MODELING OF THE THERMO-PHYSICAL PROPERTIES OF AQUEOUS SUCROSE SOLUTIONS II. BOILING POINT, SPECIFIC HEAT CAPACITY AND THERMAL CONDUCTIVITY

Andrei I. SIMION¹, Cristina G. GRIGORAȘ¹, Lăcrămioara RUSU¹, *Adriana DABIJA²

¹"Vasile Alecsandri" University of Bacău, Department of Chemical and Food Engineering, Mărăşeşti no 157, Bacău 600115, Romania

²"Ștefan cel Mare" University of Suceava, Faculty of Food Engineering, Universității no 13, Suceava 720229,

Romania

*Corresponding author Received 10 September 2011, accepted 25 October 2011

Abstract: The aim of this study was to establish mathematical relations between temperature or pressure and sucrose concentration with boiling point, specific heat capacity and thermal conductivity of aqueous sucrose solutions. In order to assess and select a suitable mathematical model the known data were fitted in different equations. Two equations were generated for each thermo-physical properties, taking in consideration the level of precision and simplicity of formulation.

For boiling point of aqueous sucrose solutions two equations with an average of relative errors of 0.22% and regression coefficients greater than 0.999 were generated, for ranges of 5 - 90% in sucrose concentration and pressure of $0.123 \cdot 10^5 - 1 \cdot 10^5$ Pa. For specific heat capacity two equations were formulated with average relative errors of 0.002% and $R^2 = 0.9994$ for intervals of temperature of 0 to 100 °C and sucrose concentration of 0 to 90% and for thermal conductivity were generated two equation with average relative errors of 0.004% and $R^2 = 0.9992$ for a range of temperature of 0 to 80 °C and sucrose concentration between 0 and 60%.

The obtained equations can be loaded in computer software available both for industrial and academic users and so facilitating the sizing and optimization calculations of various technological equipment and processes.

Keywords: *sucrose, aqueous solutions, mathematical models*

1. Introduction

Aqueous solutions of carbohydrates have been studied for many years due to their both scientific and practical importance (molecular biology and biochemistry, food chemistry and technology, sugar industry etc.). Due to the common availability of sucrose and the ease of its purification, the system sucrose - water was the subject of many physicochemical studies. The fact that dilute sucrose solutions could be used as a model system to demonstrate the

49

validity of fundamental laws of physical chemistry and chemical thermodynamics additionally stimulated the popularity of these studies [1].

The increasing practical interest in sucrose solutions caused a great demand for predictive methods of determining its physical properties such as boiling point, heat capacity and thermal conductivity.

The boiling point can be directly correlated to the chemical structure of the molecule and reflects the strength of the intermolecular forces (among other forces present) that hold the sucrose molecules together. The stronger the intermolecular forces, the more tightly the atoms will be held together and, therefore, the boiling point is higher [2].

Heat capacity and thermal conductivity are of the most fundamental two properties thermodynamic of liauid substances and they are closely related to physical other and chemical their properties. They are intimately related to the temperature dependence of fundamental thermodynamic functions [3]. These properties may be relatively easily determined in the laboratory with great accuracy; and they are of key importance thermodynamics for linking with microscopic fluid structure and dynamics but having predictive models can be a useful adjunct.

The accumulated data have led to the development of both empirical and phenomenological correlations, and many such correlations have been incorporated into design and analysis methods [4]. Most correlations, however, are applicable to only a relatively narrow range of conditions.

The purpose of this study is, therefore, to develop correlations by critically evaluating and regressing various types of experimental data available from the literature.

2. Experimental

Tabular data (Table 1, 2 and 3) concerning the variation of aqueous sucrose solutions boiling point, thermal conductivity and specific heat capacity with sucrose concentration and temperature were used as primary data for the regression analysis.

Microsoft ExcelTM 2007 spreadsheets, CurveExpert[®] and TableCurve 3D[®] v.4 software were used to establish the equations.

The tabular data were plotted in Temperature – Thermo-physical property, Thermo-physical sucrose content _ property coordinates and different regression techniques, involving the method of least squares were used to reveal the best-fit equation.

