

CONTRIBUTIONS TO THE DEVELOPMENT OF THE MATERIAL BALANCE OF MIGRATION PROCESS OF METAL IONS FROM THE AISI304 STAINLESS STEEL IN ACETIC ACID SOLUTIONS

*Silviu-Gabriel STROE¹, Gheorghe GUTT¹, Maria POROCH-SERIȚAN¹

 ¹ Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229, Suceava, Romania
 <u>*silvius@fia.us.ro; g.gutt@fia.usv.ro; mariap@fia.usv.ro</u> *Corresponding author Received April 8th 2013, accepted May 15th 2013

Abstract: The aim of this work was the development of theoretical and real material balance by studying the diffusion phenomena of the metallic ions from AISI304 stainless steel samples in acetic acid solutions with 3%, 6% and 9% concentrations. The correlation of the quantities of substance which migrate from the metallic alloys in the food simulants through the interaction interface between the two environments can be accomplished through the materials balance developed for each component. To development the materials balance, we used the general stoichiometric equation of a chemical process. Within the comparative study of the theoretical and real mass balance, we have used the experimental data obtained after the migration tests, where the variables were represented by the working parameters: the temperature of the migration testing - T [°C], the exposure time - t [min.] and the stirring of the corrosive environment - n [rot-min⁻¹]. The value of each parameter was varied on three levels, in accordance with the real situations met in practice. In order to express the quantitative stage of the interaction between the metallic material and the corrosive environment, at a certain moment, we have used the degree of dissolution δ_M of the metallic components such as Mn, Cr, ⁵⁶Fe and Ni. The comparative study of the dissolution rates obtained allows to extrapolate and to elaborate in practice the optimization of the process which occurs at the interface of the two real food environments.

Keywords: *diffusion, stainless steel, acetic acid, mass balance, dissolution rate*

1. Introduction

The knowledge and study of chemical reactions which occur at the interface between a metallic material and a food environment, considered corrosive, play an important role in the manufacturing process of food raw materials. Thus, in order to design the equipment or to optimize the processes we must know the operation conditions, such as: the nature of the corrosive environment, the temperature at which the processes occur, the duration of the contact between the two environments and the stirring of the corrosive environment.

2. Materials and methods

2.1. Metallic samples and corrosive environments

For the development of theoretical and real mass balance we have used the metallic samples of AISI304 stainless steel grade, the chemical composition being shown in the Table 1 (according to EN 10088-2:2005) [1]. The dimensions of the metallic samples used in the migration tests were of $40 \times 40 \times 1$ mm.

	Table 1.
Chemical composition of AISI304 stai	nless steel
	Exx+ 0/ 1

[WL %											
Fe	С	Mn	Р	S	Si	Cr	Ni				
67	0.08	2	0.045	0.03	1	18-20	8-11				

As corrosive environments, we have used solutions of CH_3COOH , with the following concentrations: 3%, 6% and 9%.

2.2. Experimental design

The experimental design used for the migration tests in each of the three corrosive environments is presented in the Table 2.

 Tabel 2. Experimental design used to perform the migration tests

		the	ingration cests		
Nr.	Temperatura	Timp	Agitare		
exp.	<i>T</i> -[°C]	<i>t</i> -[min.]	$n-[rot \cdot min^{-1}]$		
1	22	30	0		
2	22	30	125		
3	22	30	250		

4	28	30	0
5	28	30	125
6	28	30	250
7	34	30	0
8	34	30	125
9	34	30	250
10	22	60	0
11	22	60	125
12	22	60	250
13	28	60	0
14	28	60	125
15	28	60	250
16	34	60	0
17	34	60	125
18	34	60	250
19	22	90	0
20	22	90	125
21	22	90	250
22	28	90	0
23	28	90	125
24	28	90	250
25	34	90	0
26	34	90	125
27	34	90	250

After performing migration tests of the elements from the metallic samples in the acid solutions of the corrosive environments there have been identified and dosed, using mass spectrometry and inductively coupled plasma *ICP-MS*, the following metallic elements: Mn, Cr, ⁵⁶Fe and Ni, according to the Table 3.

