

Journal homepage: www.fia.usv.ro/fiajournal Journal of Faculty of Food Engineering, Ştefan cel Mare University of Suceava, Romania Volume XV, Issue 1- 2016, pag. 84 - 94

COMPOSITIONAL QUALITY ASSESSMENT OF WINES PRODUCED IN SILVANIEI VINE GROWING CENTER OF ŞIMLEUL SILVANIEI, 2013- 2015 HARVEST

* Florin-Dumitru BORA¹, Alina DONICI¹, Oana-Mihaela RIPANU¹ ¹Research Station for Viticulture and Enology, G-ral Eremia Grigorescu, Târgu Bujor, Galați, România, boraflorindumitru@gmail.com, *Corresponding author Received February 28th 2016, accepted March 29th 2016

Abstract: Wine is a food product produced exclusively by partial/total alcoholic fermentation of fresh grapes. From a chemical point of view, wine is a complex mixture consisting of water, sugar, ethanol, amino acids, polyphenolic compounds, anthocyanins, organic/inorganic materials. Viticulture depends on meterorological conditions. The wine industry from Romania is particularly involved in the controversial effects generated by climate change. Although the overall effects of climate change on Romanian viticulture are uncertain, it is known that grapevine yields diminish with the occurrence of abiotic stress, such as freezing temperatures, increasing soil salinity and drought because of the varying effects on grape quality. The purpose of this work is to present data relating to the composition characteristics of some quality wines from the Simleul Silvaniei in the new climate conditions over the last few years. The biological material consisted of the varieties: Fetească regală (F.r.), Fetească albă (F.r.), Italian Riesling (R.i.) and Furmint (F.m.). The weight values obtained for 100 grains (182.06±5.98 g F.a. 2014), sugar (202.28±2.98 g/L F.a 2013), titratable acidity (9.39±0.03 g/L C4H4O6 F.m 2014), acidity (4.70±0.09 g/L H2SO4 F.m. 2014), pH (3.92±0.24 R.i. 2014) in grapes and reducing sugars (2.63±0.17 g/L F.a. 2015), total dry extract (27.73±1.29 g/L R.i. 2013), nonreducing extract (26.62±0.46 g/L R.i. 2013), total acidity (7.65±0.11 g/L C₄H₄O₆ F.r. 2013), volatile acidity (0.57±0.04 g/L CH₃COOH) of wine, are specific to the four varieties analyzed. The correlation analysis revealed a number of strong correlations between the qualitative characteristics of wine and composition of grapes.

Keywords: grapes, wine, Vitis vinifera.

1. Introduction

Wine is food product produced exclusively by partial/total alcoholic fermentation of fresh grapes, whether or not pressed or by must fermentation (O.I.V). From a chemical point of view, wine is a complex mixture consisting of sugar, water, ethanol, amino acids, polyphenolic compounds, anthocyanins, organic/inorganic materials [1, 2, 3, 4].

Today, the vines are grown throughout the world; Europe has the highest percentage (51%) of the global planted with vines, followed by America and Asia [5]. In Romania the vineyard area has decreased

since the 1990s and it currently ranks fifth in Europe after Italy, Spain, France, Portugal, and in 2013 Romania has an area of 229 000 hectares of vineyards [6, 7]. Europe encompasses the largest vineyard area in the world (OIV, 2012). Large scale analyses have demonstrated that climate change effects in Europa are spatially variable: water deficits and severe dry conditions are expected to decrease wine quality and increase annual fluctuations in yields in the Romanian zone. Conversely, in Northern Europe and Central, warming conditions are forecast for the future, and this should improve wine quality [8]. Wine industry from Romania is particularly involved in the controversial effects generated by climate change. Although the overall effects of climate change on Romanian viticulture are uncertain, it is known that grapevine yields diminish with the occurrence of abiotic stress, such as freezing temperatures, increasing soil salinity and drought becase of the varying effects on grape quality. Aridity would likely affect viticulture from Romania, especially during the crop-growing season [9].

The spatial variability of climate change effects in the wine industry is recognizable also to the local scale. This implies the adoption of a finer scale of the resolution in simulations of future climate conditions. The micro-climatic and meso-climatic characteristics of a given winemaking zone are considered key factors of the wine production performance [10]. Moreover, soil structure and chemistry, as well as vineyard management practice, are factors varies also at a local scale and there is evidence that they influence verv significantly wine performance [11]. Soil is one of the most important factors for vine [12] it supports the root system, which absorbs water, accumulates carbohydrates and other nutrients, being crucial for grapevine growth, physiology and yield attributes [13]. Soil water retention properties are also important, as they can affect grapevine quality [14].

