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In recent decades, routing based on Geographic Information Systems (GIS) has 
become a major branch of technology, which has been used especially in ap-
plications related to transport and logistics. However, in terms of the develop-
ment of methods, routing in a cross-country environment is more difficult, and 
hence research into it has been relatively scarce. This is particularly true in the 
context of complex routing problems involving visits to several locations. A typ-
ical example of a problem of this kind is field inventory, which is a data collec-
tion procedure used in many application areas, particularly those related to en-
vironmental research and the management of natural resources. This study pre-
sents a problem in which an efficient inventory route is determined for an areal 
object, such that the area visible from the route meets a prescribed threshold, 
while maintaining the shortest possible route. Although this problem, referred to 
here as the Areal Inventory Problem (AIP), is closely related to a multitude of 
routing and location allocation methods known in the context of GIS, none of 
them is very well-suited for solving the AIP. This study describes a general solu-
tion procedure for the AIP, and introduces an implementation of a heuristic al-
gorithm that can be used to solve a real-world AIP within a reasonable time 
frame. The proposed approach is demonstrated with actual data related to field 
inventory practices carried out by the Finnish Forest Centre. 
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Introduction

The determination of optimum routes is a line of 
technology, which has become an essential part of 
modern society, mostly used in logistics, fleet 
management, and private transport. Besides the 
commercial or public sector applications, it is 
equally well established also in scientific research, 
manifested by the vast amount of studies consider-
ing accessibility, traffic simulation and site selec-
tion problems, which all involve the search for 
optimum routes.

The general view of routing technology tends to 
emphasize the recent advances in Geographic In-

formation Systems (GIS), positioning technology 
(mainly Global Positioning System, GPS) and the 
computational capability of mobile devices, to-
gether with the increased availability of digital 
data products concerning transportation networks, 
as the main contributors to its broad use today. 
While the central role of these enabling factors 
cannot be disputed, it is important to realize that 
the route search methods and representations used 
in routing applications date back to at least the 
1950s, or even earlier. Indeed, modern-day rout-
ing applications are strongly founded on the con-
cepts and representations of graph theory, which is 
a branch of mathematics focused on the notion of 



24 FENNIA  192: 1  (2014)Henna Etula and Harri Antikainen

a graph (Miller & Shaw 2001). A graph is essen-
tially a structure used to model pairwise relations 
between objects, and it is typically denoted as

					     (1)

consisting of a set of nodes (or vertices) N and a set 
of edges (or arcs or links) E. An edge

					     (2)

connects nodes i and j, and has an associated cost 
cij (Diestel 2000). The cost may represent the im-
pedance of travel, such as geographical distance 
or time, between i and j. An optimum, least-cost 
path between any two locations within the graph 
can be calculated using a graph search algorithm, 
such as the classic algorithm originally proposed 
by Dijkstra (1959). 

The graph structure lends itself very well to 
representing the natural topology of transporta-
tion networks, allowing optimum transportation 
routes to be found efficiently. This is because a 
transportation network is functionally one-di-
mensional, and therefore it can be directly repre-
sented as a graph. However, finding routes 
through two-dimensional space, such as cross-
country terrain, is more difficult because the two-
dimensional space with unlimited movement op-
tions must first be transformed into a one-dimen-
sional graph structure with a finite set of move-
ment options. In GIS, this can be realized by the 
cost surface approach. A GIS-based cost surface 
is essentially a raster representing continuous 
two-dimensional space. Each cell of the cost sur-
face raster is assigned a “cost”, which depicts the 
impedance of movement across the cell. The ras-
ter is transformed into a graph by treating the 
center of each cell as a node, and the connec-
tions between adjacent nodes as edges, weighted 
according to the underlying cost values. An opti-
mal path between any two locations (nodes) can 
be found by determining the sequence of moves 
constituting the least possible accumulative cost 
between the locations (Bolstad 2002). For this 
purpose, the same graph search algorithms can 
be used as in the case of graphs representing 
transportation networks.

The cost surface method has been used in 
many real-world applications, such as in deter-
mining the optimal alignment of linear construc-
tions, like trails (Xiang 1996), roads (Yu et al. 
2003), canals (Collischonn & Pilar 2000), power 

transmission lines (Bagli et al. 2011), and pipe-
lines (Feldman et al. 1995). The method has also 
been used for modeling the patterns of human 
movement in archaeological research (Howey 
2007; Anderson 2012), as well as in the manage-
ment of protected and recreational areas 
(Theobald et al. 2010; Tomczyk & Ewertowski 
2013). Likewise, the method has been applied in 
ecological research to predict the movement and 
migration of wildlife (Lundqvist 2007; Parks et al. 
2013). These examples depict the versatility of 
the method: it can be applied in very different 
domains by simply adjusting the cost parameter 
used in the method. 

