solvent or 

different ratios of organic solvents/water can 

be used. It was found that in order to increase 

the solubilization rate of lignin and 

hemicellulose and their removal it is 

recommended to use an acid as catalyst to 

facilitate the enzymatic hydrolysis of the 

cellulose fraction. The most commonly used 

organic solvents for the pretreatment of 

LCMs are ethanol, methanol, acetone and 

ethylene glycol [135] and the maximum 

temperature at which they can be used can 

range up to 200 °C. In some cases it is not 

necessary to use maximum temperatures, 

however, depending on the type of LCM 

lower temperatures can be applied alongside 

an acidic catalyst [12]. Because the solvent 

used in the pretreatment of LCM can have 

inhibitory effects on the enzymatic 

hydrolysis and fermentation steps, it must be 

separated and recycled. [14]. Table 4 

presents different organosolv and catalysts 

used for pretreatment of LCMs. 

 
Table 4 

Different organosolv and catalysts used for pretreatment of LCMs [68,136]  

Type of organosolv LCM Process conditions References 

60% Ethanol corn stover n-propylamine at 140°C for 40 min [137] 

60% Ethanol corn stalk 4%  NaOH at 110°C for 90 min [138] 

25% Ethanol 

wheat straws 

1% H2SO4 at190°C for 60 min [139] 

50% Ethanol 0.35% H2SO4 at 180°C for 40 min [140] 

60% Ethanol 0.29% H2SO4 at 190°C for 60 min [141] 

45% Ethanol 
rice straws 

1% H2SO4 at 180°C for 30 min [142] 

65% Ethanol 1.1% H2SO4 at 170°C for 60 min [143] 

50% Acetone 
barley straws 

0.5% H2SO4 at 140°C for 20 min [144] 

50% Ethanol 1.6% FeCl3 at 170°C for 60 min [145] 

25% Butanol sorghum bagasse 0.5% H2SO4 at 200°C for 60 min [146] 

50% Ethanol sweet sorghum 1% H2SO4 ar 140°C for 30 min [147] 

50% Ethanol 

sugarcane bagasse 

1.25% H2SO4 ar 175°C for 60 min [148] 

60% Ethanol 0.025% FeCl3 at 160°C for 72h [149] 

70% Glycerol at 220°C for 120 min [150] 

60% Ethanol Bamboo at 160°C 60 min [151] 

56% Glycerol 
Eucalyptus wood 

at 200°C for 69 min [152] 

25% Ethanol 1% CH3COOH at 200 °C for 60 min [153] 
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3.2.5. Ionic liquids (ILs) 

Ionic liquids (ILs) are considered to be 

environmentally friendly molten salts and 

are part of a new class of solvents that 

have high polarity, low melting point, 

nonvolatility and designability [154-157]. 

Regarding the pretreatment of 

lignocellulosic biomass ILs were 

successfully used as solvents for lignin 

extraction and crystallinity reduction of 

carbohydrates [158-159]. ILs offer more 

attractive features when compared to 

conventional methods [160]. The physico-

chemical properties of the IL, the reaction 

time and temperature, the ratio between 

biomass and IL, the type of biomass and 

the humidity of the sample are the criteria 

that must be taken into account when 

selecting the type of IL used for the LCM 

pretreatment [161]. Compared to 

conventional methods, ILs have numerous 

attractive features [160]. 

For LCB pretreatment, ILs should have the 

following properties [160,162]: 

- ability to dissolve LCB at low 

temperatures; 

- chemical stability;  

- low viscosity; 

- easy to regenerate and recycle; 

- cost-effective and easy to process;- 

absence of toxicity during enzymatic 

hydrolysis and microbial fermentation 

steps. 

Numerous studies have shown that higher 

conversion and/or yields of intermediates 

can be obtained if metal or acid catalysts 

are also used alongside ILs [163]. The most 

representative ILs containing organic 

cation salts are nitrate [NO3]-, 

hexafluorophosphate [PF6]
-, alkyl-

imidazolium [R1R2IM]+, alkylpyridinium 

[RPy]+, methanesulfonate (mesylate) 

[CH3SO3]
-, trifluoromethane sulfonate 

[CF3SO3]
-, tetraalkylammonium [NR4]

+, or 

tetraalkylphosphonium [PR4]
+ and anions, 

and bis- (trifluoromethanesulfonyl) imide 

[Tf2N]-. There are also salts of chloride, 

iodine and bromide [164]. Table 5 presents 

different ionic liquids and catalyst used for 

pretreatment of LCMs. 

 Table 5  

Different ionic liquids (ILs) and catalysts used for pretreatment of LCMs [160] 

Type of acid LCM Process conditions Reference 

1-butyl-3-

methylimidazolium chloride 

Corn stalk 
HCl at 100 °C for 0.5 h 

[165] 

HCl at 100 °C for 5.5 h 

Rice straws HCl at 100 °C for 7.5 h 

Pine wood HCl at 100 °C for 0.8 h 

Bagasse HCl at 66 °C for 1 h 

1-butyl-3-

methylimidazolium bromide 

Corn stalk 

HCl at 100 °C for 1 h 

1-allyl-3-methylimidazolium 

chloride 
HCl at 100 °C for 1.5 h 

1-hexyl-3- 

methylimidazolium chloride 
HCl at 100 °C for 20 h 

1-Ethyl-3-

methylimidazolium acetate 

Rice straws and 

cassava pulp 
at 25 - 120 °C for 24 h [166] 