Past, current and future changes in global climatic conditions are condensed in the Assessment Fourth Report of the Intergovernmental Panel on Climate Change, IPCC [15]. According to the IPCC report, the global mean temperature has increased by $0.74^{\circ}C\pm0.18^{\circ}C$ from 1906 to 2005 in non-linear way: the warming rate over the last 100 years is $0.07^{\circ}C \pm 0.02^{\circ}C$ per decade, over the last 50 years $0.13^{\circ}C \pm 0.03^{\circ}C$ and over the last 25 years near surface temperature increased by

 $0.18^{\circ}C\pm0.05^{\circ}C$ per decade. From the 1996 years, all years from 1995 to 2006 rank among the 11 warmest years on record since 1850. The number of cold nights (lowest 10%, based on 1961-1960) has decreased in the period of 1951 to 2003, whereas the number of warm night (highest 10%) has increased [16].

These changes affect agriculture in general and viticulture in particular. Amongst others the vegetative period lengthens when temperatures, especially spring temperatures are increasing in last several years. Clear changes in the dates of phonological vine stages are observable in many coutries form Europe [17].

In Alsace region, budburst and flowering events occurred about two weeks earlier in 2003 compared with 1965. The period between flowering and change of colour of berries shrunk by 8 days and change colour of the berries occurred almost 23 days early [18].

Viticulture depends on meteorological conditions. Evidence of this phenomen on is provided by extensive and worldwide empirical literature. Adopting different scale of analysis and new methods, researchers have demonstrated that climate affects vineyard yields [19, 20] wine quality [21, 22, 23, 24]. Some studies have considered effects on winegrower's profitability in terms of net revenue of profit [25, 26, 27]. Other studies have shown that ecoclimate conditions change are highly impacts on grapevines heterogeneous across varieties [28]. In effect of ecoclimatic Romania the conditions on the vine culture was studied by [29, 30, 31, 32, 33, 34].

The purpose of this work is: i) present data relating to the composition characteristics of some quality white wines that may be obtained from the vine varieties grown frequently in the Şimleul Silvaniei center for the Silvania vineyard in the new climate conditions from the last few years as a result of global warming, that

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

increasing the amount of useful temperatures both during the growing season and the maturation of the grapes and ii) to also present the climatic

2. Matherials and methods

Four vine varieties for high quality white wines were used in the research: Fetească regală, Fetească albă, Italian riesling and Furmint grafted on the rootstock Berlandieri x Riparia Kobber 5 BB and cultivated in the area of Şimleul Silvaniei (47°05' North, 47°35' East), Satu Mare county, NW Romania.

Grape samples was collected in 2013 at full maturity and 10 kg of grapes/variety were collected from 10 vines/repetition. Three repetitions/variety were used, placed in randomized blocks. The grapes were harvested from the middle, top and lower, of each vine, grapes exposed to the sun, but also from shaded, thus obtaining a homogeneous sample [35]. After sampling, the samples were placed in sealable plastic bags, they were numbered and shipped as soon as possible to the laboratory. The grape samples was pressed with the laboratory press (manually) and the must was obtained, followed by the process of microvinification which resulted in the samples of wine.

In order to characterize the areas of Şimleul Silvaniei center for the Silvania vineyard meteorological data from the National Meteorological Agency has been

3. Results and discussion

Analysis of the main climate data. Global warming has caused a disruption in the natural evolution of climatic conditions in the vineyards ecosystem, therefore summers have become extremely dry and autumns have become cold, wet, or warmer. As an indicatior of the vocation of a vineyard region, but also for establish the direction of production, the thermal conditions (temperature, insolation, raifall) and theier interaction, expressed by some viticultural indices and coefficients form Şimleul Silvaniei.

used. Based on their specific formulas, ecoclimatic indicators were determined, important for the growth and the fruition of vines, such as global thermal balance (Σ tog); active thermal balance (Σ toa); useful thermal balance (Σ tou); thermal coefficient (Ct); annual and monthly rainfall amount; amount of hours of sunshine (Σ ir) and real sunburn coefficient (Ci). To get a wider picture on how climatic factors influence the growth and fruition of vines, the heliothermic index (HI), hydrothermal coefficient (CH) and bioclimatic index (Ibcv) were calculated [36].

Statistical analyses was performed using the statistical software package SPSS (version 23.0; SPSS Inc., Chicago, IL., USA). The data were expressed as mean \pm standard deviation (SD) of three replications foe each sample analyzed. In order, for determination the significance differences among values, analysis of variance (ANOVA) and DUNCAN multiple range test (MRT) was performed. Pearson's corelation was done using version 23.0 of SPSS (SPSS Inc. Chicago, IL., USA).

balance and the amount of temperature degrees and have an absolute importance. The length of the vegetation period is within the normal cultivation limits of vines, over 170 days. In all three years studied can be seen that the length of the vedetation period has exceeded this limit: 196 (2013); 193 (2014) and 194 (2015). The thermal balance with the highest

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

values was recorded in 2013, the global thermal balance ($\sum t^0 g$) 3683, the active thermal balance ($\sum t^0 a$) 3394 and the active useful thermal balance ($\sum t^0 u$) 1549, the opposite with the thermal balance which has the lowest values was recorded in 2014, the global thermal balance ($\sum t^0 g$) 3652, the active thermal balance ($\sum t^0 a$) 3287 and the active useful thermal balance ($\sum t^0 u$) 1538. We can see that from this point of view the years 2013 and 2014 are extremes of this research, while 2015 shows average values compared whit 2013 and 2014 (Table 1).