One of the main limitations of the least-cost 
path method based on cost surface analysis is 
that the path can only be calculated from one lo-
cation to another location (or a set of other loca-
tions). Hence, it is not possible to use the method 
to solve more complex routing problems, such as 
finding a route visiting several locations in an op-
timal order. Certainly, methods for solving prob-
lems of this nature exist, and some of them have 
been implemented in the mainstream GIS soft-
ware packages. These implementations typically 
assume that a transportation network (or a simi-
lar, existing network) is used as a basis for route 
optimization. Using a raster graph for this pur-
pose is impractical due to the large number of 
nodes with many connections. Instead, the least-
cost path analysis is sometimes used to first cre-
ate a graph connecting a predetermined set of 
locations, and this graph is then used to solve a 
routing problem involving visits to several loca-
tions. For example, Balstrøm (2002) has em-
ployed cost surface analysis to calculate least-
cost paths between all pairs of rain gauges in a 
study area located in mountainous terrain, and 
the network composed of these least-cost paths 
was used to determine the most optimal visiting 
sequence of the gauges with a routing method. In 
another study, Store and Antikainen (2010) adopt-
ed a similar approach by calculating least-cost 
paths based on a cost surface raster between for-
est stands to be inventoried. However, in this 
case each forest stand was assigned an impor-
tance score, and the task was to use the graph 
created with the least-cost path analysis to deter-
mine the most important stands that could be in-
ventoried within a prescribed amount of time 
spent in the field.

A basic assumption used in the aforementioned 
studies is that the locations to be visited comprise 

       , 

         , 
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a finite set of discrete locations, which can be 
represented as a graph. However, in some routing 
problems, there may not be any predefined dis-
crete locations that could serve as a basis for the 
graph representation. This study is motivated by a 
real-world routing problem related to the field in-
ventory of areal objects, which in this case are 
forest stands. This problem asks for the shortest 
possible route to be found inside an areal object 
such that a proximity buffer drawn around the 
route, representing visibility from the route, cov-
ers at least the predefined proportion of the areal 
object. In the following, the background of the 
problem and the motivation for the study are de-
scribed in more detail, and a literature review of 
related problem types is presented. This is fol-
lowed by the description of a formal solution pro-
cedure for the problem, and the implementation 
of the solution is presented along with a sample 
problem and solution examples. 

Field inventories

Field inventory is an essential but labor-intensive 
way to gather and produce information in many 
application areas, especially those pertaining to 
environmental research and the management of 
natural resources. A prime example of this are 
forests, for which there is a worldwide demand 
for information (Tomppo et al. 2008). Some of the 
need for information is related to the questions of 
biodiversity and ecosystems, while some are ob-
viously related to economic aspects, involving a 
variety of resource modeling procedures and 
management plans. The information is typically 
collected using different methods and is carried 
out by many organizations. For example, the 
Finnish Forest Centre, a governmental forestry or-
ganization, collects information about privately 
owned forests throughout Finland. The informa-
tion is collected both by the means of remote 
sensing (RS), including airborne laser scanning 
(ALS) and aerial images, and field inventory (Mal-
tamo et al. 2011). While the RS techniques, com-
bined with reference plots examined in the field, 
allow valid data to be produced for most areas of 
interest, for a subset of areas (such as seedling 
stands and temporarily unstocked regeneration 
areas), traditional field inventory remains the 
only appropriate option for data collection.

There are two types of inventory units used in 
the field inventory practices of the Finnish Forest 

Centre: points and polygons. Points are associat-
ed with the measurement of reference plots, in 
which the center point of the plot is located with 
the help of a GPS device. The location is used as 
a focal point around which the trees are meas-
ured according to the given data collection in-
structions. Polygons are associated with the so 
called stand-wise inventory. A forest stand is a 
basic unit in forestry, defined as an area which is 
more or less homogeneous with regard to grow-
ing stock and forest type. The size of a stand typi-
cally ranges from a half hectare to five hectares. 
The stand-wise inventory is not based on specific 
measuring points, as in the measurement of refer-
ence plots, but rather it is performed by making 
overall observations and measurements along an 
inventory route passing through the stand. The 
accuracy of the inventory may not always be the 
same for all stands (for example, mature stands 
are measured more carefully while data from 
seedling stands is often collected only by visual 
observations); however the same field inventory 
procedure is applied for all stands, requiring that 
an adequate level of information has to be ac-
quired from the stand. The only way to accom-
plish this is to visit and inventory the stand in the 
field. 

