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Abstract: Knowledge of the concentration of mineral elements from winemaking products, 
particularly from the final product is important because of their influence on wine quality. Some metal 
ions such as iron and copper can induce haze formation and changes in the sensory proprieties of 
wine. The presence of heavy metals in wine is due to different factors including vineyard soil, 
agricultural practices (the use of fertilizers and pesticides), and can be at the same time a result of 
environmental pollution. In addition, the acidity of wine and grape must (freshly pressed grape juice) 
can dissolve Cr, Cu, Ni, and Zn from winemaking equipment like pumps and taps. As wine is the most 
widely consumed alcoholic beverage, analytical control of mineral elements content is required 
during the whole process of wine production, from the grapes used to the final product. In this study 
the content of micro- and macroelements in grape pomace, yeast sediment, grape must and wine was 
determined by inductively coupled plasma-mass spectrometry (ICP-MS). Samples of winemaking 
products originating from five grape varieties were analyzed in four forms in order to determine to 
what measure the values varied the PCA (Principal component analysis). The obtained results using 
PCA highlighted major differences in the content in trace elements between samples. 
 
Keywords: grape pomace, grape must, ICP-MS, wine, yeast  
 
1. Introduction 
 
The content in mineral elements of food 
products has been extensively studied, in 
recent papers [1-4]. The analysis of 
mineral elements in alcoholic beverages 
[5] is particularly centered on the heavy 
metal content. Among alcoholic beverages, 
wine has been the most popular and 
widely-consumed worldwide since early 
civilization [6]. According to the 
International Organization of Vine and 
Wine, the worldwide production of wine 
was estimated at 259 Mhl in 2016. 
Wine is a product obtained exclusively 
through the alcoholic fermentation of fresh 

grapes. The final beverage is a complex 
matrix containing water, alcohol, sugar, 
and a great variety of components, organic 
as well as inorganic ones [7]. 
Wine quality depends on the chemical 
composition, which is influenced by both 
geographic factors (climate, soil, grape 
variety and culture) and factors related to 
the production process (winemaking, 
transport and storage). Inorganic ions 
concentration in wine is of great interest 
[8], as in some cases it can have a major 
impact on the quality of the final product. 
Mineral elements are absorbed from the 
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soil through the vine roots and are 
accumulated in the cellular walls, skin and 
seeds of the grape. During winemaking, 
the minerals from grapes pass into wine. 
Therefore, the mineral composition of 
wine reflects its origin and development, 
making it unique and identifiable. Oroian 
(2015) achieved an authentication of 
Romanian white wines varieties in terms of 
the content in 27 mineral elements [9]. It 
contributes significantly to wine’s sensory 
characteristics, affecting color, clearness, 
flavor and aroma [10]. 
Most of the minerals are important to the 
alcoholic fermentation: calcium, 
potassium, magnesium, and sodium 
maintain an adequate pH and ionic balance 
stabilizing the cellular metabolism of 
yeasts [11]. Minerals in lower 
concentration such as copper, iron, 
manganese, vanadium, zinc are also 
favorable for yeasts, particularly 
Saccharomyces cerevisiae. Copper 
alongside iron and manganese can cause 
sensory quality changes after bottling and 
influence the stability in old wine. The 
presence of high levels of both Fe and Cu 
leads to the formation of hazes in wine 
[12]. This undesirable oxidation process 
has an impact on the commercial 
acceptance of wine and can induce 
potentially toxic effects [13]. In this 
context, measurement of metal content is 
essential to provide the final product with 
high quality. 
The mineral constituents of wine can be 
assessed by several analytical methods. 
Atomic spectrometry techniques such as 
inductively coupled plasma-mass 
spectrometry (ICP-MS) [14], ICP atomic 
emission spectrometry (ICP-OES) [15], 
and flame atomic absorption spectrometry 
(FAAS) have been extensively used for the 
elemental analysis of wine [16, 17]. 
The aim of this paper was to determine the 
metal ions in the winemaking process, 
namely grape pomace, yeast, grape must, 
and wine, and to study the changes in the 

concentration of these elements during 
winemaking. 
 