To appreciate the thermal resource and for interpreting the interaction of climatic factors from a vineyard area, is calculated the thermal coefficient (C_t). Given that 2013 was the warmest year of all, the highest thermal coefficient (18.1 (C_t) (Table 1) was registered.

When assessing the favorability of sun light which is used in viticulture, the following parameters are taken into consideration: insolation (sun shining) potential and actual (real (\sum ir)) and coefficient of insolation (C_i). The highest values of insolation were recorded in 2013 (1594 (\sum ir)) and (7.81 (C_i)), followed by the values obtained in 2015 (1563 (\sum ir)) and (7.69 (C_i)), whereas the lowest ones were recorded in 2014 (1498 (\sum ir)) and (7.53 (C_i)) (Table 1).

Precipitation is expressed in mm height of the layer of water, respectively $1/m^2$. The amount of rainfall is the average of daily values of calendar year (Σpp). Coefficient of precipitation (Cp) is the ration between the amount of precipitation and the number of days. To establish correlations between grape production and precipitation, it is recommended to consider wine growing in The highest values on year. of precipitations was recorded in 2014 (536.9 (Σpp) ; 1.83 (Cp)), followed by 2015 $(521.9 (\Sigma pp); 1.79 (Cp))$, the lowest values of precipitation was recorded in 2013 $(489.6 (\Sigma pp); 1.72 (Cp)) (Table 1).$

In most centers, vineyards, not exceeding 550 mm precipitation annually (Σpp) and in four of them do not reach even 500 mm. This suggests that vine growth and fructification, does not need much water and that irrigation would be unnecessary. This view may be supported by the negative influence of abundant precipitations in areas with moderate temperatures on product quality wine. Scientific research shows that vines have need more water than the quantity of precipitation infiltrates in the soil (Table 1).

In nature, ecoclimatic factors (temperature, insolation and precipitation) do not act independently. but in а complex connection. The values of real heliothermic index (IH_r) it is between values 1 and 5. It is considered optimal for vineyard when values of real heliothermic index (IH_r) exceed 2.6. In Romania real heliothermic index (IH_r) has values between 1.35 and 2.70 [37]. From this point of view values of real heliothermic index (IH_r) are between 1.75 (2013), 1.56 (2014) and 1.69 (2014) (Table 1).

Hydrothermal coefficient (CH) it shows how vines are satisfied in terms of water in a certain temperature regime. Express the degree of suitability for a particular year. May have values between 0.3-3.4 but normal value for our country is between 0.5-2.5 [38]. Hydrothermal coefficient (CH) values are between 1.35 (2013), 1.48 (2014) and 1.41 (2015). It can be seen on hydrothermal coefficient (CH), that year with most precipitations is 2014 (1.48 (CH)) (Table 1).

Bioclimatic index (I_{bcv}) and express the interaction between temperature, insolation and humidity. It indicated the possibility of an area for one or the other directions production of vine. Bioclimatic index (I_{bcv}) has values between 8.3 (2013), 7.6 (2014) and 8.1 (2015) (Table 1). The ecoclimatic conditions from Şimleul Silvaniei vine growing revealed the exceptional character

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

of this area and nature of wine from din vineyard present in large variety of wine produced in the area studied.

Table 1

Climate data from	Şimleul Silvar	niei area in 2012-2014
-------------------	----------------	------------------------