The efficiency of field inventory is highly im-
portant. For example, the inventories carried out 
by the Finnish Forest Centre cover about 1.5 mil-
lion hectares of forestland every year, constituting 
a major data collection and maintenance effort. 
While around 75% of data can be obtained by 
using modern RS techniques, one fourth of the 
inventory area still requires a stand-wise field in-
ventory. Due to the high cost of field inventories, 
special emphasis must be devoted to the efficien-
cy of the inventory.

There are two principal ways of improving field 
inventory, and thereby keeping the costs within 
acceptable limits. The more traditional way is the 
careful planning of the used inventory method 
and the data to be collected. It is important to 
gather all required data during a single field visit, 
without a need to revisit the area later for com-
plementary data collection. It is also useful to 
concentrate on properties that can be measured 
easily, and then use them for further calculations 
to derive other properties. For example, in forest 
inventory, the volume of the growing stock is dif-
ficult to estimate correctly in the forest, but it can 
be calculated based on the average diameter and 
height of the trees, which can be measured easily. 
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Forestry field inventory methods and practices 
have been developed and fine-tuned over dec-
ades, and the current procedures can be consid-
ered to be efficient already, leaving little room for 
further improvement. Therefore, instead of the 
actual data collection methods, there is growing 
interest towards seeking improvement by means 
of route optimization, which constitutes an addi-
tional strategy for making field inventory more ef-
ficient. The potential advantages of optimizing 
inventory routes seem obvious, as it provides a 
way to design routes that avoid unnecessary and 
inefficient movement in the inventoried area. By 
this means, a maximum amount of information 
can be gathered with a minimum effort or cost. 
This study is specifically concerned with the task 
of designing the route in such a way that an ade-
quate level of coverage is reached, while the 
route itself is kept as short as possible. The cover-
age of the route means the surrounding area that 
can be observed or otherwise reached from the 
route without stepping out of the route. In this 
article, this problem is referred to as the Areal In-
ventory Problem (AIP). 

Related optimization problems

In addition to the least-cost path problem, the 
Areal Inventory Problem (AIP) is closely associ-
ated with many location allocation problems. 
Perhaps the best-known and most intensively 
studied location allocation problem is the p-
median problem (Hakimi 1964), which seeks to 
find optimum locations for any number p of fa-
cilities such that the sum of distances between 
each (weighted) demand point and the closest 
facility is minimized (Longley et al. 2005). The 
solution of a p-median problem is a set of p fa-
cilities, such as health centers or schools, locat-
ed as centrally as possible with regard to the 
demand points (representing, e.g., population at 
a certain level of aggregation).

While minimizing the overall distance needed 
to access the facilities may be applicable to 
most situations, for certain kinds of facilities, 
such as fire stations and other emergency ser-
vices, the facilities should cover as much de-
mand as possible within a prescribed time or 
distance. This kind of problem, which is com-
monly referred to as the Set Covering Location 
Problem (SCLP) (ReVelle & Toregas 1972), seeks 
to allocate the demand in a particular area to a 

minimum number of facilities such that the dis-
tance between any facility and a demand point 
allocated to it does not exceed a pre-specified 
threshold. Of course, due to the scarcity of re-
sources, in many real-world applications it is 
not feasible to attempt to allocate facilities to 
cover all demand within a certain distance 
threshold; rather it is more useful to allocate fa-
cilities such that as many demand points as pos-
sible are located within the distance threshold. 
This variation of the problem is known as the 
Maximal Covering Location Problem (MCLP) 
(Church & ReVelle 1974). The MCLP is typically 
used to solve commercial allocation problems, 
such as the location of new retail centers.

The AIP can be thought of as an instance of 
the MCLP where the “facilities” are the vertices 
of the route and the distance threshold is the de-
gree of visibility from the vertices. The length of 
the route can be minimized in the AIP by apply-
ing methods used to solve the Traveling Sales-
man Problem (TSP) (Applegate et al. 2006). The 
TSP is a classic problem that seeks to find a 
shortest possible tour through a set of locations 
such that the tour visits each location exactly 
once.