Table 1

		Boiling po	oint, B_p [°C]			
Sucrose concentration, X			Pressure	<i>p</i> ⁻ 10 ⁵ , Pa		
w [%]	0.123	0.199	0.311	0.473	0.7	1
5	50.05	60.05	70.05	80.06	90.06	100.06
10	50.12	60.10	70.11	80.11	90.12	100.12
15	50.17	60.18	70.18	80.19	90.19	100.20
20	50.26	60.27	70.28	80.28	90.29	100.30
25	50.39	60.40	70.42	80.43	90.44	100.45
30	50.52	60.54	70.55	80.57	90.58	100.60
35	50.69	60.71	70.73	80.76	90.78	100.80
40	50.80	60.85	70.90	80.95	91.00	101.05
45	51.01	61.10	71.18	81.25	91.32	101.40
50	51.32	61.40	71.52	81.61	91.72	101.80
55	51.70	61.82	71.94	82.06	92.18	102.30
60	52.30	62.45	72.60	82.75	92.90	103.05
65	52.80	63.00	73.20	83.40	93.60	103.80
70	53.65	63.90	74.18	84.46	94.75	105.05
75	55.05	65.40	75.80	86.20	96.60	107.00
80	56.80	67.30	77.85	88.35	98.90	109.40
85	-	70.00	80.75	91.50	102.25	113.00
90	-	-	86.00	97.20	108.40	119.60

Boiling point B_p [°C] of aqueous sucrose solutions as a function of the mass fraction X [%] pressure p [Pa]

Table 2

Thermal conductivity λ [W/(m · K)] of aqueous sucrose solutions as a function of the mass fraction X [%] and temperature t, [°C][5, 6]

Sucrose		C]							
concentration, $X = w[\%]$	0	10	20	30	40	50	60	70	80
0	0.565	0.583	0.599	0.614	0.628	0.641	0.652	0.663	0.672
10	0.544	0.551	0.566	0.581	0.594	0.607	0.617	0.628	0.636
20	0.505	0.52	0.535	0.548	0.56	0.572	0.588	0.592	0.6
30	0.473	0.488	0.501	0.514	0.526	0.536	0.547	0.555	0.563
40	0.443	0.457	0.47	0.48	0.492	0.502	0.512	0.519	0.526
50	0.413	0.391	0.437	0.449	0.458	0.467	0.477	0.484	0.491
60	0.383	0.384	0.405	0.415	0.419	0.432	0.441	0.449	0.455

Table 3

Specific heat capacity C_p [J/(kg · K)] of aqueous sucrose solutions as a function of the mass fraction X [%] and temperature t, [°C][7]

Temperature, t		Specific	e heat cap	bacity C_p	[J/(kg · K)] at sucro	se concei	ntration,	X [%]	
[°C]	0	10	20	30	40	50	60	70	80	90
0	3936	3684	3433	3182	2931	2680	2428	2177	1926	3936
10	3936	3684	3475	3224	2973	2721	2470	2219	2010	3936
20	3936	3726	3475	3224	3014	2763	2554	2303	2052	3936
30	3977	3726	3517	3266	3056	2805	2596	2345	2135	3977
40	3977	3726	3517	3308	3098	2847	2638	2428	2219	3977
50	3977	3726	3559	3349	3140	2889	2680	2470	2261	3977
60	3977	3726	3559	3349	3140	2973	2763	2554	2345	3977
70	3977	3810	3601	3391	3182	3014	2805	2596	2386	3977
80	3977	3810	3601	3433	3224	3056	2847	2680	2470	3977
90	4019	3810	3643	3475	3266	3098	2889	2721	2554	4019
100	4016	3852	3643	3475	3308	3140	2973	2763	2596	4016

3. Results and Discussion

3.1 Boiling point

Using Microsoft ExcelTM 2007 spreadsheets and CurveExpert® software, a Modified Hoerl Model correlation between pressure p and boiling point, at constant aqueous sucrose concentration X, [%] has been established:

$$B_{p} = A + B^{(1/p)} p^{C}$$
 (1)

For ranges of sucrose concentration between 5 and 85%, the coefficients of the Modified Hoerl Model equations *A*, *B* and *C* are presented in Table 4. The regression coefficients R^2 are greater than 0.99, thus indicating a good correlation of variables.