	Year			Specific			Optimal
Area			Fytreme limits			condions for	
		2	Studies elements	Average	Extrem		cultivation of
			vales	Min.	Max.	vines	
		The vegetation period	he vegetation days		191	199	150-170
		-	Global (∑t ⁰ g)	3683	3456	3731	2700-3600
	2013	Thermal balance	Active $(\sum t^0 a)$	3394	3305	3697	2600-3500
			Useful ($\sum t^0 u$)	1549	1541	1561	1000-1700
			Thermal coefficient (C _t)	18.1	17.3	19.2	16-19
		Insolation	Real (\sum ir)	1594	1456	1661	1200-1600
		(hours)	Coefficient of insolation (C _i)	7.81	6.84	8.31	7-9 hours
		Precipitations	Total annual (∑pp)	489.6	459.4	549.3	500-700
		(mm)	Coefficient of precipitation (Cp)	1.72	1.36	2.01	0.9-2.7
		The interaction	Real heliothermic Index (IH _r)	1.75	1.05	2.31	1.35-2.70
		of climatic	Hydrothermal coefficient (CH)	1.35	1.25	1.70	0.6-1.8
		factors	Bioclimatic index (Ibev)	8.3	7.9	8.9	4-15
	2014	The vegetation period	days	193	189	196	150-170
		•	Global ($\sum t^0 g$)	3652	3369	3697	2700-3600
		Thermal balance	Active $(\overline{\Sigma}t^0 a)$	3287	3219	3654	2600-3500
			Useful $(\sum t^0 u)$	1538	1531	1594	1000-1700
Qim laul			Thermal coefficient (C_t)	17.6	17.0	18.2	16-19
Şiliyəniəi		Insolation	Real (∑ir)	1498	1420	1643	1200-1600
Silvaillei		(hours)	Coefficient of insolation (C _i)	7.53	7.59	8.01	7-9 hours
		Precipitations (mm)	Total annual (∑pp)	536.9	521.9	578.6	500-700
			Coefficient of precipitation (Cp)	1.83	1.52	1.98	0.9-2.7
		The interaction	Real heliothermic Index (IH _r)	1.56	1.09	2.23	1.35-2.70
		of climatic	Hydrothermal coefficient (CH)	1.48	1.12	1.53	0.6-1.8
		factors	Bioclimatic index (I _{bev})	7.6	6.9	8.1	4-15
		The vegetation period	days	194	191	195	150-170
			Global ($\sum t^0 g$)	3676	3484	3869	2700-3600
		Thermal	Active $(\sum t^0 a)$	3321	3532	3846	2600-3500
		balance	Useful (∑t ⁰ u)	1551	1493	1676	1000-1700
	2015		Thermal coefficient (C _t)	16.9	15.3	19.0	16-19
		Insolation	Real ($\sum ir$)	1563	1395	1569	1200-1600
		(hours)	Coefficient of insolation (C _i)	7.69	7.53	7.96	7-9 hours
		Precipitations	Total annual (∑pp)	521.9	512.1	568.3	500-700
		(mm)	Coefficient of precipitation (Cp)	1.80	1.70	1.99	0.9-2.7
		The interaction	Real heliothermic Index (IH _r)	1.69	1.51	2.06	1.35-2.70
		of climatic	Hydrothermal coefficient (CH)	1.41	1.36	1.82	0.6-1.8
		factors	Bioclimatic index (Ibev)	8.1	8.0	8.4	4-15

Analysis of the main qualitative indicators of grapes. The content in sugar

of the grapes it was between values of 202.28±2.98 (2013) (g/L) and 201.32±1.59

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

(2015) (g/L) obtained by variety F.a. the opposite is variety F.r. 179.72±2.46 (2014) (g/L) and F.m. 185.72±5.59 (2014) (g/L). We can see that the accumulation of sugar in this case was influenced by factor Years (F=11.711, $p \le 0.000$) and Variety (F=20.640, $p \le 0.000$). Titratable acidity expressed in g/L (C4H4O₆) has the following values: the highest values was registered to F.m variety (9.34±0.08 (g/L) 2013) and (9.39±0.03 (g/L) 2014), the lowest values was registered to F.a.

(8.70±0.04 (g/L) 2013) and (8.68±0.04 (g/l) 2015). Acidity expressed in g/L (H₂SO₄) in this case it was influenced by factor Years (F=64.777, $p \le 0.000$) and Variety (F=11.803, $p \le 0.000$) and the higest values was obtained to F.m. (4.70±0.09 g/l H₂SO₄ (2014)). Values of pH it was included in the normal limits for the variety analyzed. Mass of 100 gains had values between 134.39±1.47 (g) (2015) and 182.06±5.98 (g) (2014) (Table 2).