The TSP and the MCLP can be combined to 
constitute a specific kind of problem, namely 
the Covering Salesman Problem (CSP) (Current 
& Schilling 1989). In the CSP, the task is to find 
the shortest possible tour visiting a certain sub-
set of locations, while making sure that all loca-
tions excluded from the tour are within a pre-
scribed distance from the closest location in-
cluded in the tour. Several variations of the CSP 
have been proposed in the literature. In the Cov-
ering Tour Problem (CTP) (Gendreau et al. 1997), 
the locations visited by the tour can be predeter-
mined. Unless locations are pre-assigned to the 
tour, the problem is reduced to the general CSP. 
On the other extreme, if all locations must be 
included into the tour, the problem is equivalent 
to the basic TSP.

In the Generalized Covering Salesman Prob-
lem (GCSP) (Golden et al. 2012), visits to the 
locations can also be varied: it is possible to 
“stay overnight” at a location or visit it more 
than once, if this is necessary to cover the de-
mand. The CSP has also been refined by the 
original authors of the problem in a study where 
they define two specific kinds of problems: the 
Median Tour Problem (MTP) and the Maximal 
Covering Tour Problem (MCTP) (Current & Schil-
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ling 1994). In the MTP, the objective is to mini-
mize the total (weighted) distance of locations 
not on the tour to the nearest location included 
in the tour. In the MCTP, on the other hand, the 
task is to minimize the total demand associated 
with the locations which are not within a certain 
pre-specified maximal distance from a location 
on the tour.

Apart from the formulations and solution op-
tions of the allocation problems, there has been 
an increasing interest towards assessing the 
problems with respect to how the demand is 
covered in allocation problems. A traditional 
approach is to assume that the demand is di-
vided into cells of equal size, and for simplicity, 
each such cell has been discretized into a point 
located at the centroid of the cell. This zero-di-
mensional location thus represents all of the de-
mand contained by the cell, such as population 
or area, for example. If the centroid is covered 
in the solution of the allocation problem, the 
entire demand of the cell is considered to be 
covered. This may give rise to misleading and 
suboptimal results. Obviously, a more realistic 
approach would be to represent the demand by 
polygons rather than points.

Alexandris and Giannikos (2010) have as-
sessed coverage gaps by comparing the cover-
age calculated according to grid cells, and the 
coverage calculated according to spheres drawn 
around point locations. In their own experi-
ment, the authors demonstrate that a better cov-
erage can be achieved with the same number of 
facilities as in the traditional approach. At the 
same time, a partial coverage is taken into ac-
count. This signifies that a majority of the de-
mand contained by the cell may become cov-
ered, even if the centroid of the cell is not cov-
ered (Murray 2005). In that case, the calcula-
tion of the coverage is not particularly sensitive 
to changes in cell size, and it is also less suscep-
tible to the Modifiable Area Unit Problem 
(MAUP).

Overall, the AIP is related to multiple loca-
tion allocation and routing problems well 
known in the literature, the MCTP in particular. 
However, in the AIP, the coverage is assessed in 
terms of areal coverage, instead of the coverage 
of discrete locations. As a result, it is essential 
to take account of the suggestions made by Al-
exandris and Giannikos (2010) regarding the 
calculation of the actual coverage when imple-
menting a solution procedure for the AIP. 

Solving the Areal Inventory Problem

Problem formulation

The inventory of an areal object (polygon) is car-
ried out by visiting a set of observation points, 
which are locations where the inventory techni-
cian stops to carry out measurements and make 
observations about the surrounding environment. 
There is no supply variation, signifying that all ob-
servation points are assumed to produce the same 
amount of information. In addition, there are no 
preconditions to the location of the observation 
points, other than that they are supposed to be lo-
cated inside the inventoried polygon. However, 
the number of observation points inside the poly-
gon, n, is determined before the inventory, based 
on the existing knowledge of a similar inventory. 
The inventory route goes through these points, 
such that the transfer between two consecutive 
points takes place along the shortest path between 
them. 