Table 3. Concentrations of Mn, Cr, ⁵⁶ Fe and Ni elements found in CH ₃ COOH solutions, used as corre	osive
environm	ients

		Chemical element, [mg·L ⁻¹]												
No. exp.		Mn			Cr			⁵⁶ Fe			Ni			
	3%	6%	9%	3%	6%	9%	3%	6%	9%	3%	6%	9%		
1	0.003	0.00157	0.00122	0.004	0.005	0.001	0.990	0.32	0.08	0.0152	0.311	0.0033		
2	0.003	0.00237	0.00182	0.004	0.007	0.001	0.660	0.40	0.10	0.0072	0.341	0.0058		
3	0.022	0.00287	0.00222	0.077	0.012	0.003	6.120	0.54	0.26	0.0782	0.381	0.0064		
4	0.003	0.00177	0.00072	0.005	0.012	0.002	0.390	0.20	0.02	0.0132	0.391	0.0056		
5	0.004	0.00227	0.00102	0.009	0.015	0.004	1.170	0.28	0.04	0.0232	0.531	0.0066		
6	0.005	0.00287	0.00142	0.007	0.019	0.005	0.730	0.58	0.10	0.0352	0.551	0.0071		
7	0.002	0.00197	0.00082	0.005	0.014	0.002	0.760	0.36	0.02	0.0082	0.411	0.0057		
8	0.003	0.00207	0.00132	0.007	0.018	0.005	0.860	0.74	0.06	0.0132	0.511	0.0060		
9	0.005	0.00247	0.00182	0.019	0.022	0.007	1.040	1.22	0.28	0.0372	0.561	0.0076		
10	0.003	0.01467	0.00092	0.005	0.011	0.001	0.690	0.22	0.06	0.0132	0.281	0.0038		
11	0.004	0.00607	0.00122	0.005	0.013	0.002	0.400	0.60	0.14	0.0068	0.331	0.0053		
12	0.041	0.00387	0.00152	0.188	0.020	0.003	9.220	1.08	0.68	0.1372	0.381	0.0066		
13	0.003	0.00207	0.00112	0.007	0.014	0.008	0.880	0.22	0.18	0.0152	0.301	0.0073		

Silviu-Gabriel STROE, Gheorghe GUTT, Maria POROCH-SERIȚAN, Contributions to the development of the material balance of migration process of metal ions from the AISI304 stainless steel in acetic acid solutions, Food and Environment Safety, Volume XII, Issue 2 – 2013, pag. 207-213

Food and Environment Safety - Journal of Faculty of Food Engineering, Ştefan cel Mare University - Suceava Volume XII, Issue 2 – 2013

14	0.005	0.00377	0.00142	0.013	0.019	0.008	1.190	0.36	0.30	0.0192	0.321	0.0091
15	0.004	0.00357	0.00162	0.010	0.020	0.009	0.720	0.50	0.34	0.0282	0.367	0.0112
16	0.002	0.00227	0.00102	0.020	0.014	0.002	0.160	0.44	0.08	0.0072	0.231	0.0072
17	0.004	0.00287	0.00132	0.012	0.019	0.004	0.960	0.54	0.18	0.0202	0.276	0.0086
18	0.007	0.00367	0.00172	0.022	0.022	0.005	2.010	0.72	0.32	0.0322	0.306	0.0101
19	0.004	0.00257	0.00082	0.007	0.012	0.003	1.090	0.76	0.02	0.0132	0.301	0.0052
20	0.003	0.00267	0.00112	0.005	0.015	0.003	0.590	0.88	0.02	0.0082	0.331	0.0057
21	0.043	0.00297	0.00142	0.238	0.020	0.004	5.320	0.96	0.10	0.2372	0.361	0.0059
22	0.004	0.00387	0.00182	0.011	0.018	0.006	0.840	0.72	0.28	0.0172	0.121	0.0071
23	0.005	0.01167	0.00372	0.014	0.031	0.009	0.870	0.88	0.88	0.0172	0.141	0.0097
24	0.008	0.01267	0.00502	0.012	0.042	0.015	1.020	1.00	1.16	0.0302	0.172	0.0131
25	0.008	0.00147	0.00172	0.012	0.013	0.008	1.230	0.20	0.44	0.0262	0.160	0.0079
26	0.016	0.00357	0.00522	0.079	0.026	0.015	4.320	0.66	1.24	0.0752	0.211	0.0088
27	0.025	0.01567	0.00972	0.108	0.039	0.036	7.920	1.04	2.28	0.1072	0.241	0.0168