2. Materials and methods 
 
Samples. Samples of winemaking 
products (grape pomace, yeast, grape must, 
and wine) obtained from five different 
grape varieties were analyzed by ICP-MS. 
The grape varieties were Feteasca Neagra, 
Merlot, Chasselas, Riesling, Ottonel. All 
grapes used in winemaking originated 
from the region of Focsani, Romania.  
Sample preparation. 5 grams of grape 
pomace and yeast were mineralized in an 
electric furnace at a temperature of 600°C, 
for 6 hours. The resulted ash was 
transferred into a 50 mL volumetric flask, 
where it was dissolved by adding a mixture 
of nitric acid and deionized water until the 
concentration of nitric acid in the solution 
was of 1% [18]. The elemental analysis of 
grape must was conducted according to 
Toaldo et al. (2013). An aliquot of 500 µL 
of sample was diluted to 10 mL with 0.14 
mol/L nitric acid, then directly analyzed by 
ICP-MS [19].Wine samples were prepared 
according to Oroian (2015). 
Reagents. The reagent used was of high 
purity grade: double deionized water (18 
MΩ cm resistivity) produced by a water 
purification system (Thermofisher, 
Germany) was used in all solutions. 
Samples were digested with concentrated 
nitric acid (65% HNO3, Sigma Aldrich, 
Germany) and hydrogen peroxide (30% 
H2O2 pure, Sigma Aldrich, Germany). 
Apparatus. The determination of 12 
elements was performed in a mass 
spectrometer with inductively coupled 
plasma, (ICP-MS) Agilent Technologies 
7500 Series (Agilent, USA). 
Statistical Analysis. Statistical analysis, 
PCA and ANOVA, was performed using 
XLSTAT 2016.  
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3. Results and discussion 
 
In this study the content of grape pomace, 
yeast sediment, grape must and wine in the 
following mineral elements: V, Mn, Fe, Ni, 
Au, Hg, Mg, Al, Ca, Cu, Zn, and Cr were 
determined. 
To estimate the concentration of these 
elements in the sample following equation 
was used: 

m

tm

V
xVCC   

Where:  
C = Concentration of the element in the 
sample; 
Cm = Concentration of the elements in the 
diluted sample;  
Vt = Final volume of the measurement 
solution, in ml;  
Vm = Aliquot volume of wine, in mL [20]. 
 
The determined concentrations of micro- 
and macroelements are presented in Table 
1. As it can be observed, magnesium was 
the most abundant mineral element, with 
concentrations that varied from 43.25 to 
298.69 mg/L. High levels of calcium were 
also determined in all the samples 
analyzed. For the Merlot grape variety, 

grape pomace, must, yeast and the final 
sample of wine had a significantly higher 
content of magnesium and calcium. 
The grape variety Merlot, alongside 
Feteasca Neagra had a remarkable content 
of copper and zinc. For Feteasca Neagra 
variety, the copper content ranged between 
1.7 mg/L in wine and 41.1 mg/L in 
pomace. Compared to this, the copper 
content of grape pomace from Merlot 
variety was slightly higher (44.3 mg/L). 
Zinc concentration was comparable in 
these two grape varieties, especially in 
pomace and wine. Aluminum and 
chromium are found in an increased 
concentration in all the samples analyzed. 
Among microelements, nickel and 
vanadium displayed significant variation of 
concentration during different stages of 
winemaking. The main microelement in 
winemaking products, nickel was 
determined in higher concentration in the 
Merlot variety. In contrast, the other red 
grape variety analyzed in this paper had a 
notable content of iron. Finally, the 
winemaking products obtained by 
processing varieties of white grapes 
(Chasselas, Riesling and Ottonel) had 
greater levels of Au. 