As the route should be as efficient as possible, the 
length of the route must be minimized. The solution 
algorithm proposed here is thus related to the MCTP, 
signifying that the aim is to produce the shortest pos-
sible route that seeks to reach an adequate level of 
coverage attainable by n points. The observation 
points are not determined in continuous space, in-
stead the polygon is represented as a finite set of can-
didate locations among which the n observation 
points are selected. However, the coverage of the 
inventory route is determined in continuous space, 
which is done by defining a buffer around the points 
where observations are made. Since the inventory 
technician is also expected to make observations 
along the route when moving from one observation 
point to the next, the entire route is buffered, instead 
of the actual observation points only. The width of the 
buffer, Buf, which in this case represents the length of 
visibility, can be a constant for all stands, or a varia-
ble depending on the properties of the forest (e.g., the 
length or density of growing stock) or the ruggedness 
of terrain. The visible area outside the boundaries of 
the inventoried polygon is discarded as irrelevant. 
The calculated route is valid provided that its cover-
age C (which is the visible portion of the inventoried 
polygon divided by the entire surface area of the 
polygon), is equal to or greater than a predetermined 
threshold C_enough. Again, this parameter can be a 
constant or a stand-specific variable depending on 
the growing stock.
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The definition of the problem is as follows:

Minimize the length of the inventory route subject 
to

(1) the route goes through n points,
(2) the coverage C of the route is equal to or great-

er than C_enough,

where
(3) the visible area of the polygon to be invento-

ried (P) is created by buffering the inventory 
route and the observation points with the buff-
er width Buf and, resulting in a buffer polygon 
B,

(4) the buffer polygon B is intersected by polygon 
P, in order to produce the visible area (BI_area) 
inside the polygon and

(5) the coverage C of the route is calculated by 
dividing BI_area by the surface area of P. 

Solution procedure

This section describes an algorithm that can be 
used to solve the AIP. The procedure of the algo-
rithm is presented in the form of pseudocode, but 
an illustration of the algorithm is also provided as 
a flowchart (Fig. 1).

Input parameters:
P = the areal object to be inventoried (polygon),
e = entrance (point),
x = exit (point).

Constants:
A = the surface area of P,
n = the number of the observation points,
Buf = a buffer width and
C_enough = an adequate coverage for inventory.

Fig. 1. The procedure for solving the areal inventory problem.
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Variables:

R_temp = a temporary variable for the route in pro-
cess (polyline),

L_temp = a length of R_temp,
B = a buffer around the route R_temp (polygon) with 

buffer width Buf,
BI = B intersected by P (polygon),
BI_area = the area of BI and
C_temp = coverage associated with route R_temp.

Output parameters:
R = the best route (polyline),
L = the length of the best route and
C = coverage of the best route,
or alternatively
C_max = the maximum coverage if the coverage of 

any route does not reach C_enough
R2 = the output route if C_max is used (polyline) and
L2 = the length of the route R2.

The algorithm:

Step 1: Create a set of candidate points with regu-
lar intervals over P. The interval depends on A. An 
appropriate point interval may be, for example, 20 
meters.

Step 2: Set variables:
R 			   = null,
L 			   = ∞,
C 			   = 0,
R2			  = null,
L2	 		  = 0 and
C_max 	 = 0.

Step 3: Select points which are inside of P.

Step 4: For all possible sets of n points do
a) Set variables:
	 R_temp 	 = null,
	 L_temp 	 = 0,
	 B 		 = null,
	 BI 	 = null,
	 BI_area 	 = 0 and
	 C_temp	 = 0.
b) Choose n points.
c) Produce the shortest possible route between e 	
	 and x through n points = R_temp.
d) Calculate the length of R_temp = L_temp.
e) Buffer the route with buffer width Buf = B.
f) Intersect B by P = BI.
g) Calculate the area of BI = BI_area.
h) Calculate the coverage C_temp = BI_area / A.
i) If C_temp ≥ C_enough and L_temp < L then
	 R 	= R_temp
	 L 	 = L_temp
	 C 	= C_temp

else if C_temp > C_max then
	 R2 	 = R_temp
	 L2 	 = L_temp
	 C_max 	 = C_temp

Step 5: Print out the output parameters R, L and C. 
If none of the routes has reached the coverage C_
enough, print out R2, L2 and C_max. 

Sample problem

This sample problem illustrates the solving of the 
AIP for a single forest stand with an area of 2.13 
hectares. It is assumed here that a model has been 
constructed to estimate the parameter n for stands 
of different shape and size, and according to the 
model, n is six for this particular stand. As the 
stand is covered by commercial thinning forest of 
low density, the visibility in the area is estimated to 
be 30 m. Due to the small size of the area, topog-
raphy is not assumed to have any effect on visibil-
ity. It is also determined that the entire area does 
not have to be observed: instead, a 60% coverage 
is expected to be adequate for data collection pur-
poses.