3. Results and Discussion

3.1. Theoretical material balance

Assuming that the reaction kinetics is known, this paper presents the theoretical and real material balances of the diffusion processes which occur between the AISI304 stainless steel grade samples and the food simulants (acetic acid solutions -3%, 6% and 9%). The correlation of the substance quantities which leave the metallic material and migrate in the food environment, at the interaction interface between the two environments, can be done by the use of the materials balance elaborated by components [2]. For the development of the material balance we have started from the stoichiometric equation of a chemical process, which can be written as (1) [2]:

$$\sum_{i=1}^{n} v_{A_{i}} \cdot A_{i} = \sum_{i=1}^{m} v_{A_{i}'} \cdot A_{i}'$$
(1)

where:

- v_{A_i} the stoichiometric coefficient of the reactants;
- $v_{A'_i}$ the stoichiometric coefficient of the reaction products;

 A_i , A'_i - reactants, reaction products, respectively.

At the interaction interface between the food environment and the metallic

material, main chemical reactions, secondary chemical reactions and electrochemical reactions occur. In order to express the quantitative stage of the interaction between the aliment and the metallic material, at a certain moment, we have used a dissolution rate of a metallic contaminant or a certain component δ_{A_i} [3], [4].

This parameter is defined as *dissolution rate* of the metallic contaminant and is expressed by the relation:

$$\delta_{A_{k}} = \frac{n_{A_{k}}^{0} - n_{A_{k}}}{n_{A_{k}}^{0}} = \frac{n_{A_{i}}^{0} - n_{A_{i}}}{\frac{V_{A_{i}}}{V_{A_{k}}} \cdot n_{A_{k}}^{0}} = \frac{n_{A_{i}}^{-} - n_{A_{i}}^{0}}{\frac{V_{A_{i}}}{V_{A_{k}}} \cdot n_{A_{k}}^{0}}$$
(2)

where:

 $n_{A_i}^0$, $n_{A_k}^0$, $n_{A'_i}^0$ - is the composition of the initial reaction mass of the contaminant (A_i) , of a certain contaminant (A_k) , and of the reaction products (A'_i) , respectively;

 n_{A_i} , $n_{A'_i}$ - the composition of the reaction mass at a certain moment of the contaminant (A_i) , of the reaction products (A_i) , respectively. The use of the dissolution rate variable for the quantitative characterization of the process development allows the of the stoichiometric calculation in a simple form

Silviu-Gabriel STROE, Gheorghe GUTT, Maria POROCH-SERIȚAN, Contributions to the development of the material balance of migration process of metal ions from the AISI304 stainless steel in acetic acid solutions, Food and Environment Safety, Volume XII, Issue 2 – 2013, pag. 207-213

and the elaboration of the balance equation system in a form appropriate to their use for the quantitative description of the process. Starting with the composition of the reaction mass at a certain moment expressed through the sizes:

$$n_{A_1}...n_{A_n}; n_{A'_1}...n_{A'_n}$$
 (3)

and for each component it can be written the following balance equations [2]:

$$n_{A_i} = n_{A_i}^0 - \frac{V_{A_i}}{V_{A_k}} \cdot n_{A_k}^0 \cdot \delta_{A_k}$$
(4)