Table 4Coefficients for equation (1)

Sucrose conc., $X[\%]$	A	В	С	R^2
5	101.596	0.98196	0.26788	0.999
10	101.644	0.98211	0.26803	0.999
15	101.728	0.98204	0.26762	0.999
20	101.973	0.98214	0.26712	0.999
25	101.973	0.98214	0.26712	0.999
30	102.308	0.98236	0.26670	0.999
35	102.112	0.98226	0.26697	0.999
40	102.562	0.98234	0.26675	0.999
45	102.917	0.98231	0.26629	0.999
50	103.313	0.98251	0.26609	0.999
55	103.791	0.98273	0.26558	0.999
60	104.521	0.98304	0.26462	0.999
65	105.264	0.98320	0.26411	0.999
70	106.475	0.98373	0.26404	0.999
75	108.405	0.98422	0.26228	0.999
80	110.793	0.98466	0.25944	0.999
85	114.586	0.98295	0.25192	0.999
90	121.375	0.98210	0.24535	0.999

In order to correlate A, B and C coefficients with sucrose mass concentration, more models were used in CurveExpert® software (1st, 2nd and 3rd degree polynomial equations, "vapor pressure" model, "heat capacity" model etc.). The best fit model is a 3rd degree polynomial equation for the A coefficient and quadratic equations for the B and C coefficients (Table 5).

$$Coefficient_{A} = a + bT + cT^{2} + dT^{3}$$
(2)
$$Coefficients_{B,C} = a + bT + cT^{2}$$

Table 5Coefficients for equation (2)

Coeff.	A	В	С
а	101	0.9823	0.2672
b	0.1128961704	-3.00E-05	6.00E-05
С	-3.820845E-03	7.004E-07	-2.00E-06
d	4.88158E-05	-	-
R^2	0.994	0.970	0.932

Combining the equations (1) and (2) and replacing the coefficients with numeric values, the final form of proposed equation model (Eq. 3) is:

$$B_{p} = (4.88158E - 05X^{3} - 3.8208452E - 03X^{2} + 0.1128961704X + 101) + (7E - 07X^{2} - 3E - 05X + 0.9823)^{(1/p)} \cdot p^{(-2E - 06X^{2} + 6E - 05 + 0.2672)}$$
(3)

To quantify the deviation of calculated densities from tabular data, the relative error equation was use and its values are presented in Table 6:

$$\varepsilon = \left| \frac{\rho_{tabular} - \rho_{calculated}}{\rho_{tabular}} \right| \cdot 100 \quad [\%] (4)$$

The average of the induced relative errors for the proposed models is 0.22% for the proposed mathematical model.

By plotting the tabular data for aqueous sucrose solutions boiling point in TableCurve $3D^{\textcircled{R}}$ v.4 software (Fig. 1) an equation for the response function was generated, chosen due to the relative simplicity of formulation and regression coefficient (Eq. 5).

The coefficients of the fitted polynomial equation are presented in Table 7.

Table 6

The induced relative errors for the proposed model (3) for boiling point of aqueous sucrose solutions

		Relative e	rrors, ε [%]							
Sucrose concentration, X		Pressure $p \cdot 10^5$, Pa								
w [%]	0.123	0.199	0.311	0.473	0.7	1				
5	0.00422	0.24345	0.03757	0.12326	0.17590	0.02649				
10	0.06781	0.40210	0.21822	0.09753	0.05329	0.21966				
15	0.10495	0.42817	0.29134	0.17967	0.16393	0.33292				
20	0.03253	0.39174	0.26487	0.18448	0.17006	0.34955				
25	0.11270	0.27933	0.16100	0.08590	0.08578	0.27582				
30	0.21509	0.17721	0.08711	0.00734	0.01369	0.19789				
35	0.31780	0.08829	0.00604	0.08982	0.08762	0.10193				
40	0.18847	0.14724	0.00229	0.10788	0.13819	0.0239				
45	0.10589	0.15940	0.02143	0.14693	0.19018	0.04984				
50	0.03310	0.25959	0.02919	0.10964	0.18603	0.03455				
55	0.12519	0.36936	0.16137	0.00217	0.06926	0.05520				
60	0.11667	0.38017	0.18842	0.04117	0.02193	0.10741				
65	0.59176	0.79412	0.55981	0.38047	0.29154	0.39870				
70	0.72748	0.95659	0.70410	0.51124	0.40029	0.47823				
75	0.21195	0.52791	0.31942	0.16027	0.08526	0.19893				
80	0.50231	0.10705	0.24715	0.29716	0.33774	0.15364				
85	-	1.44869	1.45175	1.45218	1.40415	1.19791				
90	-	-	4.84629	4.71030	4.55567	4.26999				