Table 2

Area	Va - riet	Years	Weight of 100 grains (g)	Sugar (g/L)	Titratable acidity (g/L C4H4O6)	Acidity H ₂ SO ₄ (g/L)	рН
	у						
		2013	174.75±4.26 c α	191.72±2.46 cde α	9.14±0.04 b α	4.59±0.15 ab α	$3.22\pm0.05 \text{ bcd }\beta$
	F.r.	2014	182.06±5.98 a α	179.70±2.45 fβ	9.22±0.05 b α	4.58±0.11 ab α	3.92±0.24 a α
		2015	181.60±1.75 ab α	187.68±3.45 de α	9.18±0.02 b α	4.43±0.05 c α	3.84±0.10 a α
~ ~		2013	129.32±2.19 f α	202.28±2.98 a α	8.70±0.04 e β	4.28±0.04 c β	3.12±0.03 d β
Ş.S.	F.a.	2014	130.16±1.96 fα	196.27±5.78 abc α	9.05±0.06 c α	4.56±0.07 b α	3.21 ± 0.04 bcd α
		2015	129.91±1.39 f α	201.32±1.59 a α	8.68±0.04 e β	4.21±0.02 c β	$3.19 \pm 0.02 \text{ cd } \alpha$
		2013	134.63±5.02 ef α	$\frac{193.21 \pm 4.77 \text{ bcde}}{\beta}$	9.17±0.01 b α	4.55±0.03 b α	3.42±0.02 b β
	R.i.	2014	140.84±4.97 e α	190.43±0.84 cde β	9.17±0.02 b α	4.54±0.06 b α	3.92±0.24 a α
		2015	134.39±1.47 ef α	199.87±1.39 ab α	8.79±0.05 d β	4.25±0.04 c β	3.84±0.10 a α
		2013	167.97±1.47 d α	187.92±7.46 de α	9.34±0.08 a α	4.67 \pm 0.05 ab α	3.39 ± 0.03 bc α
	F.m	2014	169.67±4.23 cd α	185.72±5.59 fα	9.39±0.03 a α	4.70±0.09 a α	3.27 ± 0.03 bcd β
		2015	175.39±5.14 bc α	193.41±3.03 bcd α	9.19±0.02 b β	4.27±0.05 c β	$3.25\pm0.04 \text{ bcd }\beta$
F (Fisher Factor)		109.531	8.615	87.231	17.268	24.372	
	Sig.		$p \le 0.000$	$p \le 0.000$	$p \leq 0.000$	$p \le 0.000$	$p \le 0.000$
Year	F^1		4.270	11.711	96.520	64.777	23.882
	Sig.		*	***	***	***	***
Variety	F^1		395.055	20.640	211.922	11.803	53.009
	Sig.		***	***	***	***	***
Years x	F^1		1.856	1.571	21.790	4.164	10.217
Variety	Sig.		ns	ns	***	**	***

F.r. = Fetească regală; F.a. = Fetească albă; R.i. = Italian riesling; F.m. = Furmint; Ş.S. = Şimleul Silvaniei F¹ = Fisher Factor

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

Analysis main qualitative of the indicators of white wine. The reducing (g/L)sugar was very significantly influenced by variety factor (F=12.952, p \leq 0.000), the interaction the year x variety had a distinctly significant influence (F=4.595, p = 0.003), but the year factor had not influenced this character. The highest values were registered to F.a. variety (2.63±0.17 (g/L) 2015) and the lowest values were registered to F.m. (1.70±0.17 (g/L) 2015). The highest content of total dry extract (g/L) was recorded in wines from R.i. variety (27.73±1.29 (g/L) 2013); (25.66±1.92 (g/L) 2014) and F.a. variety (25.84±1.48 (g/L) 2013) this variants are equal in

statiscal terms. The lowest content of total dry extract was recorded to wine obtained from F.m. (19.32±1.88 (g/L) 2013: 19.42±1.00 (g/L) 2014 and 19.80±0.75 (g/L) 2015). The differences between variants were statistically assured $(F=12.442, p \le 0.000)$. The biggest influence on the non-reducing extract content was given by variety factor (F=50.244, $p \le 0.000$), followed by year factor (F=6.92, p = 0.004) and interaction of factors years x variety (F=2.677, p = 0.039), this had a distinctly significant influence on this character. The highest content of non-reducing extract was recorded in wine obtained from R.i. variety (26.62±0.43 (g/L) 2013 (Table 3).