$$n_{A'_{i}} = n^{0}_{A'_{i}} + \frac{V_{A'_{i}}}{V_{A_{k}}} \cdot n^{0}_{A_{k}} \cdot \delta_{A_{k}}$$
(5)

$$n_{A_i''} = n_{A_i''}^0 \tag{6}$$

The total number of moles in the reaction mass, at a certain moment, is expressed by the balance equation (7):

$$n_{T} = \sum_{1}^{n} n_{A_{i}}^{0} + \sum_{1}^{m} n_{A_{i}'}^{0} + \sum_{1}^{s} n_{A_{i}'}^{0} - \frac{\sum_{1}^{n} vA_{i}}{vA_{k}} n_{A_{k}}^{0} \delta_{A_{k}} + \frac{\sum_{1}^{m} v_{A_{i}'}}{v_{A_{k}}} n_{A_{k}}^{0} \delta_{A_{k}} = n_{T}^{0} + \frac{\sum_{1}^{m} v_{A_{i}'} - \sum_{1}^{n} v_{A_{i}}}{v_{A_{k}}} n_{A_{k}}^{0} \delta_{A_{k}}$$

$$(7)$$

The equation (7) can be written also as equation (8) [2]:

$$n_{T} = n_{T}^{0} \left(1 + \frac{\sum_{k=1}^{m} v_{A_{i}} - \sum_{k=1}^{n} v_{A_{i}}}{v_{A_{k}}} \frac{n_{A_{k}}^{0}}{n_{T}^{0}} \delta_{A_{k}} \right) = (8)$$
$$= n_{T}^{0} \left(1 + \alpha \delta_{A_{k}} \right)$$

where:
$$\alpha = \frac{\sum_{i=1}^{m} v_{A_{i}} - \sum_{i=1}^{n} v_{A_{i}}}{v_{A_{k}}} \cdot \frac{n_{A_{k}}}{n_{T}^{0}} \quad (9)$$

By replacing the number of moles by mass, the equation (2) can be written as equation (10):

$$\delta_{A_{k}} = \frac{m_{A_{k}}^{0} - m_{A_{k}}}{m_{A_{k}}^{0}} = \frac{m_{A_{i}}^{0} - m_{A_{i}}}{\frac{M_{A_{i}}}{M_{A_{k}}} \cdot \frac{V_{A_{i}}}{V_{A_{k}}}} m_{A_{k}}^{0} = \frac{m_{A_{i}'} - m_{A_{i}'}^{0}}{\frac{M_{A_{i}'}}{M_{A_{k}}} \cdot \frac{V_{A_{i}'}}{V_{A_{k}}}} m_{A_{k}}^{0}$$
(10)

3.2. Real material balance

In case of AISI304 stainless steel grade, used in the processing of food raw materials, the initial mass of reaction is considered to be formed by the metals presented in Table 1 (according to *EN 10088-2:2005*) [1], from the composition of metallic material and the acetic acid (CH₃COOH) [5].

The acetic acid has the following properties: $M = 60,05g \cdot mol^{-1}$,

 $pK_a = 4,76$, at 25°C. The stoichiometric equation of the chemical process from the interaction interface between the acetic acid and AISI304 stainless steel, in case of obtaining the vinegar by acetic fermentation, is the following:

$$Mn^{0} + Cr^{0} + Ni^{0} + 2Fe^{0} + 8C_{2}H_{4}O_{2} + 5/2O_{2} \rightarrow (C_{2}H_{3}O_{2})_{2}Mn + (C_{2}H_{3}O_{2})_{2}Cr \downarrow + (C_{2}H_{3}O_{2})_{2}Ni + (C_{2}H_{3}O_{2})_{2}Fe + Fe(OH)_{2} + 3H_{2}O$$
(11)

Silviu-Gabriel STROE, Gheorghe GUTT, Maria POROCH-SERIȚAN, Contributions to the development of the material balance of migration process of metal ions from the AISI304 stainless steel in acetic acid solutions, Food and Environment Safety, Volume XII, Issue 2 – 2013, pag. 207-213

and the secondary reaction is:

$$3Fe(OH)_2 \rightarrow Fe_3O_4 + H_2 + H_2O \quad (12)$$

In order to express the quantitative stage of the interaction reaction between the metallic material and the aliment, at a certain moment, it is used the *dissolution rate* δ_{Mn} of a metallic contaminant (*Mn*), expressed by the relation:

$$\delta_{Mn} = \frac{m_{Mn}^0 - m_{Mn}}{m_{Mn}^0} \tag{13}$$

The mass of each component, in a certain moment, is expressed by the equation (13) [3], [4].