Figure 1. Aqueous sucrose solutions boiling point values plotted in TableCurve 3D and fitted polynomial equation (5) with residuals.

$$\ln B_p = a + b \ln p + c/p^{0.5} + dX^2 + eX^2 \ln X + fX^{2.5} + gX^3$$
(5)

Table 7Coefficients for equation (5)

Coeff.	Value	Coeff.	Value
а	4.7356452	е	0.00044369357
b	0.20791255	f	-0.00026010431
С	-0.1303382	g	9.6176697E-06
d	-0.0003725448	_	

The equation (5) is a polynomial equation, Rank 31, Eqn. 157010504 in TableCurve 3D® v.4 library with $R^2 = 0.99958643$, R^2 adj = 0.9995565, FitSdErr = 0.0003725 and Fstat. = 39477.482.

3.2 Specific Heat Capacity

Using Microsoft ExcelTM 2007 spreadsheets linear correlation between temperature *T*, [K] and specific heat capacity, at constant aqueous sucrose concentration *X*, [%] has been established:

$$C_p = a + bT \tag{6}$$

For ranges of temperature between 273 and 373 K, the values of the *A* and *B* coefficients and regression coefficients, R^2 of each linear equation are presented in Table 8.

In order to correlate A and B coefficients with sucrose concentration, more models were used in Microsoft ExcelTM 2007. The best fit model is also a linear equation.

$$Coefficients_{A,B} = a + bX$$
 (7)

Table 8Coefficients for equation (6)

Sucrose			
conc.,	A	В	R^2
X[%]			
10	3722.12	0.777273	0.813
20	3234.75	1.603636	0.864
30	2869.25	2.100000	0.975
40	2339.64	3.079091	0.985
50	1952.12	3.619091	0.991
60	1371.81	4.755455	0.995
70	984.973	5.293636	0.994
80	511.335	6.088182	0.996
90	93.2872	6.734545	0.997

Table 9Coefficients for equation (7)

Coeff.	а	b
A	4182.8620454545	-45.7032772727
В	0.0045707071	0.0755772727

Combining the equations (6) and (7) and replacing the coefficients with numeric values, the final form of proposed equation model (Eq. 8) is:

$$C_{p} = (4182.86 - 45.70327X) + (0.00457070 + 0.075577 \cdot X)T$$
(8)

To quantify the deviation of calculated densities from tabular data, the relative error equation was use and its values are presented in Table 10. The average of the induced relative errors for the proposed models is 0.002% for the proposed mathematical model.

By plotting the tabular data for aqueous sucrose solutions specific heat capacity in TableCurve 3D® v.4 software (Fig. 2) an equation for the response function was generated (Eq. 9).

	Table 10
The induced relative errors for the proposed model (8) for specific he	eat capacity of aqueous
	sucrose solutions

Temperature T	Relative errors, ε [%]									
	Sucrose concentration, X [%]									
[K]	0	10	20	30	40	50	60	70	80	90
273	0.066	0.035	0.029	0.023	0.014	0.005	0.048	0.067	0.091	0.066
283	0.127	0.376	0.584	0.386	0.154	0.157	0.490	0.900	0.706	0.127
293	0.320	0.348	0.070	0.553	0.257	0.277	0.742	0.153	0.579	0.320
303	0.523	0.058	0.479	0.187	0.390	0.394	0.308	0.639	0.143	0.523
313	0.331	0.465	0.167	0.170	0.519	0.507	0.112	0.309	0.856	0.331
323	0.140	0.872	0.377	0.488	0.645	0.617	0.519	0.445	0.313	0.140
333	0.051	1.279	0.261	0.416	0.560	0.699	0.584	0.489	0.378	0.051
343	0.242	0.556	0.277	0.065	0.422	0.544	0.185	0.231	0.763	0.242
353	0.433	0.158	0.354	0.277	0.287	0.425	0.202	0.652	0.092	0.433
363	0.427	0.240	0.180	0.611	0.156	0.310	0.578	0.074	0.535	0.427
373	0.163	0.459	0.444	0.260	0.028	0.198	0.482	0.743	0.478	0.163