 
 

 
 

Fig. 1. Major mineral elements in winemaking products 
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Fig. 2. Minor mineral elements in winemaking products 

 
 
Multifactorial ANOVA was performed to 
evaluate the influence of interactions 
between factors (mineral element, 
analyzed sample and grape variety) on the 
concentration in minerals. Five grape 
varieties were analyzed in the mentioned 
forms, and the PCA (principal component 
analysis) was used to determine to what 
measure the values varied.  
Of the major mineral elements in 
winemaking products, magnesium and 
calcium had the highest concentrations in 
all the samples analyzed, irrespective of 
the grape variety (Fig. 1). During the 
mechanical processes of crushing and 
pressing a proportion of minerals  
 

contained by grapes passes into must, 
while a large quantity of these elements 
remains in the pomace. With the removal 
of yeast sediment, the mineral elements 
concentration decreases and therefore the 
final product (wine) has the lowest mineral 
content. 
A similar variation in the concentration 
determined in winemaking products was 
also observed for minor mineral elements 
(Fig. 2). Compared to other minerals, Au 
and Hg were found in lower concentration 
in yeast sediment samples. 
Multifactorial ANOVA showed a 
significant interaction between the mineral 
element and grape variety (p < 0.001). 

  
Fig. 3. PCA for Fetească Neagră 

 
 

 

Fig. 4. PCA for Merlot 
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Fig. 5. PCA for Chasselas 

 

 
Fig. 6. PCA for Riesling 

 

 
Fig. 7. PCA for Ottonel 

 
Principal component analysis (Fig. 3-7) 
indicated positive correlations between the 
main mineral elements - Ca, Mg and Al 
and the four samples analyzed. The other 
minerals determined are displayed in 
opposed quadrant, and are found in lower 
concentrations. 
Of particular interest were the 
concentrations of copper and iron. It is 
known that the presence of copper and iron 
ions can induce haze formation, which 
consequently leads to changes in the 
organoleptic properties of wine. The iron 
and copper content of the samples is 
presented in Fig. 8-9. 
Concentrations of around 0.5 mg/L copper 
and 10 mg/L iron or higher can cause a 
metallic taste, haze, browning and other 
undesirable effects on wine. Its presence in 
higher concentrations in the must can even 
have an impact on the alcoholic 

fermentation, as it has been reported on 
several occasions, being capable of 
inhibiting the growth and development of 
several groups of certain naturally-
occurring microorganisms. 
According to the data presented in Table 1, 
the copper content of wine varied from 
0.35 mg/L (Riesling) to 1.70 mg/L 
(Feteasca Neagra). The maximum level of 
copper specified in the European wine 
regulations and the compositional 
guidelines set by the International 
Organization of Vine and Wine is of 1 
mg/L. On the other side, it is generally 
accepted that levels above 0.5 mg Cu/L are 
very likely to induce copper casse. Based 
upon this consideration, all the samples of 
wine analyzed excepting that of Riesling 
variety are susceptible to this type of 
oxidation. 
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Unlike the concentration of copper. iron 
did not exceed the maximum level allowed 
and therefore a haze formation caused by 
this metal is not posible. In the case of 
copper the increased content could be 
attributed to prolonged use copper-
containig fungicide and particularly 
Bordeaux mixture (copper sulphate).This 
scenario is highly likely due to the fact that 

all grapes used in this study originated 
from a vineyard which is known to require 
this type of treatment in order to reach the 
desired quality and production. Moreover, 
the traditional  winemaking process used in 
this case din not imply a removal of copper 
and iron through the addition of stabilizing 
agents (e.g. potassium ferricyanide).

 

 
Fig. 8. Copper content in analyzed samples [mg/L], S1-S5Grape varieties (S1-Feteasca Neagra, S2- Merlot, S3-

Chasselas, S4-Riesling, S5-Ottonel) 
 

 
Fig. 9. Iron content in analyzed samples [mg/L],S1-S5 Grape varieties (S1-Feteasca Neagra, S2- Merlot, S3-

Chasselas, S4-Riesling, S5-Ottonel) 
 
4. Conclusions  
 
The results of this study show a decrease in 
the concentration of mineral elements in 
the winemaking process from grape 
pomace, must, yeast sediment to wine. 
Multifactorial ANOVA indicated a 
significant interaction of the mineral 
element with the grape variety (p < 0.001). 

PCA analysis highlighted a strong 
correlation between the elements with 
higher concentration and the corresponding 
winemaking products. 
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