Table 3

Are	Vari etv	Years	Reducing	Total dry	Non-reducing extract	Total acidity (g/L	Volatile acidity
ů	cty		sugars (g/L)	(α/I)	(g/L)	$C_4H_4O_6$)	(g/L
				(g/L)			CH ₃ COOH)
		2013	1.94±0.08 de α	22.75±0.84 bc α	19.70±0.78 d α	7.65±0.11 a α	0.45±0.02 cde α
	F.r.	2014	2.15 \pm 0.19 bcd α	$\begin{array}{c} 21.47 \pm 0.93 \text{ bcd} \\ \alpha\beta \end{array}$	20.58 \pm 0.58 cd α	7.53±0.10 ab αβ	0.50 ± 0.03 abcd α
		2015	2.08±0.08 d α	$20.48\pm0.91 \text{ cd }\beta$	19.91±1.18 d α	7.38±0.06 b β	0.52±0.09 ab α
S.S.		2013	2.48±0.43 ab α	25.84±1.48 a α	24.83±0.31 b α	7.30 \pm 0.15 bc $\alpha\beta$	$0.41 \pm 0.02 \text{ ef } \alpha$
,	F.a.	2014	2.12±0.11 cd α	$21.35 \pm 1.09 \text{ bcd } \beta$	23.78±0.32 b α	$7.11 \pm 0.05 \text{ cd } \beta$	0.46 ± 0.03 bcde α
		2015	2.63±0.17 a α	23.30±1.72 b αβ	24.31±1.83 b α	7.35±0.06 b α	$0.44 \pm 0.03 \text{ de } \alpha$
		2013	2.46±0.13 abc α	27.73±1.29 a α	26.62±0.46 a α	6.92±0.12 de α	0.53±0.03 a α
	R.i.	2014	2.14 \pm 0.05 bcd α	25.66±1.92 a α	25.48±0.88 ab α	6.89±0.05 de α	0.57±0.04 a α
		2015	2.50±0.30 ab α	$21.86 \pm 1.63 \text{ bcd } \beta$	24.42±1.91 b α	7.01 \pm 0.03 de α	0.51 ± 0.04 abc α
		2013	1.99±0.13 de α	19.32±1.88 d α	24.57±0.92 b α	6.61±0.12 f α	0.39±0.02 ef α
	F.m.	2014	2.16 \pm 0.03 bcd α	19.42±1.00 d α	21.86±0.68 c β	6.82±0.15 ef α	0.37±0.04 f α
		2015	1.70±0.17 e β	19.80±0.75 d α	$21.10\pm0.48 \text{ cd }\beta$	6.61±0.31 fα	0.36±0.03 f α
F (1	Fisher F	actor)	6.168	12.442	16.421	21.321	10.140
	Sig.		$p \le 0.000$	$p \le 0.000$	$p \le 0.000$	$p \le 0.000$	$p \le 0.000$
Yea rs	F ¹		0.709	11.712	6.920	0.237	1.631
	Sig.		ns	***	**	ns	ns
Vari ety	F ¹		12.952	28.771	50.244	71.752	32.981
	Sig.		***	***	***	***	***
Yea	F^1		4.595	4.521	2.677	3.138	1.556
r x Vari etv	Sig.		**	**	*	*	ns

The main features of the composition of white wine

F.r. = Fetească regală; F.a. = Fetească albă; R.i. = Italian riesling; F.m. = Furmint; Ş.S. = Şimleul Silvaniei F¹ = Fisher Factor

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

The total acidity (g/L) C₄H₄O₆ and volatile acidity (g/L) CH₃COOH recorde very significant differences between variants total acidity (g/L) C₄H₄O₆ (F=21.321, p \leq (0.000)and volatile acidity (g/L)CH₃COOH (F=10.140, $p \le 0.000$). In both cases the factor who influencing most was the variety (F=71.752, $p \le 0.000$ total acidity (g/L) C₄H₄O₆) and (F=32.981, $p \leq$ 0.000 volatile acidity (g/L) CH₃COOH). The highest content was recorded in F.r. (7.65±0.11 (g/L) 2013 total acidity C₄H₄O₆) and R.i. (0.53±0.03 (g/L) 2013; $(0.57\pm0.04$ (g/L) 2014 volatile acidity CH₃COOH) (Table 3).

Pearson correlation coeficients of composition of grapes and qualitative

characteristics of white wine. To reveal if the composition of the wine are influenced by the composition of grape, in this sense we have performed Person correlation between composition of grapes (weight of 100 grains, sugar, titratable acidity, acidity and pH) and qualitative characteristics of wine (reducing sugars, total dry extract, non-reducing extract, total acidity and volatile acidity). Values greater than 0.5 represent a strong correlation between variables, a positive correlation means that, when a variable increases, correlated variables increase also, while a negative correlation means an increase in the primary variable causes a decrease in the correlated variables.

Fig. 1. Pearson correlation coeficients of composition of grapes and qualitative characteristics of white wine

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

They have obtained a large number a string relationships between the qualitative characteristics of wine and composition of grapes: titratabile acidity & sugar (-0.835**); acidity & sugar (-0.821**); acidity & titratabile acidity (0.715*); reducing sugars & weight of 100 grains (-0.526*); reducing sugars & titratabile acidity (-0511*); total dry extract & weight

4. Conclusion

The ecoclimatic conditions from Silvaniei vine growing revealed the exceptional character of this area and nature of authenticity of wine from vineyard present in large variety of wine produced in the studied. Regarding qualitative area assessment of varieties taken in testing, based on the results it can be observed that the varieties have a good suitability in the area studied and quality determinations show particular characteristics but also ecoclimatic influence of the and ecopedologic on wine quality. The quality of wine obtained for F.r., F.a., R.i. and

5. Acknowledgments

This paper was published under frame of Romanian Ministry of Agriculture and Rural Development project ADER

6. References

[1]. VOICA C., DEHELEAN A., PAMULA A., Method validation for determination of heavy metals in wine and slightly beverages by ICP-MS, *Journal of Physics*, 182(1): 1–5, (2009)

[2]. DALIPI R., BORGESE L., ZACCO A., TSUJI K., SANGIORGI E., PIRO R., BONTEMPI E., DEPERO L.E., Determination of trace elements in Italian wines by means of total reflectation X-ray fluorescence spectroscopy. *International Journal Environmental Anal Chemistry*, 95(1): 1–11, (2015)
[3]. KARATAŞ D., AYDIN F., AYDIN I., KARATAŞ H., Elemental composition of red wines in Southeast Turkey. *Czech Journal Food Sci* 33: 228–236, (2015) of 100 grains (-0.666*); total dry extract & sugar (0.529*); non-reducing extract & weight of 100 grains (-0.874**); non-reducing extract & sugar (0.559*); non-reducing extract & titratabile acidity (-0.641); non-reducing extract & sugar (0.698*) and volatile acidity & pH (0.673*).