The equation (9) is a polynomial equation, Rank 50, Eqn. 302 in TableCurve $3D^{\text{(B)}}$ v.4 library with $R^2 = 0.99944977$, R^2 adj = 0.9994138, FitSdErr = 13.701972, Fstat. = 33785.237.

Figure 2. Aqueous sucrose solutions specific heat capacity values plotted in TableCurve 3D and fitted polynomial equation (9) with residuals.

$$C_{p} = a + b \ln T + cX + d(\ln T)^{2} + eX^{2} + fX \ln T$$
(9)

The coefficients of the fitted polynomial equation are presented in Table 11.

Table 11Coefficients for equation (5)

Coeff.	Value	Coeff.	Value
а	25132.56	d	630.05763
b	-7267.3551	е	-0.0010015742
С	-161.21331	f	24.255336

3.3 Thermal Conductivity

Using Microsoft ExcelTM 2007 spreadsheets linear correlation between aqueous sucrose concentration X, [%] and specific heat capacity, at constant temperature T, [K] has been established:

$$C_{p} = A + BX \tag{10}$$

The *A* and *B* values for the fitted linear equation are presented in Table 12.

$$Coefficients_{AB} = a + bT \tag{11}$$

Table 12Coefficients for equation (10)

Temperature, T [K]	A	В	R^2
273	0.568357	0.00311	0.997
283	0.584857	0.00330	0.998
293	0.598821	0.00323	0.999
303	0.613964	0.00332	0.999
313	0.628893	0.00345	0.999
323	0.641393	0.00349	1.000
333	0.653679	0.00353	0.999
343	0.663179	0.00358	0.999
353	0.672036	0.00363	1.000

In order to correlate A and B coefficients with temperature, more models were used in Microsoft ExcelTM 2007. The best fit model is also a linear equation (Table 13).

Coeff.	а	b
A	0.2145613296	0.0013113690
В	-0.0014797877	-0.0000061488

Table 13Coefficients for equation (11)

Combining the equations (10) and (11) and replacing the coefficients with numeric values, the final form of proposed equation model (Eq. 12) is:

$$\lambda = (0.2145613296 + 0.001311369T - (0.001479787 + 6.1488E - 06T)X (12)$$

To quantify the deviation of calculated densities from tabular data, the relative error equation was use and its values are presented in Table 15. The average of the induced relative errors for the proposed models is 0.004% for the proposed mathematical model.

Figure 3. Aqueous sucrose solutions thermal conductivity values plotted in TableCurve 3D and fitted polynomial equation (13) with residuals.

By plotting the tabular data for aqueous sucrose solutions thermal conductivity in TableCurve $3D^{(R)}$ v.4 software (Fig. 3) an equation for the response function was generated chosen due to the best regression coefficient (Eq. 13).

$$\lambda = a + bX + c/T + dX^{2} + e/T^{2} + fX/T + h/T^{3} + iX/T^{2} + jX^{2}/T$$
(13)

The coefficients of the fitted polynomial equation are presented in Table 14.

Table 14Coefficients for equation (13)

Coeff	Value	Coeff	Value
COEJJ.	ruiue	COEJJ.	Vaiue
а	-0.84385948	f	0.45271455
b	-0.0051670655	g	3.7037037E-08
С	1602.2814	h	53598501
d	2.3609905E-06	i	42.375474
е	-528571.74	j	-0.0020785223

The a polynomial equation (13) is equation, Rank 316 17, Eqn. in TableCurve $3D^{\text{R}}$ v.4 library with $R^2 = 0.999440883$, R2adj = 0.999295, FitSdErr = 0.00196514, Fstat. = 9955.553.