The theoretical masses calculated for the contaminants Mn, Cr, ${}^{56}Fe$ and Ni which could result from the complete dissolution of the metallic samples are presented in Table 4.

Tabel 4. Theoretical masses of	of the
contaminants <i>Mn</i> , <i>Cr</i> , ⁵⁶ <i>Fe</i> and <i>Ni</i>	[<i>mg</i>]

Mn	Cr	⁵⁶ Fe	Ni							
202.2	1819.8	6673.7	1011.0							
Based on the relation (13) we have										
obtained the numeric values of the										
dissolution rate of the Mn, Cr, ⁵⁶ Fe and Ni										
contaminants (Table 5).										

Tabel 5. The dissolution	rate of the contaminants	<i>Mn</i> , Cr , ⁵⁶ <i>Fe</i> and <i>Ni</i>
--------------------------	--------------------------	--

Nr.	δ_{Mn} , [%]				δ _{Cr,} [%]		δ _{56Fe} , [%]			δ _{Ni} , [%]		
exp.	3%	6%	9%	3%	6%	9%	3%	6%	9%	3%	6%	9%
1	0.0015	0.0008	0.0006	0.0002	0.0003	0,0055	0.0148	0.0048	0.0012	0.0015	0.0308	0.0003
2	0.0015	0.0012	0.0009	0.0002	0.0004	0,0055	0.0099	0.0060	0.0015	0.0007	0.0337	0.0006
3	0.0109	0.0014	0.0011	0.0042	0.0007	0.0002	0.0917	0.0081	0.0039	0.0077	0.0377	0.0006
4	0.0015	0.0009	0.0004	0.0003	0.0007	0.0001	0.0058	0.0030	0.0003	0.0013	0.0387	0.0006
5	0.0020	0.0011	0.0005	0.0005	0.0008	0.0002	0.0175	0.0042	0.0006	0.0023	0.0525	0.0007
6	0.0025	0.0014	0.0007	0.0004	0.0010	0.0003	0.0109	0.0087	0.0015	0.0035	0.0545	0.0007
7	0.0010	0.0010	0.0004	0.0003	0.0008	0.0001	0.0114	0.0054	0.0003	0.0008	0.0407	0.0006
8	0.0015	0.0010	0.0007	0.0004	0.0010	0.0003	0.0129	0.0111	0.0009	0.0013	0.0505	0.0006
9	0.0025	0.0012	0.0009	0.0010	0.0012	0.0004	0.0156	0.0183	0.0042	0.0037	0.0555	0.0008
10	0.0015	0.0073	0.0005	0.0003	0.0006	0,0055	0.0103	0.0033	0.0009	0.0013	0.0278	0.0004
11	0.0020	0.0030	0.0006	0.0003	0.0007	0.0001	0.0060	0.0090	0.0021	0.0007	0.0327	0.0005
12	0.0203	0.0019	0.0008	0.0103	0.0011	0.0002	0.1382	0.0162	0.0102	0.0136	0.0377	0.0007
13	0.0015	0.0010	0.0006	0.0004	0.0008	0.0004	0.0132	0.0033	0.0027	0.0015	0.0298	0.0007
14	0.0025	0.0019	0.0007	0.0007	0.0010	0.0004	0.0178	0.0054	0.0045	0.0019	0.0318	0.0009
15	0.0020	0.0018	0.0008	0.0006	0.0011	0.0005	0.0108	0.0075	0.0051	0.0028	0.0363	0.0011
16	0.0010	0.0011	0.0005	0.0011	0.0008	0.0001	0.0024	0.0066	0.0012	0.0007	0.0228	0.0007
17	0.0020	0.0014	0.0007	0.0007	0.0010	0.0002	0.0144	0.0081	0.0027	0.0020	0.0273	0.0009
18	0.0035	0.0018	0.0009	0.0012	0.0012	0.0003	0.0301	0.0108	0.0048	0.0032	0.0303	0.0010
19	0.0020	0.0013	0.0004	0.0004	0.0007	0.0002	0.0163	0.0114	0.0003	0.0013	0.0298	0.0005
20	0.0015	0.0013	0.0006	0.0003	0.0008	0.0002	0.0088	0.0132	0.0003	0.0008	0.0327	0.0006
21	0.0213	0.0015	0.0007	0.0131	0.0011	0.0002	0.0797	0.0144	0.0015	0.0235	0.0357	0.0006
22	0.0020	0.0019	0.0009	0.0006	0.0010	0.0003	0.0126	0.0108	0.0042	0.0017	0.0120	0.0007
23	0.0025	0.0058	0.0018	0.0008	0.0017	0.0005	0.0130	0.0132	0.0132	0.0017	0.0139	0.0010
24	0.0040	0.0063	0.0025	0.0007	0.0023	0.0008	0.0153	0.0150	0.0174	0.0030	0.0170	0.0013
25	0.0040	0.0007	0.0009	0.0007	0.0007	0.0004	0.0184	0.0030	0.0066	0.0026	0.0158	0.0008
26	0.0079	0.0018	0.0026	0.0043	0.0014	0.0008	0.0647	0.0099	0.0186	0.0074	0.0209	0.0009
27	0.0124	0.0078	0.0048	0.0059	0.0021	0.0020	0.1187	0.0156	0.0342	0.0106	0.0238	0.0017