F.m. in years 2013, 2014 and 2015 in Şimleul Silvaniei center, was particulary influenced by the balance between alcoholic strength, acidity and residual sugar. In the conditions of Silvaniei vineyard, at the Şimleul Silvaniei center can be obtained wines fresness and flavour, giving it a speial personality that is appreciated by connoisseurs and casual consumers. Person's correlation analysis revealed a number of strong correlation between the qualitative characteristics of wine and composition of grape.

no.14.2.2. "Quantitative studies on assessment and monitoring contaminants, on the chain of viticulture and winemaking to minimize the amount of pesticides and heavy metals as principal pollutants".

[6]. LĂDARU G.R., BECIU S., VLAD I.M., Analysis on the evolution of surfaces under vine in Romania (2003-2013). *Scientific Papers Series*

MARINI F., BUCCI R., MAGRI A., [4]. MAGRI A., Authentication of Italian CDO wines by class-modeling techniques. Chemometrics and Intelligent Laboratory Systems 84: 164–171, (2006) GONÇALVES da SILVA A.M., PAVAN [5]. M.A., MUNIZ A.S., TONIN T.A., PELIZER T., Nutrient availability in the soil and its absorption, redistribution transport, and in vines. Communications in Soil Science and Plant Analysis 39: 1507-1516, (2008)

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest,* Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

Management, Economic Engineering in Agriculture and Rural Development 14(4): 153–156, (2014)

[7]. TUDORACHE A., PIRCALABU L., PORUMB R., TOMOIAGA L., ILIESCU M., ENACHE V., SIMION C., DORINA D., PETRESCU A., GHICA M., Description des climats dans les centres viticoles principaux de Roumanie. *OIV* 86:45–58, (2013)

[8]. FRAGA H., SANTOS J.A., MALHEIRO A.C., OLIVEIRA A.A., MOUTINHO-PEREIRA J., JONES G.V., Climatic Suitability of Portuguese Grapevine Varieties and Climate Change Adaptation. *International Journal of Climatology*. DOI: 10.1002/joc.4325.2015.

[9]. PALTINEANU C., MIHAILESCU I. F., SECELEANU I., DRAGOTA C., VASENCIUC F., Using aridity indices to describe some climate and soil features in Eastern Europe: A Romanian case study. *Theoretical and Applied Climatology* 90: 263–274, (2007)

[10]. CARBONNEAU A., Ecofisiologie de la vigne et terroir. Terroir, zonizzazione, viticoltura. *Trattato internazionale Phytoline* 1: 61–102, (2003) [11]. MACKENZIE D.E., CHRISTY A.G., The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. *Water Sci. Technol.* 51: 27–37 (2005)

[12]. MAGALHAÊS N., Tratado de viticultura: a videira, a vinha e o terroir. *Lisboa, Portugal: Chaves Ferreira*. (2008)

[13]. MORLAT R., JACQUET A., Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. *American Journal of Enology and Viticulture* 54: 1–7 (2003)

[14]. FIELD S.K., SMITH J.P., HOLZAPFEL B.P., HARDIE W.J., EMERY R.J.N., Grapevine Response to Soil Temperature: Xylem Cytokinins and Carbohydrate Reserve Mobilization from Budbreak to Anthesis. *American Journal of Enology and Viticulture* 60: 164–172 (2009)

[15]. SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K.B., TIGNOR M., MILLER H.L., Climate change 2007: the physical science basis. In: Contribution to working group I to the fourth assessment report of the intergovernmental panal on climate change. *Cambridge University Press, chap 3 and 11* (2007).
[16]. URHAUSEN S., BRIENEN S., KAPALA A., SIMMER C., Climatic conditions and their impact on viticulture in the Upper Moselle region. *Climatic Change* 109:349-373. DOI 10.1007/s10584-011-0059-z (2011)

[17]. MENZEL A., A 500 year phenoclimatological view on the 2003 heat wave in Europe assessed by grape harvest dates. *Meteorologische Zeitschrift* 14(1):75–77 (2005). [18]. DUCHÊNE E., SCHNEIDER C., Grapevine and climatic changes: a glance at the situation in Alsace. *Agronomy for Sustainable Development* 25:93–99 (2005)