4. Conclusions

Two equations were generated for each thermo-physical properties, taking in consideration the level of precision and simplicity of formulation.

Table 15

						sucros	e solutions
Temperature, T [K]			Rela	tive errors, a	: [%]		
			Sucrose	concentration	n, X [%]		
	0	10	20	30	40	50	60
273	1.339	0.555	0.871	1.017	0.729	0.398	0.016
283	0.459	0.450	0.246	0.222	0.026	0.875	2.210
293	0.035	0.004	0.343	0.130	0.524	0.521	0.763
303	0.341	0.434	0.539	0.463	0.377	0.944	0.883
313	0.475	0.509	0.548	0.591	0.641	0.698	0.420
323	0.447	0.581	0.557	0.344	0.498	0.462	0.421
333	0.115	0.166	1.241	0.288	0.361	0.444	0.316
343	0.205	0.075	0.099	0.306	0.348	0.190	0.007
353	0.815	0.782	0.745	0.882	1.038	0.806	0.760

The induced relative errors for the proposed model (12) for thermal conductivity of aqueous sucrose solutions

For boiling point of aqueous sucrose solutions two equations with an average of relative errors of 0.22% and regression coefficients greater than 0.999 were generated, for ranges of 5 - 90% in sucrose concentration and pressure of $0.123 \cdot 10^5$ – 1.10^5 Pa. For specific heat capacity two equations were formulated with average relative errors of 0.002% and $R^2 = 0.9994$ for intervals of temperature of 0 to 100 °C and sucrose concentration of 0 to 90% and for thermal conductivity were generated two equation with average relative errors of 0.004% and $R^2 = 0.9992$ for a range of temperature of 0 to 80 °C and sucrose concentration between 0 and 60%.

5. References

1. STARZAK, M., MATHLOUTHI, M., Temperature dependence of water activity in aqueous solutions of sucrose, *Food Chemistry*, 96 (3), 346-370, (2006)

2. LI, Q., CHEN, X., HU, Z., Quantitative structure-property relationship studies for estimating boiling points of alcohols using calculated molecular descriptors with radial basis function neural networks, *Chemometrics and Intelligent Laboratory Systems*, 72 (1), 93-100, (2004)

3. WILHELM, E., Heat Capacities: Introduction, Concepts and Selected Applications in: *Heat Capacities Liquids, Solutions and Vapours* (Editors: Wilhelm, E., Letcher, T.M.), The Royal Society of Chemistry, England, 1-27, (2010) 4. BUBNÍK, Z., HENKE, S., KADLEC, P., HINKOVÁ, A., POUR, V., Database of the properties of sucrose, sucrose solution and food, *Journal of Food Engineering*, 77 (3), 399-405, (2006)

5. ILIESCU G., VASILE C., Caracteristici termofizice ale produselor alimentare, Ed. Tehnica, Bucuresti, 109-103 p (1982)

6. MACOVEI V.M., Culegere de caracteristici termofizice pentru biotehnologie și industrie alimentară, Ed. Alma, Galați, 199-200 p, (2000)

7. MATHLOUTHI M., REISER P., Sucrose, Properties and Applications, Chapman & Hall, London, 208 p, (1995)

8. SIMION, A.I., DOBROVICI, P.E., RUSU, L., GAVRILĂ, L., Modeling of the thermophysical properties of grapes juice I. Thermal conductivity and thermal diffusivity, *Annals of Food Science and Technology*, ISSN 20652828, X (2), 363-368, (2009)

9. SIMION, A.I., GRIGORAȘ, C., RUSU, L., GAVRILĂ, L., Modeling of the thermophysical properties of grapes juice II. Boiling point and density, *Studii și cercetări științifice: Chimie și inginerie chimică – Biotehnologii Industrie alimentară*, ISSN 1582540X, X (4), 365-374, (2009)

10. SIMION A.I., DOBROVICI P.E., GRIGORAS C.G., RUSU L., Modeling of the thermo-physical Properties of aqueous sucrose solutions I. Density and dynamic and kinematic viscosity, *Annals of Food Science and Technology*, ISSN 20652828, in press, (2011)