After obtaining the numeric values (according to the Table 5), a comparative study can be done in relation to the

influence of the working parameters on the dissolution rate of the contaminants.

Silviu-Gabriel STROE, Gheorghe GUTT, Maria POROCH-SERIȚAN, Contributions to the development of the material balance of migration process of metal ions from the AISI304 stainless steel in acetic acid solutions, Food and Environment Safety, Volume XII, Issue 2 – 2013, pag. 207-213

It is known the fact that the presence of manganese in the stainless steels has the role to ensure deoxidation and to prevent the formation of iron sulphide inclusions [6].

In which concerns the behaviour of manganese (*Mn*) in acid environments, the lowest dissolution rate (0,004%) was obtained by the 7 and 19 experiences: *T*- $34^{\circ}C$ and $22^{\circ}C$, *t*-30 and 90 min. and stationary environments (*n*-0 rot·min⁻¹).

The highest dissolution rate (0.0124%) was obtained in the experience no. 27, where the working parameters were: T-34°C, t-90 min. and n-250 rot·min⁻¹.

Concerning the behaviour of the chrome in acid environments, it is known the fact that this is not a chemical element to present an important migration phenomenon in food environments.

Due alloying chromium, the stainless steels are more resistant to corrosion [7].

The lowest dissolution rate (0.0001) can be noticed in case of experiences 4, 7, 11 and 16, where, as particularity, the corrosive environment was stationary, only in case of experience no. 11, the stirring of the environment being of 125 rot·min⁻¹. The highest dissolution rate (0.0131) can be noticed in the case of experience no. 21, where the environment concentration was of 3% CH₃COOH, *T*-22°C, *t*-90 min. and *n*-250 rot·min⁻¹.

Regarding the behaviour of the iron to corrosion (⁵⁶*Fe*), the lowest dissolution rate were obtained in the case of experiences 4, 7, 19 and 20, where a stationary corrosive environment was used, the exception being the experience no. 20, where *n*-125 $rot \cdot min^{-1}$. The highest dissolution rate of iron is observed in case of experiment no. 12, where the concentration was of 3% CH₃COOH, *T*-22°C, *t*-60 min. and *n*-250 $rot \cdot min^{-1}$.