[19]. ADAMS R.M., WU J., HOUSTON L.L., The Effects of Climate Change on Yields and Water Use of Major California Crops. Appendix IX to Climate change and California. California Energy Commission, *Public Interest Energy Research (PIER), Sacramento, CA* (2003)

[20]. LOBELL D.B., FIELD C.B., CAHILL K.N., BONFILS C., Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. *Agric. For. Meteorol.* 141: (2–4), 208–218 (2006)

[21]. JONES G.V., DUCHÊNE E., TOMASI D., YUSTE J., BRASLAVASKA H., SCHULTZ H., MARTINEZ C., BOSO S., LANGELLIER F., PERRUCHOT C., GUIMBERTEAU G., Changes in European winegrape phenology and relationships with climate. *In: XIV international GESCOviticulture-congress, Geisenheim* 1: 55–61 (2005)

[22]. STORCHMANN K., English weather and Rhine wine quality: an ordered probit model. J. *Wine Res.* 16(2): 105–119 (2005)

[23]. ALSTON J.M., FULLER K.B., LAPSLEY J.T., SOLEAS G., Too much of a good thing? Causes and consequences of increases in sugar content of California wine grapes. *J. WineEcon.* 6(2): 135–159 (2011)

[24]. DE ORDUNA R.M., Climate change associated effects on grape and wine quality and production. *Food Res. Int.* 43(7): 1844–1855 (2010) [25]. HAEGER J., STORCHMANN K., Prices of American pinot noir: climate, critics, craftsmanship. *Agric. Econ.* 35: 67–78 (2006)

[26]. ASHENFELTER O., STORCHMANN K., Measuring the economic effect of global warming on viticulture using auction, retail and wholesale prices. *Rev. Ind. Organ.* 37: 51–64 (2010)

[27]. MARINONI O., NAVARRO GARCIA J., MARVANEK S., PRESTWIDGE D., CLIFFORD D., LAREDO L.A., Development of a system to produce maps of agricultural profit on a continental scale: an example for Australia. *Agric. Syst.* 105(1): 33–45 (2012)

[28]. WEBB L.B., WHETTON P.H., BARLOW E.W.R., Climate change and winegrape quality in Australia. *Clim. Res.* 36(2): 99 (2008)

[29]. BUNEA C.I., MUCACIU M.L., POP N. The influence of green works on Seyve-Villard 18402 grape quality, vine with biological resistance. *Bulletin UASVM Horticulture* 70(1): 60–67 (2013)

[30]. SUCIU L., PUIA C., FLORIAN V., MICLEA R., BUNEA C.I., The behaviour of vine varieties to downy mildew attack (*Plasmopara Viticola* Berk&Curt) in ampelegraphic collection in

Florin-Dumitru BORA, Alina DONICI, Oana-Mihaela RIPANU, *Compositional quality assessment of wines produced in Silvaniei vine growing center of Şimleul Silvaniei, 2013- 2015 harvest*, Food and Environment Safety, Volume XV, Issue 1 – 2016, pag. 84 - 94

the conditions of USAMV Cluj-Napoca. *Pro-Environment* 5: 221–226 (2012)

[31]. ILIESCU M., POPESCU D., COMŞA M., The impact of climatic factors on the rootstock quality, in the Blaj vineyard center. *Bulletin UASVM Horticulture* 72(1): 219–220 (2015)

[32]. BORA F.D., POP T.I., BUNEA C., POPESCU D., ILIESCU M., POP N., The assessment of the main climatic conditions in northwest of Romania for viticulture (1991-2013). *Bulletin UASVM Horticulture* 72(2): 445–447 (2015)

[33]. BORA F.D., POP T.I., BUNEA C.I., URCAN D.E., BABEŞ A., MIHALY-COZMUŢA L., MIHALY-COZMUŢA A., POP N., Influence of ecoclimatic and ecopedological conditions on quality of white grape varieties from north-west of Romania. *Bulletin UASVM Horticulture* 71(2): 218–225 (2014) [34]. BORA F.D., BUNEA C.I., RUSU T., POP N., Vertical distribution and analysis of micro-, macroelements and heavy metals in the system soil-grape-wine in vineyard from north-west Romania. *Chemistry Central Journal* DOI 10.1186/s13065-015-0095-2 9–19 (2015)

[35]. BUNEA C.I., POP N., BORA F., POPESCU D., BUNEA D., The behaviours of wine grape varieties with biological resistant, in Blaj vineyard conditions. *Bulletin UASVM Horticulture* 71(2): 343–344 (2014)

[36]. ŢÂRDEA C., DEJEU L., Viticulture. *Editura Didactică şi Pedagogică. Bucureşti* (1995)
[37]. OŞLOBEANU M., General and Special Viticulture. *EDP Bucureşti* (1980)

[38]. POP N., Ecological Viticulture. Ed. AcademicPress. Cluj-Napoca. Romania (2005)