A set of candidate points at the regular interval 
of 20 m is created over the stand. The selected in-
terval is a trade-off between accuracy and compu-
tation time. 20 m was estimated to be suitable for 
a medium-sized forest stand, such as the one con-
sidered here. The placement of the candidate loca-
tions at this interval in the stand results in 54 
points. As the inventory route is expected to visit 
six points, this would amount to  = 25 827 165 
different combinations of points. Four of these 
combinations, and their associated routes, are il-
lustrated in figure 2. Each one of the routes is buff-
ered, resulting in a buffer polygon B, which is then 
intersected with the boundaries of the stand (re-
sulting in a clipped buffer polygon BI). The varia-
ble BI_area is used to denote the observed area of 
the stand, and C is the coverage score of the route 
(i.e. the ratio of BI_area to the entire area of the 
stand). The route length, L, represents the traversed 
distance between the start and end points of the 
route.

The coverage of the routes presented in figure 2 
varies clearly. Route 3 does not exceed C_enough 
because all n points are concentrated in the west-
ern part of the stand. In Route 4, n points are lo-
cated near the boundary of the stand. The attained 
coverage is high but this comes at the cost of route 



30 FENNIA  192: 1  (2014)Henna Etula and Harri Antikainen

length. In addition, a great deal of B is located out-
side the boundaries of the stand, which is not an 
ideal situation. Routes 1 and 2 are located in the 
middle of the stand and the coverage becomes 
high because B is almost completely located with-
in the stand. Route 3 is the shortest but its coverage 
is below the required threshold. The three other 
alternative routes have an adequate coverage, 
among which Route 2 is the best because it is the 
shortest of the presented solutions.

It is important to realize, though, that only a 
small set of alternative solutions are presented for 
this sample problem, leaving 25 827 161 other so-
lutions without consideration. This signifies that 

instead of an exhaustive examination of all alter-
natives, the actual implementation of the algo-
rithm must employ a heuristic strategy in order to 
keep computation time within reasonable limits. 
Heuristic algorithms are used to quickly find a rea-
sonably good solution to a problem in situations 
where it is considered too time-consuming to 
search for the absolutely optimal solution. Indeed, 
due to the NP-hardness of many allocations prob-
lems (denoting that their computational complex-
ity increases exponentially with the size of the 
problem), their solution strategies are commonly 
based on heuristic algorithms (Church & Sorensen 
1994). 

Fig. 2. Four alternative inventory routes produced for one forest stand. Route 2 is the most efficient 
because it produces enough observed area with the shortest route length.
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Heuristic solution procedure

Implementation

A software tool was implemented by Esri Fin-
land to solve the AIP, and it was constructed as 
a geoprocessing model to be run on the ArcGIS 
software. The AIP tool utilizes the built-in func-
tions of ArcGIS 10.1, including the Network 
Analyst and Spatial Analyst extensions. Instead 
of the general solution algorithm presented in 
this study, the tool employs a heuristic strategy 
to quickly find a good solution to the AIP. The 
main steps of the implementation are illustrated 
in figure 3. 

The implemented AIP tool consists of two 
principal stages. In the first stage, a set of candi-
date points at a regular 20-m interval is created 
inside a polygon, and then a mesh of straight-

line paths is constructed between the candidate 
points. The points, along with the mesh, consti-
tute a discretized representation of the move-
ment options inside the polygon. Since forest 
stands are, by definition, internally homogene-
ous, a straight line between any two points can 
be safely assumed to be the shortest path con-
necting the points. The mesh contains all possi-
ble paths between all the candidate points, with 
the exception that candidate points located less 
than 10 m from the boundary of the area are 
excluded, as it is unlikely that they could be-
long to the optimal inventory route. 

The other stage of the AIP tool produces the 
inventory route inside the polygon. The tool has 
six parameters: a point where the inventory 
route starts (entrance point), a point where the 
inventory route ends (exit point), a number of 
the observation points (n), a buffer width (Buf), 
an adequate coverage for inventory (C_enough), 
and the maximum number of iterations. The en-
trance and exit points are user-defined locations 
that can be positioned anywhere on the bound-
ary of the polygon. The route is calculated be-
tween these points, visiting any combination of 
n observation points that provides an adequate 
level of coverage, defined in C_enough, with 
the buffer width Buf. 