1-Ethyl-3-

methylimidazolium diethyl 

phosphate 

1,3-dimethylimidazolium 

methyl sulfate 

N-methylmorpholine-N-

oxide 

Spruce and oak 6 %, 90–130 C, 1–3 h [167] 
Spruce and 

birch chips 

6 %, 130 C, 1–5 h [168] 
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3.2.6. Deep eutectic solvents (DES) 

Recently, deep eutectic solvents (DES) 

have attracted more and more attention and 

are considered to be alternative ILs or in 

other words are considered to be green 

solvents that have physico-chemical 

properties similar to ILs. In most cases, 

DES contain two or three components that 

are linked by a hydrogen bond thus 

resulting an eutectic mixture with a 

melting point lower than each individual 

component. [169,170]. Usually, below 100 

°C DES are in liquid form. Compared to 

ILs, DES are biodegradable and the 

production costs are lower [169]. The 

technology for obtaining DES refers to 

mixing a quaternary ammonium salt with a 

metal salt or hydrogen bonding donor 

(HBD) which can create a complex with 

the halogen ion of the quaternary 

ammonium salt [171]. 

Zhang et al. pretreated 0.3 g of corncob 

with a DES that was prepared by mixing 

choline chloride (ChCl) with carboxylic 

acid (monocarboxylic and dicarboxylic) or 

polyalcohol at 90 °C for 24 h [172]. Xu et 

al. pretreated corn with an acid DES 

consisting of choline chloride: formic acid 

(ChCl: CH2O2) and obtained noteworthy 

results in terms of removal of 

hemicellulose and lignin [173]. Also, Pan 

et al. [174] pretreated 10 g of rice straw 

with 200 g ChCl/urea and transferred the 

mixture to 500 ml Erlenmeyer flasks. 

Then, the contents were stirred and 

maintained at 110 °C and 130 °C for 4 h, 6 

h and 8 h, respectively [174]. Jablonský et 

al. [175] pretreated wheat straw with six 

types of DES using different ratios of 

choline chloride with urea, malic, lactic, 

malonic, lactic, and oxalic acid. 2.5 g of 

wheat straw were pretreated with 

individual DES at a ratio of 1:20 (w/w) for 

24 hours at 60 °C; for choline chloride and 

urea and choline chloride and malic acid 

the temperature was 80 °C [175]. 

 

4. Advantages and disadvantages of 

physical and chemical pretreatments 

 

Regarding the technological process of 

bioethanol production from LCM, 

selection of the pretreatment type specific 

to each LCM is very important because 

this step has a great impact on all 

subsequent steps (hydrolysis and 

fermentation) [176]. Therefore, the choice 

of pretreatment should be made carefully 

in the process of obtaining bioethanol 

because the pretreatment also affects the 

cost of the next steps of operation and 

refers to the determination of compounds 

that cause inhibition of fermentation, 

enzyme hydrolysis rates and enzyme 

dosages alongside other factors that may 

influence the fermentation process. Table 6 

shows the main advantages and 

disadvantages of the most common 

pretreatment technologies used for the 

conversion of LCB to bioethanol [177]. 

 

5. Conclusion 
 

The growing need for energy worldwide 

and environmental pollution must lead us 

to focus on the exploitation of 

lignocellulosic biomass, which is a 

renewable source that is widely available 

and relatively inexpensive. In order to 

convert LCMs to bioethanol, their complex 

structure must first be fractionated as much 

as possible. This can be done only by 

correctly choosing from the various 

pretreatment technologies available, which 

include biological, mechanical, chemical 

and various other combined methods. 
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Table 6  

Advantages and disadvantages of the most common pretreatment technologies used for the conversion 

of LCB to bioethanol [177,178] 

 

Pretreatment 
Increases 

accessible 

surface area 

Cellulose 

decrystallization 

Hemicellulose 

solubilization 

Lignin 

removal 

Lignin 

structure 

modification 

Production of 

toxic 

compounds 
Mechanical  +++ +++ 0 0 0 0 

Irradiation +++ +++ + +++ +++ + 

Acid +++ 0 +++ ++ +++ +++ 

Alkali +++ +++ ++/+++ +++ +++ + 

Ozonolysis ++ ++ ++/+++ +++ ++ + 

Organosolv ++  +++ ++/+++ ++ ++/+ 

Ionic liquids ++ +++ +++ ++/+++ ++ ++/+ 

(+++) high effect; (++) moderate effect; (+) low effect; (0) no effect 

 

 

Physical pretreatment methods, and 

especially mechanical ones, reduce the 

crystallinity and particle size and cause an 

increased contact surface with the 

pretreatment agent. However, this process 

generates high energy consumption and 

therefore high costs. 

In regards to the application of chemical 

pretreatment methods, the use of chemicals 

such as acids, alkalis, ozone or organic 

solvents can effectively remove lignin, 

thus facilitating the enzymatic hydrolysis 

of cellulose. 

We cannot name a method that is the 

best choice and can be applied among all 

types of lignocellulosic biomass. The 

choice of pretreatment method depends for 

the most part on the type of LCB and 

therefore each pretreatment method has its 

own effects on the cellulose, hemicellulose 

and lignin fractions. 
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