Amongst all studied metallic elements within this experiment, nickel presents the

highest degree of risk on human health. The World Health Organization (OMS) recommends a maximum allowable dose of 0,005 mg/kg of body weight. OMS recommended also a value of nickel for the drinking water of 0,02 mg/l [8], and the daily intake of nickel from food products is estimated to 0,15-0,7 mg/day [8].

From studying the values of the dissolution rate for Ni, it is noticed that the minimum value of the degree of dissolution is met in case of the experience no.1, where solutions of 9% CH₃COOH, *T-22*°C, *t-30* min. and n - 0 rot·min⁻¹ were used.

The maximum value of the dissolution rate is noticed in case of experience no. 9, where the concentration was of 6% CH₃COOH, *T-34*°C, *t-30 min.* and *n-250* $rot \cdot min^{-1}$.

4. Conclusions

The development of the theoretical and real mass balances of the migration processes of metallic acids in acid solutions, studied and presented in this paper, have had as main purpose the characterization of the migration processes from the interaction interface between acetic acid and AISI304 stainless steel grade samples through the calculation of the dissolution rate of the metallic contaminants Mn, Cr, ⁵⁶Fe and Ni. By elaborating these balances, we have obtained very important information regarding the behaviour of these stainless steels in the studied experimental conditions. One can notice that minimum values of the dissolution rate of the elements Mn, Cr and ${}^{56}Fe$ are obtained when solutions with 3% CH₃COOH concentrations were used. and the minimum dissolution rate of Ni were obtained when the environment concentration was of 9% CH₃COOH.

Silviu-Gabriel STROE, Gheorghe GUTT, Maria POROCH-SERIȚAN, Contributions to the development of the material balance of migration process of metal ions from the AISI304 stainless steel in acetic acid solutions, Food and Environment Safety, Volume XII, Issue 2 – 2013, pag. 207-213

The maximum levels of dissolution of Mn, Cr and ${}^{56}Fe$ elements were obtained in case of the use of corrosive solutions with a concentration of 3% CH₃COOH, and for the element Ni when solutions with 6% CH₃COOH concentration were used.

5. References

- EN 10088 2: 2005, Stainless steels. Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes, (2005)
- [2].CALISTRU C., LEONTI C., Inorganic substances Technology, Ed. Didactică şi Pedagogică, Bucureşti, (1972)
- [3]. GUTT S., GUTT GH., Contributions to the mass balance and energy to electrochemical sharpening, Chemistry magazine, 44(11), 972 – 977, ISSN 0034-7752, (1993)
- [4].GUTT S., GUTT GH., Contributions to the material and energy balance sheet for the electrochemical nickel convection ultrasonic, Chemistry magazine, 6(48), 521 – 531, ISSN 0034-7752, (1997)

- [5].BUCULEI A., AMARIEI S., POROCH -SERIȚAN M., GUTT G., Study on the development of the material balance focused on the metal transfer between the system canlacquering and canned vegetables, International Conference, Modern Technologies in the Food Industry-2012, 1-3 November, 2012, Chişinău (Republic of Moldova), Section 3, Chemistry and Microbiology of Food, (2013)
- [6].EHEDG European Hygienic Engineering & Design Group, Materials of construction for equipment in contact with food, Trends in Food Science & Technology 18, Elsevier, (2007)
- [7].CODEX ALIMENTARIUS COMMISSION, Doc. no. CX/FAC 96/17. Joint FAO/WHO food standards programme. Codex general standard for contaminants and toxins in foods. Directive 91/338/EEC: Council directive 91/338/EEC amending for the 10th time Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the member states relating to restrictions on the marketing and use of certain dangerous substances and preparations. L 186 p. 59, (1995)
- [8].WORLD HEALTH ORGANIZATION WHO Nickel in drinking-water. *Background document* for development of WHO Guidelines for drinking-water quality, Geneva, World Health Organization, (2005).