Instead of enumerating all possible route 
point combinations to find the absolute best so-
lution, the tool employs a heuristic strategy to 
quickly find a reasonably good route. First, the 
tool calculates a seed route, which is the short-
est possible path between the entrance and exit 
points. After that, it calculates a centrality score 
for each candidate point, which is the com-
bined distance of the point from the seed route 
and from the geographic center of all of the 
candidate points (Fig. 4). The centrality score is 
used to “guide” the route calculation process to 
search for routes that are close to the shortest 
possible path between the entrance and exit 
points, and, at the same time, centrally located, 
thereby being potentially good route candidates 
in terms of coverage. The points are sorted ac-
cording to the centrality score, placing the best 
one first. Then, the route is sought in an iterative 
manner. At each iteration, the first n points of 
the list are included in the route as intermediate 
points between the fixed entrance and exit 
points. The shortest route through this combina-
tion of points is calculated, by allowing the vis-
iting sequence of the intermediate points to 

Fig. 3. The heuristic procedure for solving the areal inven-
tory problem.
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vary in order to find the shortest route. As the 
route is calculated, the tool examines whether 
the route reached the value C_enough. Unless 
C_enough is reached, the first point in the or-
dered list is removed and the tool moves into 
the next iteration; otherwise, the tool will stop. 
The tool will also terminate if all possible com-
binations of candidate points have already been 
examined, or if the maximum allowed number 
of iterations has been reached. 

The final result of the tool will be the first of 
the routes that reaches the threshold. However, 
if the tool stops due to the maximum iteration 
condition without reaching C_enough, the re-
sult will be the best of the examined routes. If 
the polygon is very small, that is, if n equals 
one, the tool will only calculate a route that vis-
its the center point of the polygon.

Using the software tool

A selection of routes calculated with the AIP 
tool are depicted in figure 5. The routes are cal-
culated for a forest stand with different entrance 
and exit points. The area of the stand is 2.2 ha. 
The candidate points are located at 20-m inter-
vals, the buffer width is 25 m, the adequate cov-
erage is 60%, and the number of the observa-
tion points is five. With these parameter values, 
the tool runs quickly.

The size of the polygon is a significant factor 
determining for the computational performance 
of the calculation. Figure 6 shows a relatively 
large forest stand, having a surface area of 8.0 
ha. The parameters are the same as above ex-
cept for the number of the observation points, 
which in this case is nine. The AIP tool was run 
with 10, 25 and 50 iterations, failing to reach 
the adequate coverage with any one of these 
options. It can easily be seen in figure 3 that if 
the polygon in question is large, containing 
plenty of candidate points, the number of itera-
tions greatly affects the quality of the resultant 
route. While better solutions can be achieved 
by allowing more iterations, this has a negative 
effect on computation time. For example, in the 
case of this particular polygon, the overall com-
putation time more than doubles between 10 
and 50 iterations.

When using the tool it is important to esti-
mate the appropriate parameters and computa-
tion time, which are critical when calculating 
complete inventory routes that visit many forest 
stands. The computation time can be controlled 
by adjusting the maximum allowed number of 
iterations, and by creating a more sparsely 
spaced set of points for choosing n points. Un-
fortunately, the solution quality will deteriorate 
as the point set becomes more scattered. On the 
other hand, a very dense set of points may not 
help produce a better solution at all; instead, it 
just increases the solving time considerably. As 
described above, the number of points can be 
reduced by ignoring points close to the bound-
ary of the polygon, since it is unlikely that such 
points can contribute to the extent of the visible 
area (the buffer outside the polygon will be cut 
away anyway). Although this helps decrease 
computation time, its positive effect quickly be-
comes insignificant as the size of the polygon 
increases. 

Conclusions

This study has presented the Areal Inventory Prob-
lem (AIP), which attempts to find a route for an ar-
eal object, such that the area visible from the route 
meets a prescribed threshold, while maintaining the 
shortest possible route. Although the AIP is related 
to several classic routing and allocation problems, 
this particular problem has not received attention in 
the literature so far. In this study, an algorithm that 

Fig. 4. The heuristic procedure begins with creating a seed 
route and calculating the centrality score.
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can be used to solve the AIP in the GIS environment 
is proposed. This has been demonstrated with a soft-
ware tool implemented in GIS, which has been 
tested with actual data related to forest field inven-
tory.

Despite its deceptive simplicity, the AIP is a com-
plicated problem. This requires making certain pre-
suppositions that help reduce the complexity of the 
problem. The presuppositions employed in this 
study include the appropriate number of observa-
tion points (i.e., the fixed number of points visited 
by the route), and the interval of candidate points 
used to represent the polygon and to construct the 
route. Even with these simplifying presuppositions 
in effect, the computation time of the AIP increases 
exponentially with the size of the problem. Due to 
this property, it is only possible to find a valid solu-
tion to very small problems without a heuristic strat-

egy. The heuristic method devised for this study is 
efficiently guided to quickly find good solutions. 
Nevertheless, the number of iterations needed to 
find a solution that meets the given threshold may 
be high, and an adequately good solution may not 
be found at all within the limits of the prescribed 
number of iterations.

Although the proposed method for solving the 
AIP is intended to enable the automation of a route 
finding procedure, and to make it possible to solve 
routing problems that may be too difficult to solve 
manually, it is necessary to realize that the use of 
the method still relies strongly on the GIS specialist 
designing the representation of the AIP. The process-
ing of GIS-based data elements often involves a 
considerable computational overhead which makes 
the calculation of routes, already very complicated 
by itself, even more challenging. The task of a GIS 

Fig. 5. Three different inventory routes produced for one forest stand with different entrance and exit points.

Fig. 6. Three different inventory routes produced for one forest stand with different numbers of iterations.
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specialist is therefore to set up the representation of 
the problem and define its parameters such that the 
computational effort of running the AIP tool is in a 
reasonable relation to the potential benefit acquired 
in the field work.

With regard to the representation of the AIP in the 
proposed solution procedure, there are certain limita-
tions related to the way that polygons are represented 
by discrete points, and how the route is only allowed 
to visit these points, instead of searching for the route 
in continuous space. This effectively means that the 
route is always constrained to the predetermined set 
of candidate points and the network of connectivity 
defined between these points. Nevertheless, the dis-
cretization scheme and the associated sacrifice in the 
alignment options of the route is necessary in order to 
devise a reasonable solution algorithm. The AIP does, 
however, take into account continuous space by de-
termining the covered area by means of a buffer zone 
drawn around the route, instead of allocating discrete 
candidate points to the vertices of the route. This pro-
cedure allows the discovery of better and more ac-
curate solutions compared to the conventional MCTP.

The AIP seeks to solve a routing problem inside a 
single polygon, which, of course, constitutes only a 
part of the larger inventory route planning problem. 
The complete inventory route typically visits a num-
ber of targets (forest stands) in a certain order. The im-
plemented AIP tool was designed in such a way that 
it can be integrated as part of a GIS workflow used to 
determine inventory routes. In the case of forest in-
ventory planning, the AIP tool will calculate routes 
inside individual forest stands. When those routes are 
merged with the optimal routes calculated between 
forest stands (e.g., using the procedure proposed by 
Store & Antikainen 2010), complete routes can be 
produced for actual forest inventory purposes. This 
involves accounting for several factors, including to-
pography, vegetation and the traversability of the ter-
rain (Etula & Antikainen 2012).

There are many practical aspects of routing that 
call for further development of the AIP tool. For exam-
ple, when calculating complete inventory routes (vis-
iting a number of areas), it is possible that the areas to 
be inventoried are located immediately adjacent to 
each other. In such a situation, it might be useful to 
assess the coverage of the route simultaneously for 
both areas, instead of assessing the coverage sepa-
rately. Particularly in a situation where a small area is 
located next to a larger area, it is possible that the 
smaller area will actually be entirely visible from a 
route calculated for its large neighbor, without a need 
to calculate a route for the small area at all. In addi-

tion, depending on the location and shape of the ar-
eas, the most optimal strategy might involve visiting 
certain areas several times. For example, the shortest 
route might be accomplished by inventorying part of 
a certain area first, then moving on to inventory a dif-
ferent area, and then returning to the first area to com-
plete its inventory. The ultimate objective of inventory 
route optimization is, after all, to minimize the overall 
length of a complete route, and this requires that the 
mutual position of the inventory targets is taken into 
consideration. This aspect also needs to be accounted 
for when selecting the entrance and exit points of 
consecutive targets.

Although the AIP algorithm is formulated for the 
purposes of forest inventory, it is not limited to this 
particular application, as analogous applications can 
be seen in other fields as well. The value of the visibil-
ity parameter can be determined by using viewshed 
analysis to make the method suitable for different 
landscapes, and it is even possible to replace the vis-
ibility parameter with any other factor representing 
distance or accessibility. Polygons of any shape and 
size can be used in the method as well, as the perfor-
mance of the method can be guaranteed by adjusting 
the density of the candidate points to match the scale. 
In addition, there is no need for the polygons to be 
internally homogeneous, as the method can be ex-
tended to calculate the internal network of connectiv-
ity using the cost surface technique. This allows the 
variable traversability conditions typical to larger geo-
graphical areas to be taken into account, generating 
even more application possibilities.
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